

Use R!
Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

Albert: Bayesian Computation with R

Paradis: Analysis of Phylogenetics and Evolution with R
Hahne/Huber/Gentleman/Falcon: Bioconductor Case Studies

Sarkar: Lattice: Multivariate Data Visualization with R
Pfaff: Analysis of Integrated and Cointegrated Time Series with R

Spector: Data Manipulation with R

Use R!

Cook/Swayne:Interactive and Dynamic Graphics for Data Analysis: With R
and GGobi

Claude:Morphometrics with R

Morphometrics with R

Julien Claude

ABC

Giovanni Parmigiani
The Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins University
550 North Broadway

USA
Baltimore, MD 21205-2011

Robert Gentleman Kurt Hornik

Division of Public Health Sciences Wirtschaftsuniversität Wien Augasse 2-6
Fred Hutchinson Cancer Research Center A-1090 Wien

USA

Julien Claude
Universit de Montpellier II
ISEM, UMR 5554 CNRS
Laboratoire de Morphom trie
2 place Eug ne Bataillon
34095 Montpellier

Series Editors:

Program in Computational Biology

 é

 é

è

ISBN 978-0-387-77789-4 e-ISBN 978-0-387-77790-0

1100 Fairview Avenue, N. M2-B876

Department of Statistik and Mathematik

Austria
Seattle, Washington 98109

Printed on acid-free paper.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

© 2008 Springer Science+Business Media, LLC

DOI: 10.1007/978-0-387-77790-0

France

Library of Congress Control Number: 2008927603

julien.claude@univ-montp2.fr

To my parents

Preface

This book aims to explain how to use R to perform morphometrics. Morphome-
tric analysis is the study of shape and size variations and covariations and their
covariations with other variables. Morphometrics is thus deeply rooted within statis-
tical sciences. While most applications concern biology, morphometrics is becoming
common tools used in archeological, palaeontological, geographical, or medicine
disciplines. Since the recent formalizations of some of the ideas of predecessors,
such as D’arcy Thompson, and thanks to the development of computer technolo-
gies and new ways for appraising shape changes and variation, morphometrics have
undergone, and are still undergoing, a revolution. Most techniques dealing with sta-
tistical shape analysis have been developed in the last three decades, and the number
of publications using morphometrics is increasing rapidly. However, the majority of
these methods cannot be implemented in available software and therefore prospec-
tive students often need to acquire detailed knowledge in informatics and statistics
before applying them to their data. With acceleration in the accumulation of meth-
ods accompanying the emerging science of statistical shape analysis, it is becoming
important to use tools that allow some autonomy. R easily helps fulfill this need.

R is a language and environment for statistical computing and graphics. Although
there is an increasing number of computer applications that perform morphometrics,
using R has several advantages that confer to users considerable power and possible
new horizons in a world that requires rapid adaptability. Indeed, the R language and
environment is suitable for both basic users and developers, and can run on most
operating systems (Windows, Linux, or Apple OS). With one single environment,
morphometric analysis can be performed from data acquisition to data analysis, and
results can be presented in the form of graphs, both accurate and esthetic. Results
can also be included in further tests with independent data, using the wide range of
functions and packages available with R. R gathers the achievements of the R core
development team, numerous contributors of online available packages, and possi-
bly your own interaction. The advanced user can develop and modify his/her own or
programmed functions. R is highly evolvable and offers a single and integrative envi-
ronment to perform a wide range of statistical analyses; all characteristics make this
software suitable for beginners. In addition, R is taught more and more in universities

viii Preface

and increasingly used worldwide. Newcomers can easily get specific advice about
both practical and scientific questions with the international assistance provided by
the R-help web list and many online and inexpensive manuals. Finally, R is freely
distributed over the Internet.

However, there was obviously a need for bringing the R and morphometric ap-
proaches together. The book is a guide for performing and for developing modern
morphometrics with R. Exercises and examples can be used as tutorials, and the com-
bination of the book with R can be used as a teaching instrument. Besides the need
for supplying knowledge about R and morphometrics, the book expresses the need
for reducing the gaps between theoreticians, developers, and users. For this goal, I
deliberately favoured an approach involving customized functions directly written by
the user, rather than the explanation of a selected package. Functions from specific
“morphometric” packages are nevertheless briefly presented for faster computation.
I hope that this book will not be only a guide for using R code for performing mor-
phometrics, but also a helpful document for helping users to acquire autonomy and
to develop programs for their own scientific needs. For the book to be fully useful, I
strongly encourage you to work with R. It only requests you to download and install
R on your computer: something that will take a few minutes.

The first chapter of the book deals with general considerations and an introduc-
tion to R. It directly brings users into contact with the R language and environment.
The second chapter explains how to gather and capture data with R; a section of
this chapter is concerned with the organization of files. Since image analysis is often
a prerequisite for morphometric measurement, some applications and development
of R applied to basic image analysis is provided as well. The third chapter is de-
signed to guide you within the field of traditional and multivariate morphometrics.
The fourth chapter deals with statistical analysis of shape using landmark data, and
the fifth chapter presents R applications and developments for the statistical analysis
of outlines. The sixth chapter presents statistical analysis considering the specifics of
morphometric data (especially those based on landmarks and outlines). This chapter
mainly relies on biological applications, but readers will find examples of code that
can be applied to other fields. Finally, the last chapter explains how to progress fur-
ther with R to perform simulation, and to hybridize R with other software for more
specialized issues. For some examples, I used original data files (image files, codes,
and datasets); these are provided online.1

I am grateful to Emmanuel Paradis, Michel Baylac, and Tristan Stayton who have
contributed to parts of Chapters 3 and 7. In addition to their chapter contributions,
Michel Baylac allowed me to explore the 2006 pre-releases of the package Rmorph
and offered some basic code for Fourier analysis useful for developing functions pro-
vided in Chapter 5, Emmanuel Paradis supplied very useful comments on the first
chapters and for improving and shortening some code, and Tristan Stayton checked
Chapter 3 in integrality. The french research group GDR 2474 CNRS Morphométrie

1 http://www.springer.com/statistics/stats+life+sci/book/
978-0-387-77789-4
and http://www.isem.cnrs.fr/spip.php?article840

Preface ix

and Évolution des Formes has been very stimulating for listening to the needs of the
morphometric user’s community. Some of my students (Piyatida Pimwichai, Saksiri
Soonchan, Cédric Delsol, Guillaume Chatain) and colleagues (Ylenia Chiari, Lionel
Hautier, Renaud Lebrun) have tested some previous versions of code, functions, and
pedagogical issues of the book, and I thank them for their comments and support.
Vincent Lazzari kindly supplies one dataset for outline analysis used in the fifth
chapter, and Sylvie Agret digitized one landmark dataset and her help was appreci-
ated for selecting images that are used as examples. I am grateful to Nicolas Navarro,
Leandro Monteiro, Chris Klingenberg, Vincent Debat, Jean-Baptiste Ferdy, Florent
Détroit, Jean-Christophe Auffray, and Sylvain Adnet for helpful short or long dis-
cussions and corrections. The very active MORPHMET list forum2 as well as the
R mailing lists3 have been very important resources for developing techniques and
functions, and understanding codes and algorithms. I thank the reviewers for their
patience reading and correcting first manuscripts. I thank the editorial board who
enriched the book with many suggestions and who improved the English of earlier
versions. I would finally like to express my admiration to the R Core Development
Team for the remarkable efforts they have made in providing this wonderful tool for
all. This book is publication ISEM 165-2007.

Montpellier Julien Claude
March 2008

2 http://www.morphometrics.org/morphmet.html
3 http://tolstoy.newcastle.edu.au/R

Contributors

Addresses of the Author and Contributors

• Julien Claude
Institut des Sciences de l’Evolution de Montpellier
UMR 5554 CNRS
Université de Montpellier 2
2, place Eugène Bataillon
34095 Montpellier cedex 5, France

• Michel Baylac
Origine, Structure et Evolution de la Biodiversité
UMR 2695 CNRS
Muséum national d’Histoire naturelle de Paris
75005 Paris, France

• Emmanuel Paradis
Institut de Recherche pour le Développement
UR175 CAVIAR, GAMET
BP 5095, 361 rue Jean François Breton
34196 Montpellier cedex 5, France

• Tristan Stayton
Bucknell University
701 Moore Avenue
Lewisburg, PA 17837
United States of America

Abbreviations and Notations

k number of dimensions of the object or of the configuration
p number of landmarks
n number of objects or observations
M configuration matrix
A array of matrix configurations
m vectorized configuration matrice
A data frame or array containing a set of configurations

M′ transpose matrix of M
d scalar distance

M−1 inverse matrix of M
PCA principal component analysis

Rv Rv correlation coefficient of Escoufier (1973)
T 2

HL Hotelling Lawley trace
t2 Hotelling t square

dm Mahalanobis distance
scM centroid size
Mc vector of centroid coordinates
Ms configuration matrix scaled to unit centroid size
Mb Bookstein shape coordinates matrix
Mk Kendall shape coordinates matrix
Γ rotation matrix

dF full Procrustes distance
dP partial Procrustes distance
β scale
α translation vector

H1 lower right (p − 2) × (p − 2) partition
matrix of the Helmert matrix

Mh Helmertized configuration
Z preshape matrix
X centered configuration

Zc centred preshape configuration matrix

xiv Abbreviations and Notations

Be bending energy matrix
Mp Procrustes superimposed configuration

GPA generalized Procrustes analysis
EDMA Euclidean distance matrix analysis

FM Euclidean distance matrix form
fm vectorized Euclidean distance matrix form

FDM form difference matix
ρ Procrustes trigonometric distance

TPS Thin-Plate Splines
T period
ω pulse

Contents

Preface . vii

Contributors . xi

Abbreviations and Notations . xiii

1 Introduction . 1
1.1 Morphometrics Today . 1
1.2 Shapes and Configurations . 3
1.3 An R Approach to Morphometrics . 5
1.4 Starting with R . 9

1.4.1 Expression, Assignment and Other Basics 9
1.4.2 Objects . 10
1.4.3 Functions . 17
1.4.4 Operators . 21
1.4.5 Generating Data . 21
1.4.6 Loops . 23

Problems . 24

2 Acquiring and Manipulating Morphometric Data 25
2.1 Collecting and Organizing Morphometric Data 25

2.1.1 Collecting Data . 25
2.1.2 Organizing Data . 27

2.2 Data Acquisition with R . 31
2.2.1 Loading and Reading R Datafiles . 31
2.2.2 Entering Data by Hand . 32
2.2.3 Reading Text Files . 32
2.2.4 Reading and Converting Image Files . 33
2.2.5 Graphical Visualization . 35
2.2.6 Image Analysis and Morphometric Data Acquisition with R 41

2.3 Manipulating and Creating Data with R . 48

xvi Contents

2.3.1 Obtaining Distance from Coordinates of Points 49
2.3.2 Calculating an Angle from Two Interlandmark Vectors 50
2.3.3 Regularly Spaced Pseudolandmarks . 51
2.3.4 Outline Smoothing . 54

2.4 Saving and Converting Data . 56
2.5 Missing Data . 60

2.5.1 Estimating Missing Measurements by Multiple Regression . 60
2.5.2 Estimating Missing Landmarks on Symmetrical Structures . 61

2.6 Measurement Error . 63
2.6.1 Sources of Measurement Error . 63
2.6.2 Protocols for Estimating Measurement Error 65

Problems . 66

3 Traditional Statistics for Morphometrics . 69
3.1 Univariate Analyses . 69

3.1.1 Visualizing and Testing the Distribution 70
3.1.2 When Data are Organized in Several Groups 72

3.2 Bivariate Analyses . 80
3.2.1 Graphics . 80
3.2.2 Analyzing the Relationship Between two Distance

Measurements . 81
3.2.3 Analyzing the Relationship Between Two Distance

Measurements in Different Groups . 84
3.2.4 A Short Excursion to Generalized Linear Models 89
3.2.5 Interspecific Measurements and Phylogenetic Data 92
3.2.6 Allometry and Isometry . 95

3.3 Size: A Problem of Definition . 98
3.4 Multivariate Morphometrics . 105

3.4.1 Visualization of More than Two Distance Measurements . . . 105
3.4.2 Principal Component Analysis . 106
3.4.3 Analyzing Several Groups with Several Variables 111
3.4.4 Analyzing Relationships Between Different Sets of Variables 124
3.4.5 Comparing Covariation or Dissimilarity Patterns Between

Two Groups . 128
Problems . 129

4 Modern Morphometrics Based on Configurations of Landmarks 133
4.1 The Truss Network Approach of Strauss and Bookstein 133
4.2 Superimposition Methods . 138

4.2.1 Removing the Size Effect . 139
4.2.2 Baseline Registration and Bookstein Coordinates 141
4.2.3 Procrustes Methods and Kendall Coordinates 148
4.2.4 The Kendall Shape Space and the Tangent Euclidean Shape

Space . 166
4.2.5 Resistant-fit Superimposition . 170

Contents xvii

4.3 Thin-Plate Splines . 181
4.4 Form and Euclidean Distance Matrix Analysis 189
4.5 Angle-based Approaches for the Study of Shape Variation 198
Problems . 203

5 Statistical Analysis of Outlines . 205
5.1 Open Outlines . 206

5.1.1 Polynomial Curves . 206
5.1.2 Splines . 207
5.1.3 Bezier Polynomials . 209

5.2 Fourier Analysis . 212
5.2.1 Fourier Analysis Applied to Radii Variation of Closed

Outlines . 213
5.2.2 Fourier Analysis applied to the Tangent Angle 217
5.2.3 Elliptic Fourier Analysis . 221

5.3 Eigenshape Analysis and Other Methods . 229
Problems . 232

6 Statistical Analysis of Shape using Modern Morphometrics 233
6.1 Explorative Analyses of the Shape Space . 233

6.1.1 Landmark Data . 234
6.1.2 Outlines . 244

6.2 Discriminant and Multivariate Analysis of Variance 248
6.2.1 Outlines . 248
6.2.2 Procrustes Data . 251

6.3 Clustering . 254
6.4 Morphometrics and Phylogenies . 257
6.5 Comparing Covariation Patterns . 262
6.6 Analyzing Developmental Patterns with Modern Morphometrics . . . 267

6.6.1 Allometry . 267
6.6.2 Developmental Stability . 272
6.6.3 Developmental Integration . 276

Problems . 279

7 Going Further with R . 281
7.1 Simulations . 281
7.2 Writing Functions and Implementing Methods 287

7.2.1 Generalities and Strategies . 287
7.2.2 A Worked Example in R+C Programming: Contour

Acquisition Revisited . 289
7.3 Interfacing and Hybridizing R . 293

7.3.1 Example 1: Creating an Animation with R
and ImageMagick . 293

7.3.2 Example 2: Using ImageMagick to Display High
Resolution Images . 296

xviii Contents

7.4 Conclusion . 297
Problems . 298

Appendix A: Functions Developed in this Text . 299

Appendix B: Packages Used in this Text . 301

References . 303

Index . 311

1

Introduction

This chapter is a short introduction to geometric morphometrics and R. It explains
the aims and applications of the first, while providing minimal requirements for using
R for morphometrics. If you are familiar with one or both of these topics, you can
skip those respective sections and proceed directly to the following chapters.

1.1 Morphometrics Today

Morphometric analysis is the statistical study of shape and size and their covaria-
tions with other variables. Shape is commonly described as the property of an object
invariant under scaling, rotation, or translation. Size is a scalar, based on distances or
coordinates of points specified on the object. An object can have other attributes that
are close to the above-mentioned definition of shape but that are not shape properties,
such as colors or texture. Although one can estimate these two attributes quantita-
tively, I will not consider their treatment in this book. We will consider shape as the
geometric property of an object invariant under rotation, scale, or translation.

We regularly estimate the size and shape parameters of objects in our daily lives.
For instance, every time we go to the market, we select the ingredients for our meals
according to their size, volume, mass, and shape. Moreover, the study of shape and
size variation or difference occupy, and will occupy, a more and more prominent
place in our life with the development of technologies linked to the needs of our
societies: fingerprints or calligraphic recognition, calibration of food and industrial
products, appraising quantitatively developmental effects of some defective gene,
etc. Morphometrics is an important tool in biological, agricultural, archeological,
geological, geographical, and forensic sciences.

Until recently, the shape of objects and their variation were estimated using ad-
hoc distances, angles, or proportions. Shape analysis received many improvements
during the 20th Century with the development of concepts and methods aiming to de-
scribe shape parameters objectively and quantitatively. These developments have be-
came more numerous with the introduction of computers, and with the development
and maturing of multivariate statistics, which took into account the ensemble of the

2 1 Introduction

attributes (variables) of objects used for describing shape and size. Things changed
at the end of the 20th Century, when studies of shape variation became more than
the application of multivariate methods to a series of ad-hoc measurements. Indeed,
multivariate methods were just a small step toward what is today a mature discipline
and permits to extract and assess reliably the variation of the geometric properties of
objects. Morphometrics today considers the shape of an object as a whole and the in-
terdependence of its parts. Although multivariate techniques could have resolved this
dependence, modern statistical shape analysis goes further, and supply methods for
easily describing shape variation or shape change in both qualitative and quantitative
terms, with statistics appropriate for the task.

Modern shape analysis was initiated with the seminal work of D’Arcy Thompson
[117], that offered new ways of understanding shape variation. The idea to map a
shape to a grid and to deform this grid to fit a target shape changed the perception of
shape changes in terms of mathematical transformations. Indeed, dramatic changes
between comparable biological objects can be achieved by changing a few proper-
ties of objects. One can interpret the changes as resulting from distending, flattening,
or shearing forces applied to the objects themselves. The expression of these forces
can be visualized with deformation grids. Although the intuitive idea of using map
functions between two configurations was first developed by artists such as Leonardo
di Vinci or Dürer for aesthetic purposes and drawing constructions, it was D’Arcy
Thompson who developed these grids with the scientific purpose of describing mor-
phological changes (Fig. 1.1). It was only several decades later, at the end of the
20th Century, and after several attempts, that mathematical frameworks were devel-
oped for constructing these grids. This achievement was part of the emerging shape
statistics that proposed several methods for analyzing the parameters and variation
of shape and form of objects: superimposition methods (Section 4.2), application
of Fourier analysis to outlines (Section 5.2), Thin-Plate Splines (Section 4.3), and
Euclidean Distances Matrix Analysis (Section 4.4), etc. Some other methods were
applied to shape and image recognition; among them, the Hough transform played
an important role for image recognition. Most of these methods are based on mul-
tivariate techniques and are now the core of an emergent discipline at the interface
of statistics and other sciences. The important developments in morphometrics at the
end of the last century led several authors to write about a “revolution in morpho-
metrics.” [1, 106]

Development of geometric morphometrics has been driven by the increasing de-
mands of other disciplines. Morphometrics changed within only one century from
univariate, to bivariate, and to multivariate analyses, and saw the inventing of its own
statistical toolkit before the beginning of this century. Today, morphometrics is not
only an application of univariate or multivariate statistics to shape and size variables;
it is a new emerging discipline with its own descriptors of shape.

1.2 Shapes and Configurations 3

Fig. 1.1. Biorthogonal grids monitoring shape changes between different species of fish (from
d’Arcy Thompson [117])

1.2 Shapes and Configurations

Objects analyzed by morphometricians are mostly two dimensional (2D) or three
dimensional (3D). In this book k will refer to the dimensions. For one-dimensional
objects (when k = 1), form, size, and shape overlap, and traditional statistical
methodology (for example, analysis of variance) is easily applied. When k = 2 or
3, the geometric characterization of an object includes volumes, surfaces, outlines,
locations of segments, positions of peculiar points, and the decomposition of the
form into size and shape ensues. Extracting shape and size information is then less
obvious, and applying statistics becomes more complex. The full surface or outline
of the object corresponds to the location of infinitely many points in 2D or 3D cases.
Users can define a sampling procedure to obtain the coordinates of points belong-
ing to the object (for example, equally spaced points on the outline). However, more
information will be retained if, among the sampled points, the positions of peculiar
structures that are recognizable for every object of the set are included.

To correctly compare shapes, one must first define some of the structural prop-
erties of objects (bottom, left side, anterior part, etc). This is particularly true for

4 1 Introduction

biological objects, where structures that are recognizable and comparable among
specimens are said to be homologous (here homology is taken in its widest bio-
logical acceptance). We often use some kind of homology for comparing shape of
objects other than biological objects as well. For example, to compare two bottles of
milk with some reliability, it is necessary to define the parts that will be further com-
pared together. If you explore the variation of shape between bottles, perhaps it is not
useful to compare the bottleneck of one bottle with the bottom of the other. The inter-
bottleneck, inter-bottom comparisons and differences in the structural relationships
between bottleneck and bottom are more reliable for the purpose of bottle compari-
son. In morphometrics, the statement of homology is often a statement of topological
features, rather than a statement based on a proven biological and historical basis.

A peculiar point for which position is comparable among objects is a landmark.
For biological objects, a point that correspond to an anatomical position comparable
among objects is defined as an anatomical landmark. Anatomical landmarks are said
to be homological if one can state a similar embryological, anatomical, or historical
origin. Outlines or surfaces depicting the same anatomical structure between individ-
ual organisms can be homological as well. It is often necessary to take into account
more general features or homologies that objects can share together (for instance,
their antero-posterior or dorso-ventral axes) in order to compare them.

One can rely on the relative position of landmarks invariant to rotation, scaling,
or translation to make shape comparisons, as we will see later. Most morphometric
methods use the locations of landmarks as first input. Indeed, even when you measure
distances on a series of objects with a caliper, you often collect interlandmark mea-
surements. Anatomical landmarks are of several types. Bookstein [10] provided a
classification of landmarks and recognized three categories (Fig. 1.2). A landmark of
type I corresponds to discrete juxtaposition of tissues, or sufficiently small features
to be defined by a single point (for example, a small foramen). This kind of land-
mark is probably the only one to have a true biological homology origin. A type II
landmark corresponds to maximum of curvature; it may correspond to similar de-
velopmental features (for example, a meristem), but its homological basis may have
weaker biological grounds. A type III landmark is an extremal point that can cor-
respond to an end-points of diameters, a centroid, or an intersection between inter-
landmark segments; it is constructed geometrically. I do not distinguish the latter
type from pseudolandmarks that are points defined by construction, too: this may
be points regularly sampled on an outline or on a surface, or points at the intersec-
tion between the outline of the structure and a segment defined by two anatomical
landmarks. Although the last two types do not carry as much biological information
in terms of homology as type I (Bookstein [10] calls them “deficient”), they can be
useful for including geometric information in regions of the object where digitized
points are under-sampled, or to extract geometric properties of outlines or surfaces.
Although an object may not have recognizable points, sometimes a small surface or
characteristic segment, assumed to be homologous among specimens, enables one
to record an important geometric feature comparable between objects. The exact
location of this feature can only be approximately digitized on the structure (for ex-
ample, a point located approximately at the middle of the surface), and is thus named

1.3 An R Approach to Morphometrics 5

a “fuzzy landmark.” [118] This kind of landmark location is common in biological
specimens (structures like bulges or bosses that have no clear boundaries such as ar-
ticulation points between segments). Finally, even when ignoring the biological basis
for a landmark definition, one can still define mathematical landmarks that are points
defined by some mathematical property (i.e., high curvature).

1
1

2

2

3

3

Fig. 1.2. The three types of landmarks illustrated on the jaw of a mouse

As long as it is possible to identify landmarks and measure their coordinates, it
is rather easy to calculate distances, angles, etc. Further statistical analyses can deal
with the coordinates themselves or with distances and angles calculated from them.
One can also deduce coordinates of landmarks (or the relative positions between
landmarks), but only if enough interlandmark distances or angles are measured fol-
lowing a given procedure (EDMA, triangulation, or the truss methods [116]). Fur-
thermore, visualizing shape differences is easier to interpret by directly examining
the relative positions of landmarks rather than examining a table of varying distances
or angles. The coordinates of landmarks thus contain the richest geometric informa-
tion available in any object. A configuration is defined by the collection of landmark
coordinates in one object. The more landmarks are collected for a given object, the
more shape information is gathered in the configuration depicting the object, and the
better its morphological features are appraised quantitatively.

Most morphometric methods described here use either coordinates, angles, dis-
tances, or any other property of objects that one can obtain using landmark or
pseudolandmark coordinates. Chapter 2 explains how to organize or obtain mea-
surements using coordinates of landmarks with R, while following chapters explain
how to implement statistical methods using R for analyzing these raw or transformed
data.

1.3 An R Approach to Morphometrics

Let’s first see why R is appropriate to deal with morphometric data. A useful strategy
for a morphometric analysis requires:

6 1 Introduction

• Collecting data from the object and transferring to computer files as directly as
possible, such as digitization of point coordinates in a numerical image.

• An interface allowing a simple manipulation, including visualization or modifi-
cation of the raw data.

• An interface between the user and the data that can perform several operations or
apply several tests to the data (usually sets of coordinates in our case), and that
present results in diverse ways (graphs, tables, etc).

• To avoid multiplication of software applications for obtaining data used in statis-
tical analyses.

• For 3D data, the graphic devices should allow some interactivity. Since the screen
is flat, one needs to observe and rotate 3D data in a convivial way.

• To obtain results and store these results under the form of graphs or tables.
• To adapt and to develop customized functions that are less common in traditional

statistics.
• To convert files that have been treated with other software and export files for

users that may be still reluctant to use R as well.

R is a language and environment that allows diverse statistical treatments of ob-
jects, and even more. R is well designed for our needs. R can be adapted to become
an environment for performing any morphometric analysis. More than this, R has
many other qualities that can be seriously attractive and can confer it some superi-
ority above other software. I am quite sure that you will learn that “R is very much
a vehicle for newly developing methods of interactive data analysis” for quoting the
online manual “An Introduction to R.” [120]

• R runs on all the common operating systems (Unix, Linux, Apple OS, or Win-
dows).

• R is free.
• R is a language rather easy to understand and to learn.
• There are multiple ways to get help: books, online help, help forums, online

manuals, articles, courses, and even meetings.
• Using R for morphometrics will considerably reduce the number of software

applications that one needs to perform analyses.
• If you save what you did on a file (for example, a text file), you can re-run the

complete analysis, doing adjustments, corrections, and adapt the code to one new
similar treatment.

• R is evolvable and adaptable, the user does not have to adapt to R for his/her
needs but adapt R to his/her own requests.

• R can do repetitive things with a minor contribution of the user.
• R is designed for efficient scientists who do not wish to waste their time in repet-

itive and useless manipulations, but who are ready to waste their time in finding
syntax error in R programs.

• A lot of packages that perform an exponentially number of analyses have been
developed around the basis of R.

• The development of R is accessible for experienced users and for novices.
• Codes are available.

1.3 An R Approach to Morphometrics 7

• R is not wysiwyg (what you see is what you get). Users have to think before try-
ing pseudo-treatments and pseudo-exploration with interactive menus and win-
dows. With R, what you get is what you want.

• R has already been adopted as a computational environment for data analysis in
many fields (e.g., phylogenetics).1

We are starting with some basics before going more deeply into statistics. The
first step is to install R on your computer. R is freely available on the website of the
Comprehensive R Archive Network (CRAN)2 from where you can download the files
needed for your operating system (Linux, Unix, Windows, or Apple OS). Then, just
follow the available instructions for installation.

Once R is installed on your computer, you can launch it using the corresponding
executable. After the user interface appears on the screen, a short text appears, and
the sign “>” indicates that R is waiting for your command. Under some operating
systems (for example, Windows), this interface consists of pull-down menus and a
toolbar that can be used for some commands (preferences, access to the online help,
loading and installing packages). Since R is not “wysiwyg,” it is essential to spend
a few minutes to acquire basic information. Once done, using R rapidly becomes
very intuitive, although the new user may feel anxious with this new and seemingly
very simple interface. This has, at least, the enormous advantage that you are not
proceeding with any analysis without thinking a bit about what you are going to do.

Finding assistance with R is easy: first, you should read the manual “An Intro-
duction to R” that one can freely download from the CRAN family of Internet sites.3

Other manuals are available. For a shorter text, you can read R for Beginners from
Paradis [80] which provides most of what you need for starting; it is freely avail-
able on the web.4 Other sources of help are available through an increasing number
of books (such as [120]). You can directly use the help(topic) or ?(topic)
commands from the user interface of R to display online help for any R-topics. If
your problem persists, it is possible to access the archives of the “r-help” general
discussion list.5 The discussion list is useful because it reports unknown bugs, sta-
tistical questions, or user problems. If your problem is new, you can subscribe to the
“r-help” mailing list. Before doing that, check whether your problem is really new
using a web-search engine or by reading the archives of the online mailing list.6 Fi-
nally, some of your colleagues, teachers, or friends may be R users and can guide
you in your first steps and answer your questions about R.

I first introduce some of the graphical possibilities of R to show how to efficiently
use the command line later. We need graphs to analyze and communicate our results.

1 http://cran.r-project.org/src/contrib/Views/
2 http://www.cran.r-project.org/
3 http://CRAN.R-project.org
4 http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
5 http://finzi.psych.upenn.edu/search.html
6 http://www.R-project.org/mail.html

8 1 Introduction

You can examine some of the possibilities offered by the basic graphs in R in typing
the two command lines:7

> par(ask=TRUE)
> demo(graphics)

The command demo(graphics) opens a graphical interface and displays succes-
sive examples of graphs. Actually, graphics is a package of R. On the command
line interface (CLI), you can read the code and the commands that R types corre-
sponding to the graphs. Since there are successive graphs, we first need to type the
command par(ask=TRUE), to be asked for typing the “Enter” key, before the next
figure to be drawn and the new corresponding code to be typed by R. Other graphical
demonstrations are displayed for the function image.

> par(ask=TRUE)
> demo(image)

You can visit the addictedtor8 webpage for discovering the remarkable pos-
sibilities that R offers for graphical visualisation. In addition, the corresponding code
is available for producing your own graphs as a tutorial.

The function example is a common way to obtain a tutorial and ways to use
R functions. Writing the command example(topic)runs all the R code from the
Examples part of R’s online help topic.

> example(persp)

The function persp draws graphs of 3D data. There are several examples for this
function (use help(persp) to see them). Notice that you can copy selected com-
mand lines of interest (one or several) from the example section, and then paste them
on the CLI. It is a way to make a selection among the possible examples of this kind
of help file. This demonstrates a very useful property of the R environment: indeed,
you can write successive commands (separated either by a new line or a semicolon)
on a text file that you save somewhere, and paste them later on R. This has three
advantages:

1. It is possible to correct isolated mistakes in command or data, and simply copy
and to paste the new text file on the R command line. R will rerun the full analy-
sis for you. This avoids wasting time in rethinking and reclicking a complete
analysis as it is the case with software applications providing menus and other
right-left click button.

2. You can use and transform your text file to adapt for new datasets.
3. You can keep an archive of what you have already done.

7 except prompt signs, and R results, the code typed on R will be always be typed in small
typewriter font, when needed basic explanation of the code will be written in small usual
fonts

8 http://addictedtor.free.fr/graphiques/

1.4 Starting with R 9

Note that on some operating systems (Unix, Windows), the vertical-arrow key of
the keyboard can scroll forward and backward through a command history. This is
another simple way to do corrections or to modify a command.

For interacting with 3D data, you can download and install the rgl package. Once
done, type:

> library(rgl)
> par(ask=TRUE)
> demo(rgl)

A second interface is displayed on the screen. This is the rgl device; you can interact
with the device using the mouse and positioning or scaling the graph as you wish.

All R functions and datasets are stored in packages. Aside from the base, utils,
stats, graphics, datasets, grDevices packages that are automatically available and
loaded in any R installation, contributed packages must be downloaded from the
CRAN website or one of its mirror sites (this can be done using the menu “package”
on some operating systems if you have an Internet connection). A package is loaded
using the function library(package). Listing available functions, datasets, and
summary information is obtained as follows:

> library(help=rgl)

Finally, it is sometimes useful to interact with other programs: R can invoke
a system command, using a shell. The functions system or shell can interact
with flexible programs. They become useful if you want to do everything from R.
We will see this for converting image files in Chapter 2. For instance, if notepad is
on your computer, you can type shell(notepad). Respect the syntax of your
operating system for writing the path: be careful with “/” or “\” that do not have
similar meaning under Linux or Windows.

1.4 Starting with R

1.4.1 Expression, Assignment and Other Basics

There are two elementary commands with R: assignment and expression. When you
write an expression, R is evaluating the command and prints the value, while an
assignment stores the value of this command to a variable.

> 1 + 1
[1] 2

This command is an expression that uses the sum operator between two vectors of
value 1 and of unitary length. R prints the result, preceded by the digit 1 between
brackets. This digit indicates that the displayed line start with the first element.

10 1 Introduction

> a<-1+1
> a
[1] 2
> A
Error: Object "A" not found

The first command is an assignment. For assigning a value to a variable, we use the
“<-” operator. Then it is followed by two expressions; the first returns the value of
a while the second return an error message. Notice that R is case sensitive. Many
errors arrive because of syntax mistakes. The name of a variable must start with a
letter (A-Z and a-z) and can include letters, digits (0-9), and dots (.). We call these
variables “objects” in the text for avoiding confusion with mathematical variables.

> a+
+
+ 1
[1] 2

If a command is not complete at the end of a line, the prompt will change to become
the continuation symbol +, indicating that R is waiting for the user to write the end
of the command. Finally, it is possible to use a function rather than an operator.

> sum(1, a)
[1] 2

Functions are sometimes preferred over operators, since one can enter other argu-
ments into them. For example, the function sum allows the handling of missing data
in different ways.

R can print the value of some expressions on a graphical interface.

> plot(1,1)

This command plots a point of coordinates x = 1 and y = 1.

1.4.2 Objects

Generalities

Aside from their names and values, objects are characterized by their attributes. The
mode and length are attributes of all objects in R. The mode is the basic type of the
elements of the object and is returned with the function mode. If elements are data,
they can have four different modes: numeric, character, complex, and logical (FALSE
or TRUE, alternatively typed as F or T). The length is the number of elements of
the object and is returned by typing length(object). Finally, the function str
displays the internal structure of a R object.

> b<-1+2i; d<-"ab"; e<-FALSE
> mode(a); mode(b); mode(d); mode(e)
[1] "numeric"

1.4 Starting with R 11

[1] "complex"
[1] "character"
[1] "logical"
> length(a); length(b); length(d); length(e)
[1] 1
[1] 1
[1] 1
[1] 1
> str(b)
cplx 1+2i
> e<-c(a, 2)
> e
[1] 2 2
> mode(a)
[1] "numeric"
> length(e)
[1] 2

Commands are separated by semicolons, while outputs are printed on new lines.
The syntax of characters and strings uses double quotation marks ("). The syn-
tax of the imaginary part of complex numbers uses i without the multiplication
operator. The function c(object1,object2,object...) combines objects
to form a vector of content and length equal to the total of the combined ob-
jects. It is possible to check and coerce the mode of objects using the respective
functions: is.numeric, is.complex, is.character, is.logical and
as.numeric, as.complex, as.character, as.logical.

> is.complex(b)
[1] TRUE
> is.logical(b)
[1] FALSE
> as.complex(a)
[1] 2+0i
> as.character(b)
[1] "1+2i"
> as.numeric(b)
[1] 1
Warning messages:
1: imaginary parts discarded in coercion
2: out-of-range values treated as 0 in coercion to raw

Note the warning message. You have to be careful, as assigning a coerced object may
yield undesirable results.

All objects in R have a class attribute, reported by the class function. The
definition of the class contains the names of all slots directly and indirectly defined.
Each slot has a name and an associated class. One extracts a slot with the @ opera-
tor. For simple vectors, the class corresponds to the mode (numeric, logical,
character or list). However, there are many other classes for R objects.

12 1 Introduction

matrix, array, factor, data.frame, formula, and function are among
the most common and most useful classes of objects. Some functions are sensitive
to the class of the object and can display or yield different results accordingly. These
functions are “generic” because they perform different tasks depending on the class
of the object. We will use objects of the matrix and factor classes frequently
in this book because we will perform matrix operations and categorize our obser-
vations. We will frequently use vectors as well. As for the mode attribute, one can
sometimes coerce the class of an object (for example, the as.matrix(object)
command can coerce an object of the vector or data.frame classes to an object
of the matrix class). As for the mode, coercion should be used carefully; usually
R yields a warning message or an error message if coercion is problematic. We will
examine how to handle these classes of objects.

Objects of the vector Class

All elements of a vector have a similar mode. Traditional operations can be applied
to vectors of numeric mode.

> a<-1:5
> a
[1] 1 2 3 4 5
> b<-rep(1,5)
> b
[1] 1 1 1 1 1
> a+b
[1] 2 3 4 5 6

The “:” operator generates a regular sequence of numbers in step 1, while the func-
tion rep(x, n) repeats the x vector, n times. The arithmetic operators operate on
each element of the two objects, and thus return an object of the same size.

> a<-c(1, 6); b<-c(2,3,5); d<-c(2, 3)
> d[2]
[1] 3

For accessing an element of an object, we use an index between underbraces. The
index is generally a numeric vector of indices. We can select indices by writing an
expression between underbraces as well.

> b[2:3]
[1] 3 5
> b[c(1,3)]
[1] 2 5
> b[-3]
[1] 2 3

The last command returns a vector with the third element removed.

1.4 Starting with R 13

> a+d
[1] 3 9
> a*d
[1] 2 18
> e<-10
> d*e
[1] 20 30
> a+b
[1] 3 9 6
Warning message:
longer object length is not a multiple of shorter
object length in: a + b

If the vectors are not of the same size, R is recycling the shortest one. If the shortest
vector does not have a multiple length of the longest one, R proceed with the opera-
tion, returns a vector of equal size to the longest initial vector, and prints a warning
message.

R offers the possibility to work on complex vectors as well.

> a<-1+1i
> Re(a); Im(a)
[1] 1
[1] 1
> Conj(a)
[1] 1-1i
> Arg(a)
[1] 0.7853982
> Mod(a)
[1] 1.414214

The above functions successively return the real part, imaginary part, conjugate, ar-
gument and modulus of a complex vector.

One can apply diverse functions and operations to vectors of charactermode.
Among them, the paste function concatenates vectors of character mode.

> a<-c("a", "b")
> b<-c("c", "d")
> paste(a, b)
[1] "a c" "b d"
> paste(a, b, sep="")
[1] "ac" "bd"
> paste(a,b, sep = "", collapse = "")
[1] "acbd"

The third argument entered through sep="" specifies nothing between strings
of each vector, and its default value corresponds to a space. collapse is another
argument of the function paste. If a value is specified for collapse, the elements
are concatenated into a single string and separated in that string by the value of
collapse mentioned.

14 1 Introduction

Objects of the factor Class

An object of the factor class specifies a grouping (or categorization). Factors can
be ordered or unordered. A factor object contains the values of the categorical
variable (usually a numeric or a character), and the different levels of that variable.
The levels function returns the levels of a given factor.

> factor(c(1, 1, 2, 2, "a", "a"))
[1] 1 1 2 2 a a
Levels: 1 2 a

> gl(3, 2)
[1] 1 1 2 2 3 3
Levels: 1 2 3

One can use the gl function for specifying groups of equal size.

> a<-gl(3, 2)
> b<-gl(2, 3)
> a:b
[1] 1:1 1:1 2:1 2:2 3:2 3:2
Levels: 1:1 1:2 2:1 2:2 3:1 3:2

Specifying interacting factors is achieved using the “:” operator; this operator is use-
ful for entering elements of the formula used as an argument of some functions
(see Chapter 3).

Objects of the matrix Class

A matrix is similar to a collection of scalar organized in r rows and c columns. It
is also a collection of r vectors of same mode and same length (i.e., c). It can be
considered as a vector where components are subscripted by two entries indicating
rows and columns.

For generating a matrix, we use the matrix function, with two arguments spec-
ifying the number of columns and rows. By default, matrices are filled by columns,
but can be filled by rows specifying the value of a fourth argument. A matrix of p
rows and k columns can describe a configuration of p landmarks with k dimensions.

> matrix(1:6, 3, 2)
[,1] [,2]

[1,] 1 4
[2,] 2 5
[3,] 3 6

> matrix(1:6, 3, 2, byrow=T)
[,1] [,2]

[1,] 1 2
[2,] 3 4
[3,] 5 6

1.4 Starting with R 15

Objects of the matrix class have a dim attribute that corresponds to the num-
ber of rows and columns. It is possible to extract any element of a matrix using a
vectorized indexing, or a matrix indexing, where two indices between underbraces
indicate the row and column position.

> a<-matrix(1:6, 3, 2)
> dim(a)
[1] 3 2
> a[2,2]
[1] 5
> a[5]
[1] 5
> a[-1,]

[,1] [,2]
[1,] 2 5
[2,] 3 6

We use the function t to obtain the transpose of a matrix.

> t(a)
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6
> rbind(a[1:2,], a)

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 1 4
[4,] 2 5
[5,] 3 6
> cbind(a, a)

[,1] [,2] [,3] [,4]
[1,] 1 4 1 4
[2,] 2 5 2 5
[3,] 3 6 3 6

The two functions rbind and cbind combine matrix, data.frame, or
vector objects by columns or rows, respectively. In addition, usual operators work
on matrices as they work on vectors, and R allows matrix operation using matrix
operators and functions (see Sections 1.4.3 and 1.4.4).

Objects of the array Class

Objects of the array class are expanded matrices with dimensions > 2 and are
indexed in the same way as matrices. A matrix is a special case of an array. Morpho-
metric analyses make extended use of matrix operations, and array are a convenient
way to store datasets of configurations, as we will see in Chapter 2.

16 1 Introduction

> is.matrix(a)
[1] TRUE
> is.array(a)
[1] TRUE
> array(1:4, c(2, 3, 2))
, , 1

[,1] [,2] [,3]
[1,] 1 3 1
[2,] 2 4 2

, , 2

[,1] [,2] [,3]
[1,] 3 1 3
[2,] 4 2 4

> b<-array(1:4, c(2, 3, 2))
> b[1,,]

[,1] [,2]
[1,] 1 3
[2,] 3 1
[3,] 1 3

Note that data are recycled in this case, since the size of the array is greater than the
length of the data.

Objects of the data.frame Class

A data.frame object is organized like a matrix, but its elements can have dif-
ferent modes. Indexing and combinations are similar with matrix objects. As for
matrices, it is possible to assign a name to the rows and columns, using the functions
rownames and colnames. A data.frame is an object designed for performing
tests because categories, individual labels, and variables can be stored in the same
object.

> a<-as.data.frame(a)
> colnames(a)<-c("length", "weight")
> rownames(a)<-paste("ind", 1:3, sep="")
> a

length weight
ind1 1 4
ind2 2 5
ind3 3 6

1.4 Starting with R 17

Objects of the list Class

R can handle objects called lists, which are not only a class but are also a specific
mode. These are combinations of objects, which individually can be of any mode
and length.

> j<-list(a, b, c, e)
> mode(j)
[1] "list"
> length(j)
[1] 4
> j
[[1]]
[1] 2

[[2]]
[1] 1+2i

[[3]]
[1] "ab"

[[4]]
[1] 2 2

> j[[2]]
[1] 1+2i

The length of a list object corresponds to the number of objects it contains. It is
possible to access an object in the list using double brackets and indicating the index
of the object. It is also possible to assign a name to each object.

> j<-list(A=a, B=b, C=d, K=e)
> j$K
[1] 2 2

Note the use of object$name to access a nominated object of a list.

1.4.3 Functions

Functions are objects of the function class. A help file is available for every func-
tion in R using help(function). Examples are usually available and can be used
as a tutorial by typing example(function). In addition to a short description
and example section, the help file contains “usage,” “arguments,” “details,” “values,”
“references,” and “see also” sections. “Usage” specifies which and how arguments
are passed to the function; it gives default values (if there are any). The “argument”
section details the class and mode of the objects passed as arguments. “Details” pro-
vides additional description. “Values” explains what objects are returned by the func-
tion, and “see also” refers to similar or related functions.

As an example, we look at the help file for the square root function sqrt:

18 1 Introduction

> help(sqrt)

abs package:base R Documentation

Miscellaneous Mathematical Functions

Description:

These functions compute miscellaneous mathematical functions. The
naming follows the standard for computer languages such as C or
Fortran.

Usage:

abs(x)
sqrt(x)

Arguments:

x: a numeric or ’complex’ vector or array.

Details:

These are generic functions: methods can be defined for them
individually or via the ’Math’ group generic. For complex
arguments (and the default method), ’z’, ’abs(z) == Mod(z)’ and
’sqrt(z) == z^0.5’.

References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
Language_. Wadsworth & Brooks/Cole.

See Also:

’Arithmetic’ for simple, ’log’ for logarithmic, ’sin’ for
trigonometric, and ’Special’ for special mathematical functions.

Examples:

require(stats) # for spline
xx <- -9:9
plot(xx, sqrt(abs(xx)), col = "red")
lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

If the function is written in R code, it is possible to see the content of that func-
tion. Sometimes parts of a function or the whole function call an internal code built
into the R interpreter. Modifying this code is mainly the affair of R architecture de-
velopers. For example, let’s see the function ginv that computes the Moore-Penrose
generalized inverse of a matrix that we will use in Chapters 5 and 6. This function is
in the package MASS that should be first loaded (MASS is a recommended package,
downloaded on your computer once R is installed, but you have to load it).

1.4 Starting with R 19

> library(MASS)
> ginv
function (X, tol = sqrt(.Machine$double.eps))
{

if (length(dim(X)) > 2 || !(is.numeric(X) || is.complex(X)))
stop("X must be a numeric or complex matrix")

if (!is.matrix(X))
X <- as.matrix(X)

Xsvd <- svd(X)
if (is.complex(X))

Xsvd$u <- Conj(Xsvd$u)
Positive <- Xsvd$d > max(tol * Xsvd$d[1], 0)
if (all(Positive))

Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
else if (!any(Positive))

array(0, dim(X)[2:1])
else Xsvd$v[, Positive, drop = FALSE] %*% ((1/Xsvd$d[Positive]) *

t(Xsvd$u[, Positive, drop = FALSE]))
}
<environment: namespace:MASS>

This provides a tutorial for understanding the R syntax of a function. For example,
consider that we write a function that computes the sum of squares of a vector, and
that we call it myfun.

Function 1.1. myfun

Argument:
vec: A numeric vector.

Value:
Sum of squared elements.

1 myfun<-function(vec)
2 { sum(vec*vec) }

> myfun(c(1:3))
[1] 14

Note that we use a name for declaring what arguments will be entered in our function.
We will be free later to use any name for objects that will be entered as arguments of
our function. It is necessary to call the function we have programmed, if we want it
to work for a given work session. One can directly paste the function to the prompt.
It is often easier to save all your functions in a text file, and then copy them on the R
prompt when you want to use them. If the function has been saved in an ASCII file,
one can load it with the function source() like any other program. Most functions
that we will develop to perform our analyses are customized and not accessible in
any R package. As an exercise, I suggest you copy or modify the code (and maybe
improve it) of functions that are supplied throughout the text. It can serve as the first
architecture for your R toolbox or for a future package in morphometrics.

20 1 Introduction

In the book, we will write several functions for performing morphometric oper-
ations. The function code will be enclosed in boxes using Courier font; useful com-
ments will appear in slanted font for functions and code examples. For functions,
lines of code will be numbered from 1 to n.

Table 1.1 summarizes some of the most frequently used functions in the book that
are necessary for morphometric analyses. There are many other ones, and probably
others to be implemented in the future, but the following ones are a foundation for
constructing more elaborate functions.

Table 1.1. Commonly used functions in morphometric analysis

Function Package Short Description

data utils load existing data-sets
names base obtain the names of an object
strsplit base split string into substrings
sub base replacement of matches determined by

regular expression matching
max base maximal value of a numeric object
min base minimal value of a numeric object
abs base absolute value
round base rounding of decimal number
cos, acos base cosine and arc-cosine
sin, asin base sine and arc-sine
tan, atan base tang and arc-tang
sqrt base square root
sort base sort a vector or a factor
which base extract indices of a logical vector
diag base extract the diagonal of a square matrix
apply base apply a function to margins of an array
mean stats arithmetic mean
cor stats correlation computation
var stats variance and covariance computation
lm stats linear models
aov stats analysis of variance
svd stats singular-value decomposition
dist stats compute distances matrices
hclust stats hierarchical clustering
plot graphics 2D plot
points graphics points for 2D plot
text graphics text for 2D plot
abline graphics abline for 2D plot
segments graphics segments for 2D plot
persp graphics 3D perspective plot
rgl.points rgl interactive 3D plot

1.4 Starting with R 21

1.4.4 Operators

R provides several kinds of operators (Table 1.2): arithmetic, relational, logical. . . and
some others: we already know “<-” for assignments, “;” for separating commands,
“:” for generating regular sequences, and others that are used for indexing objects
($, [], [[]]).

Table 1.2. Main operators

Arithmetic Relational Boolean

+ addition < lesser than ! NOT
- substraction > greater than & AND
* multiplication <= lesser than or equal && AND
/ division >= greater than or equal | OR
^ power == equal || OR
%% modulo != different xor exclusive OR
%/% integer division

Modern morphometrics and associate multivariate statistics make intensive use
of matrix operations. The +, -, %*% operators perform matrix addition, substraction,
and multiplication respectively. Other matrix operations are obtained with the t,
solve, ginv functions that work with a matrix as unique argument, and return
the matrix transpose, matrix inverse, and Moore penrose generalized matrix inverse
respectively. The ginv function belongs to MASS which should be loaded before
to call the function. The svd and eigen functions returns respectively the matrices
resulting of a singular-value decomposition and of a spectral decomposition.

“%in%” is an operator that returns a logical vector indicating whether there is a
match or not for its left operand. It will be used in some of our programs. In addition,
we will use the “#” operator for writing comment lines (right to this operator, R
ignores the script), and “~” for specifying objects of the formula class.

> lm(x~y)

This command orders a linear model where x (left to ~) is the response and y (right
to ~) is the predictor. The x~y object is of the formula class.

1.4.5 Generating Data

R can generate regular or random sequences of data with functions and operators.
Generating sequences is useful for loops, indexing, simulation, or whatever.

You can use the function scan without arguments to enter real numbers directly
using the keyboard. You can specify the mode of data you want to enter through the
what argument.

22 1 Introduction

> scan()
1: 1 5 8 5.9
5:
Read 4 items
[1] 1.0 5.0 8.0 5.9
> a<-scan(what="character")
1: 1:6 4 7 9 juju
6:
Read 5 items
> a
[1] "1:6" "4" "7" "9" "juju"

The function seq generates sequences of real numbers.

> seq(1, 5, by=2)
[1] 1 3 5
> seq(1, 5, length=9)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

The function rep replicates the value of a vector a specified number of times.

> rep("a", 4)
[1] "a" "a" "a" "a"
> rep(1:3*2-1, 2)
[1] 1 3 5 1 3 5

Many statistical tests work with randomly distributed data for obtaining a null
distribution. In addition, generating random data is necessary for some simulations.
Several functions of R generate such data following several kinds of probability den-
sity functions. These functions are of the form rfunc(n, p1, p2,...), where
func indicates the probability law, n the number of data generated, and p1, p2,. . . are
the values of the parameters of the law. In replacing the letter r with d, p, or q, it is
possible to obtain the probability density, the cumulative probability density, and the
value of quantile (qfunc(p, ...)), respectively . These functions will be useful
for returning the p-values of tests. “rnorm”, “rbinom”, “rf”, and “runif” gen-
erate randomly distributed data following normal, binomial, Fisher-Snedecor, and
uniform laws.

> rnorm(10, 0, 5)
[1] -1.5015661 -3.6697118 2.9320062 -6.9773504 -1.6757256
[6] 4.6287676 -0.2262281 -0.3837671 -1.3207831 -0.5380926
> round(runif(10, 0, 5))
[1] 6 6 6 4 3 3 3 1 2 4

The first argument entered in these two functions specifies the number of generated
data. In the first command, the second argument is the mean and the third is the stan-
dard deviation; for the second command, the second and third arguments correspond
to minimal and maximal values, respectively. We can randomly extract components
of objects using integer random vectors.

1.4 Starting with R 23

> palette(rainbow(6))[round(runif(10, 0, 5)+1)]
[1] "blue" "magenta" "yellow" "green" "blue"
[6] "green" "magenta" "red" "red" "green"
> letters[round(runif(10, 0, 25)+1)]
[1] "o" "r" "b" "v" "q" "j" "n" "n" "x" "l"
> sample(letters)[1:10]
[1] "q" "e" "h" "k" "n" "m" "b" "y" "z" "j"

The letters vector of R contains the 26 lower-case letters of the Roman alphabet.
“palette(rainbow(6)” is a vector of six colors of the rainbow palette. The
function sample can act similarly.

> sample(letters)[1:10]
[1] "q" "e" "h" "k" "n" "m" "b" "y" "z" "j"

We will see later how useful generating random sequences and resampling is to
performing permutation tests and simulations (see Chapters 3 and 7).

1.4.6 Loops

R can do repetitive commands, which is often not the case with a graphical user
interface (GUI). The language for writing loops and indexing is intuitive. Hereafter
are some simple examples:

> x<- c("black", "red", "green")
> y<- matrix(round(runif(15, 0, 3)), 3, 5)
> y

[,1] [,2] [,3] [,4] [,5]
[1,] 2 3 1 2 0
[2,] 1 2 2 1 1
[3,] 1 1 1 1 1
> z<-matrix(NA, 5, 3)
> for (i in 1:length(x)){z[,i]<-paste(x[i],y[i,],sep="")}
> z

[,1] [,2] [,3]
[1,] "black2" "red1" "green1"
[2,] "black3" "red2" "green1"
[3,] "black1" "red2" "green1"
[4,] "black2" "red1" "green1"
[5,] "black0" "red1" "green1"

Note the use of NA, which is a constant of unitary length and indicates missing
value. Here it has been used to fill z with missing values (empty matrix). NA, as
a single assignment, can specify an empty vector or matrix. Conditional control
flows are constructed with if (expression is TRUE) {expression1}
else {expression2}. Another possible situation is to execute an instruction
as long as a condition is true. The syntax is while (expression is TRUE)
{expression1}. Here are some examples:

24 1 Introduction

> x<-1:10
> for (i in 1:10)
+ {if(x[i]%%2==0){x[i]<-2*x[i]}
+ else {x[i]<-x[i]/2}}
> x
[1] 0.5 4.0 1.5 8.0 2.5 12.0 3.5 16.0 4.5 20.0
> y<-2; x<-0
> while(y<8) {y<-2*y ; x<-x+1}
> x
[1] 2

Most of the time, using function or logical indexing allows writing loops to be
avoided. Logical indexing is a feature of R that often improves computation time.

> x<-1:10
> x[x %% 2 == 0]<- x[x %% 2 == 0] * 2
> x[x %% 2 != 0]<- x[x %% 2 != 0] / 2
> x
[1] 0.5 4.0 1.5 8.0 2.5 12.0 3.5 16.0 4.5 20.0

Problems

1.1. Organizing a data.frame object
Define a hypothetical data frame containing five measurements normally distributed
(size, head perimeter, pectoral width, area, and weight) for four individuals that you
will name ind1, ind2, ind3, ind4. Use the function paste and a regular sequence
function to create individual names. Add a column corresponding to the factor sex,
with the first two individuals being males, and the last two ones being females.

1.2. Manipulating array and matrix objects
Fill a four-dimensional array of dimensions 2, 4, 3, 3 with a regular sequence. Using
the function apply, return the sum of the elements of the matrices contained in the
first two dimensions (you should obtain a 2 × 2 matrix).

1.3. Manipulating and indexing matrices
Fill a 6 × 6 square matrix with a regular sequence of 36 numbers. Using logical
indexing, extract values of the upper half triangle (diagonal excluded). Transpose
these values and paste them in the lower half triangle to obtain a symmetric matrix.

1.4. Using R functions to find critical and p-values
Using the online help and random normal function, find the p-values for a F -value
of 2.01 corresponding to a bilateral test, with df1 = 3 and df2 = 12. Find the code
for retrieving the F -value from degrees of freedom and p-value.

1.5. Loops
Write a function that uses loops for extracting column and row indices for the values
of a matrix that are above a critical value. Store the results in a two-row matrix.

2

Acquiring and Manipulating Morphometric Data

The first step of any statistical or morphometric analysis is to gather and organize
raw data. R offers a graphical interface that allows diverse datasets to be directly
captured from digital images, as we will see. Some basic image manipulation and
analysis is introduced as well. This chapter explains how to gather morphometric
data in an appropriate way and how to assign them to R objects. The quality of data
acquisition determines part of the quality of the results: measurement error results
both from the user and from the accuracy of the different tools used for measuring
data. It may happen that data are incomplete for some objects (e.g., some objects can
be broken, and all the landmarks or distances cannot be captured). The last part of
the chapter explains how to handle missing data and to estimate measurement error.

2.1 Collecting and Organizing Morphometric Data

2.1.1 Collecting Data

Traditionally, morphometric data are sets of distance, angle, perimeter, surface, or
volume measurements. One can obtain them in theory from coordinates of land-
marks or pseudolandmarks (see Chapter 1). Manual tools (rulers, calipers), hardware
(digitizers, tracing tables), or position of a pointer on digital image allows these co-
ordinates to be recorded in the x, y, and eventually z-dimensions.

Collecting Distances

Although one can directly record distances from digitized pictures, one usually col-
lects these measurements directly from objects using calipers or rulers, or any other
manual device. Later, these data are stored in handsheets or directly in a computer
file. For microscopic and bigger objects (like geographic data), distances are obliga-
torily obtained through images acquired through different kinds of lenses and mirrors
(microscope, telescope, magnifying lens, etc.) and captured to computer files using a
digital camera, or to photographic films using a conventional camera. It is necessary

26 2 Acquiring and Manipulating Morphometric Data

here to photograph a size standard (a ruler or any other known distance) together
with the pictured object for retrieving the size of structures. Nowadays, images can
be numerized and their properties can be analyzed using elementary computer image
analysis. Distances can be calculated using the coordinates of endpoints for a given
measurement.

Collecting Coordinates of Points

Any image-analyzing system can collect 2D cartesian coordinates of points on a
picture file. It is important to estimate the size of the image by using a scale such that

True coordinates =
Image coordinates × Size of the scale on the image

True size of the scale
.

This relationship holds for matrices of coordinates as well (configuration matrices),
meaning that the scalar multiplication is applied to the matrix of coordinates.

The relative positions of coordinates for an object can be estimated from coordi-
nates of points digitized using a cartesian reference. Users are thus invited to define
the origin (which can be any landmark of the object or outside the object), and the
x-axis, y-axis, and possibly the z-axis directions to fix the orientation of the coordi-
nate system. Defining the orientation of the coordinate system all at once avoids any
further problems with reflection between configurations.

For some purposes, we need to define the cartesian system directly from the ob-
ject. If every landmark you want to digitize on your object is not accessible to your
digitizing device without repositioning the object, a protocol is necessary (you may
wish to record coordinates on both dorsal and ventral surfaces of an object). For ex-
ample, you may need to reverse the object to localize landmarks on the ventral side.
For keeping the relative position between points digitized on the ventral side and dor-
sal side invariant to object reposition, you can record coordinates on the whole object
by defining your system coordinates with three landmarks shared by the ventral and
dorsal side.

One can directly record coordinates on objects using hardware (2D or 3D digi-
tizers) connected to the computer. Some 3D hardware (confocal microscope, Com-
puted Tomography system, etc.) records a series of images that are basically equally
spaced slices of the objects. Coordinates of pixels are recorded by the way of 3D
image analysis.

Collecting Surfaces and Perimeters

For 2D objects, surfaces and perimeters can be appraised by letting the computer
count the pixels of the structure of interest. The surface corresponds to the number
of pixels of the object on the image multiplied by a scaling factor. The perimeter
corresponds to the number of pixels involved in the outline multiplied by a scaling
factor. The pixel is a unit of surface measurement, thus the scaling factor should take
into account the width and length of the pixel. For polygonal and known geometri-
cal shapes, classical geometric addition or multiplication of distance measurements

2.1 Collecting and Organizing Morphometric Data 27

obtained from landmark coordinate data allows the calculation of surfaces or
perimeters.

Collecting 3D Surfaces or Volumes

A 3D surface corresponds to the sum of the pixels involved in outlines of each slice
belonging to the surface of the object scaled by the inter-image space and the pixel
length and width ratio. For volume, the traditional way is to submerge the object
in a liquid and measure the volume of liquid that has been displaced, following the
Archimedes principle. In addition, volumes can be estimated as the sum of the pixels
of the object for each image multiplied by an appropriate scale factor. The surface
unit is the pixel so the measure of the volume should take into account the width and
length of the pixel and the inter-image space. One can use voxel size to estimate the
volume, if one works on voxel formatted files.

Collecting Images

One can obtain most morphometric properties of objects based on pixel (automated)
counting or on pixel coordinates with elementary computer image analysis. A large
number of inexpensive digital cameras are now available on the market. Hardware
used for collecting 3D properties of objects is more expensive and consists of differ-
ent machines: scanners, stereographic devices, 3D digitizers Three dimensional
scanners provide a series of images.

Given an appropriate image format, location and color of the pixels of the image
can be stored and analyzed. Binary or black and white images are defined by a series
of pixels that take two values (0 and 1); gray-scale or monotonic images have pixel
values ranging from 1 to 2n. Here an image file can be organized as a matrix object
(column and row indices corresponding to indices of pixel coordinates, and cells
to the pixel value). For color images, each pixel location is related to three values,
each ranging from 1 to 2n. In this latter case, the data can be organized in a three-
dimensional array where cell values correspond to the level of one of the three basic
color channels (red, green, blue). Similarly, each color channel can be stored in a
matrix.

Images for morphometric analysis can be stored in files and reworked using your
favorite application software for image analysis, but this latter task can be achieved
with the help of R as we will see in Section 2.2.6.

2.1.2 Organizing Data

R can navigate in your repertories to read files. R has a working directory returned
through the command getwd(). This repository is set for a session using the fol-
lowing command for Windows:

> setwd("C:/data")

28 2 Acquiring and Manipulating Morphometric Data

or for Linux:

> setwd("/home/juju/data")

For files that are not in the working directory of R, you have to specify the path as
a string for the function to find their location (e.g., "/home/juju/myfile.R").

It is very important to organize your data files to optimally work through R. If
your data are gathered on several files, it is important to keep the same organization
throughout these files, to allow repetitive operations to be easily run by your com-
puter. Additionally, it is good to name your file so it can clearly be recognizable. If
the names of all files in a directory follow a given logic, R can open a series of related
files using loops or logical indexing in the correct order. For this purpose, we can use
R to generate sequences and concatenate strings. It is worth using loops if you need
to perform the same operation on several files. It will be easier if part of the name of
your files follow some regular sequence, without which you will have to create and
write a probably long vector containing the name of all your files, or eventually an
extra file.

We will first learn how to organize data generated with R before we learn how
to read and organize data that are outside of the R environment. As an example, I
present the possible ways to store the essential information about a configuration
(its names and the coordinates of landmarks) in various R objects. Configurations
of landmarks usually correspond to matrices M of p rows for landmarks and of k
columns for dimensions. As for distances, the input of landmarks must follow the
same order for each configuration to allow comparisons between configurations.

>juju<-scan()
1: 0.92 100.00 0.99 100.25 1.07 99.99 1.26 99.99 1.11
10: 99.87 1.16 99.70 1.00 99.86 0.87 99.72 0.88 99.89
19: 0.74 99.98

Read 20 items
>JUJU<-matrix(juju, 10, 2, byrow=T)
>colnames(JUJU)<-c("x", "y")
>rownames(JUJU)<-paste("Lan", 1:10, sep="")

>JUJU
x y

Lan1 0.92 100.00
Lan2 0.99 100.25
Lan3 1.07 99.99
Lan4 1.26 99.99
Lan5 1.11 99.87
Lan6 1.16 99.70
Lan7 1.00 99.86
Lan8 0.87 99.72
Lan9 0.88 99.89
Lan10 0.74 99.98

Alternatively, the configuration can be defined to a 1 by k×p matrix that will store
a succession of coordinates x, y, and z, for the p landmarks. The k× p configuration

2.1 Collecting and Organizing Morphometric Data 29

matrix (M) can be coerced in the corresponding m vector. m is the vectorized form
of the M matrix.

>JOJO<-matrix(c(0.72,100.32,0.75,100.36,0.77,100.32,0.81,
+ 100.32,0.77,100.29,0.77,100.24,0.73,100.28,0.7,100.26,
+ 0.7,100.3,0.67,100.33), 10, 2, byrow=T)
>colnames(JOJO)<-c("x", "y")
>rownames(JOJO)<-paste("Lan", 1:10, sep="")
>t(JOJO)

Lan1 Lan2 Lan3 Lan4 Lan5 Lan6 Lan7 Lan8
x 0.72 0.75 0.77 0.81 0.77 0.77 0.73 0.70
y 100.32 100.36 100.32 100.32 100.29 100.24 100.28 100.26
Lan9 Lan10
x 0.7 0.67
y 100.3 100.33

>as.vector(t(JOJO))
[1] 0.72 100.32 0.75 100.36 0.77 100.32 0.81 100.32
[9] 0.77 100.29 0.77 100.24 0.73 100.28 0.70 100.26
[17] 0.70 100.30 0.67 100.33
>c1name<-expand.grid(colnames(JOJO),rownames(JOJO))

The function expand.grid creates a data.frame object using all combinations of a
group of supplied vectors. It has been used here for creating the new row names of the second
matrix.

>JOJO1<-matrix(t(JOJO), 1, 20)
>rownames(JOJO1)<-"JOJO"
>colnames(JOJO1)<-paste(c1name[,1], c1name[,2], sep="-")
>JOJO1

x-Lan1 y-Lan1 x-Lan2 y-Lan2 x-Lan3 y-Lan3 x-Lan4
JOJO 0.72 100.32 0.75 100.36 0.77 100.32 0.81

y-Lan4 x-Lan5 y-Lan5 x-Lan6 y-Lan6 x-Lan7 y-Lan7
JOJO 100.32 0.77 100.24 0.73 100.28 0.7 100.26

x-Lan8 y-Lan8 x-Lan9 y-Lan9 x-Lan10 y-Lan10
JOJO 0.7 100.3 0.67 100.33 0.77 100.29

A collection of n configurations can be stored in an array object of p, k, n
dimensions if all configurations M1→n contain the same numbers of landmarks and
dimensions. The full array can be easily transformed in a data.frame object with
rows corresponding to objects and columns to the succession of x, y (and z for 3D)
coordinates for each landmark. Alternatively, the configuration set can be stored as
a list if objects contain different numbers of landmarks and dimensions. Here we
organize the collection of the configurations through R in three different ways.

30 2 Acquiring and Manipulating Morphometric Data

Example of configuration set assigned to an array object:

>array(cbind(JUJU, 2, JOJO, 2), dim=c(10, 2, 2))
, , 1

[,1] [,2]
[1,] 0.92 100.00
[2,] 0.99 100.25
[3,] 1.07 99.99
[4,] 1.26 99.99
[5,] 1.11 99.87
[6,] 1.16 99.70
[7,] 1.00 99.86
[8,] 0.87 99.72
[9,] 0.88 99.89
[10,] 0.74 99.98

, , 2

[,1] [,2]
[1,] 0.72 100.32
[2,] 0.75 100.36
[3,] 0.77 100.32
[4,] 0.81 100.32
[5,] 0.77 100.29
[6,] 0.77 100.24
[7,] 0.73 100.28
[8,] 0.70 100.26
[9,] 0.70 100.30
[10,] 0.67 100.33

Example of configuration set assigned to a data.frame object:

>JJ<-data.frame(rbind(as.vector(t(JUJU)),
+ as.vector(t(JOJO))))
>rownames(JJ)<-c("JUJU", "JOJO")
>colnames(JJ)<-paste(c1name[,1], c1name[,2], sep="-")
>JJ

x-Lan1 y-Lan1 x-Lan2 y-Lan2 x-Lan3 y-Lan3 x-Lan4
JUJU 0.92 100.00 0.99 100.25 1.07 99.99 1.26
JOJO 0.72 100.32 0.75 100.36 0.77 100.32 0.81

y-Lan4 x-Lan5 y-Lan5 x-Lan6 y-Lan6 x-Lan7 y-Lan7
JUJU 99.99 1.11 99.87 1.16 99.70 1.00 99.86
JOJO 100.32 0.77 100.29 0.77 100.24 0.73 100.28

x-Lan8 y-Lan8 x-Lan9 y-Lan9 x-Lan10 y-Lan10
JUJU 0.87 99.72 0.88 99.89 0.74 99.98
JOJO 0.70 100.26 0.70 100.30 0.67 100.33

Example of a configuration set assigned to a list object:

2.2 Data Acquisition with R 31

>list(JUJU=JUJU, JOJO=JOJO)
$JUJU

x y
Lan1 0.92 100.00
Lan2 0.99 100.25
Lan3 1.07 99.99
Lan4 1.26 99.99
Lan5 1.11 99.87
Lan6 1.16 99.70
Lan7 1.00 99.86
Lan8 0.87 99.72
Lan9 0.88 99.89
Lan10 0.74 99.98

$JOJO
x y

Lan1 0.72 100.32
Lan2 0.75 100.36
Lan3 0.77 100.32
Lan4 0.81 100.32
Lan5 0.77 100.29
Lan6 0.77 100.24
Lan7 0.73 100.28
Lan8 0.70 100.26
Lan9 0.70 100.30
Lan10 0.67 100.33

Other ways to organize data are possible. Later in the text, I will usually dis-
tinguish sets of configurations (arrays) from single configuration (matrix) with the
respective letters A and M. In the following section, we will see how to import data
files in the environment of R.

2.2 Data Acquisition with R

2.2.1 Loading and Reading R Datafiles

The function data loads data files followed by certain extensions (.R, .r, .rda, .rdata,
.txt, .csv . . .) and is searching by default for sets in every currently loaded package.
If the dataset is not assigned to a new object, the name of the data object corresponds
to the name of the dataset without any extensions.

>data(iris)
>iris[1,]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

Several morphometric sets have been stored in R (notably in the packages
shapes and ade4) and can be used as tutorials. It is also possible to use the function
data for opening your own datasets.

32 2 Acquiring and Manipulating Morphometric Data

2.2.2 Entering Data by Hand

We can enter data by hand using the CLI and/or by filling arguments of some func-
tions. However, it is not very convivial, and the number of entries can become very
large and boring. R provides a data editor on some platforms using the function de
and typing the code de(NA). Once data are typed, the function assigns the value
to a new object of the list class. Using the data editor depends on the operating
system, and users are invited to read the online help. Note that like any other func-
tion, arguments can be passed through the prompt. Similarly, an empty data frame
can be edited by the command edit(as.data.frame(NULL)), and assigned
to an object. It is then filled by hand by the user. The transform function allows
you to transform certain objects in a data.frame, and/or to append new columns
calculated by manipulation on the original columns.

>transform(matrix(rnorm(4),2,2), new=X1*X2)
X1 X2 new

1 0.54885879 0.3121743 0.171339622
2 -0.01887397 0.4368677 -0.008245428

The package Rcmdr (“R commander”) provides a graphical interface with sev-
eral menus that allows direct operations using the menus and mouse buttons. It can
do the job of a data editor as well.

> library(rcmdr)
> Commander()

Working with “R commander” is really straightforward and there is no need for long
explanations. My opinion is that you should avoid using it if you are a newcomer to
R, because it does not ask you to think too much when producing any kind of beau-
tiful graph. You must be able to think to become a star in shape statistical analysis.

2.2.3 Reading Text Files

Usually raw data are recorded in a data frame where columns represent variables
while rows represent individuals. For R to read the file easily, each element of the
dataset stored on your computer files must be separated by the same separator charac-
ter. Blank spaces are among the most commonly used, but R handles any other kinds,
like tabulations. It is important that no elements or strings of your data contain the
separator character used for separating elements.

The functions read.table and scan can read ascii files. The first argument
of these functions contains the name of the file (with its extension) and the path
(if the file is not in the working directory). The following series of arguments can
be completed to indicate among others: number of lines to skip, data types, field
separator character, and decimal separator.

read.table reads tabular data (to avoid error messages, be careful that each
line contains the same number of observations and check your field separator; in the
case of missing data, fill empty cells with "NA" (NA for nonavailable). A number

2.2 Data Acquisition with R 33

of related functions can be used (read.csv, read.delim, and read.fwf) that
may have some advantages regarding the way that the initial file is stored.

scan is much more flexible and can interpret the file as a vector or a list.
Functions of some packages have been developed for importing and reading files

in other formats (Excel, SAS, SPSS, matlab, newick, html. . .), and access SQL-type
databases. If you are a Matlab lover, the R.matlab package allows communications
between R and a Matlab servers. A similar package exists for using R language and
packages on Matlab (RLink).

2.2.4 Reading and Converting Image Files

R does not read just text files; it can also read and display an image file on a graphical
device, thanks to the development of several packages and functions (Table 2.1).
Accessing pixel values and their coordinates consists of extracting either the slots or
the appropriate components of objects returned by these functions.

Table 2.1. Functions for importing image files and related packages

Function Package Image Format Returned Object

read.pnm pixmap pbm, pgm, ppm objects of diverse pixmap classes
read.jpeg rimage jpeg image.matrix object
readTiff rtiff tiff pixmap object

Some code is provided below to demonstrate how R handles various image files

with different packages.

Working with the package rimage.

>library(rimage)
>x <- read.jpeg(system.file("data", "cat.jpg",
+ package="rimage"))
>dim(x[,,1])
>is.array(x)
[1] TRUE

Returning dimensions of the Red level matrix.

>dim(x[,,1])
[1] 420 418

Working with the Package pixmap.

>library(pixmap)
>x <- read.pnm(system.file("pictures/logo.ppm",
+ package="pixmap")[1])
>str(x)
Formal class ’pixmapRGB’ [package "pixmap"] with 8 slots

34 2 Acquiring and Manipulating Morphometric Data

..@ red : num [1:77, 1:101] 1 1 1 1 1 1 1 1 1 1 ...

..@ green : num [1:77, 1:101] 1 1 1 1 1 1 1 1 1 1 ...

..@ blue : num [1:77, 1:101] 1.000 1.000 0.992 ...

..@ channels: chr [1:3] "red" "green" "blue"

..@ size : int [1:2] 77 101

..@ cellres : num [1:2] 1 1

..@ bbox : num [1:4] 0 0 101 77

..@ bbcent : logi FALSE
>dim(x@red)
[1] 77 101
>is.matrix(x@red)
[1] TRUE
>x@red[35,8]; x@green[35,8]; x@blue[35,8]
[1] 0.4392157
[1] 0.4392157
[1] 0.4078431
>x@red[35,8]*255
[1] 112

Pixels of a gray-scale image take values comprised between zero and one with
a step of 1/255, while RGB images have pixels with three values ranging in the
same way. Functions in the above packages easily convert color images to gray-scale
images.

>library(rimage)
>x <- read.jpeg(system.file("data", "cat.jpg",
+ package="rimage"))
>y <- (rgb2grey(x))
>rm(x)
>dim(y)
[1] 420 418

The functions that work with image files usually return very long objects that
consume the memory. These objects can be removed from the environment using the
function rm, if they are no longer useful. As a frequent user, I recommend not using
JPEGs exceeding 100 Ko.

Some image file formats are not readable for R, thus it is necessary to convert
the format of images. This operation can waste a lot of time if there is a need to
convert a large series of images. R offers the possibility to invoke a system com-
mand from the CLI with the function shell. One can therefore call the command
of an image converter program directly from R. Among software for manipulating
image files, Imagemagick1 is free and available online and can be installed on many
operating systems to convert and manipulate image files. Once you have installed
Imagemagick, you can directly work from your R environment as follows:

>setwd("/usr/lib/R/library/rimage/data")
>shell("convert cat.jpg cat.bmp")

1 www.imagemagick.org

2.2 Data Acquisition with R 35

2.2.5 Graphical Visualization

Visualizing data is often necessary to check whether you have correctly collected
your data. The generic function plot plots diverse R objects. Its first arguments
can be two vectors that contain the x and y coordinates of points of an object.
Alternatively, a two-column matrix can be passed as argument to produce the
same result. Many arguments (see the online help) can be entered directly through
the function, including arguments concerning parameters of the graphical device.
Alternatively, many parameters (font labels, margin widths, frame size, x and y-axis
ranges, title positions, background color, and many other) can be set before to open
the graphical device through the function par. Low-level plotting commands can
add objects on the graph using a series of functions (points, abline, text,
segments, locator, arrows, polygon, legend, rectangle, axis,
lines, etc.).

Here is an example of script for plotting the configurations called JUJU and
JOJO (see Fig. 2.1).

Draw the two configurations, with two different landmark symbols.
Add the title "Sea stars" to the graph.

>plot(rbind(JUJU, JOJO), pch=c(rep(21, 10), rep(20, 10)),
+ asp=1,main="Sea stars")

Draw a polygon with vertices corresponding to the configuration coordinates. Use different
line types for each configuration.

>polygon(JUJU, lty=3)
>polygon(JOJO, lty=1)

Add landmark labels for the JUJU configuration.

>text(JUJU, labels=1:10, pos=c(3,2,3,3,3,4,3,2,3,3))

Alternatively, we can specify the position of labels relative to the coordinates they design in
the plot with the function identify, by left clicking (to the left, right, top, or bottom) near
the landmark of interest.

>identify(JUJU, labels=1:10, pos=TRUE)

Add eyes to JUJU.

>points(c(0.95,1.05,0.955,1.055),rep(99.95,4),pch=21,
+ cex=c(1,1,2,2),bg=c(1,1,NA,NA))

Add a mouth to JOJO.

>lines(c(0.76, 0.74,0.72), c(100.3,100.29,100.3))

Note that the function lines can draw outlines as well.

The function persp can display 3D plots. The first useful step is often to define
the space that is necessary for the display, then points and lines are drawn using
low-level plot commands, with the function trans3d.

Assign a 3D configuration matrix to the tetra object.

36 2 Acquiring and Manipulating Morphometric Data

0.6 0.8 1.0 1.2

99
.7

99
.9

10
0.

1
10

0.
3

Sea stars

x

y 1

2

3 4

5

6

7

8

9

10

Fig. 2.1. Plotting 2D configurations with the function plot, and low-level commands

>tetra<-matrix(c(0,2,1,1,0,0,1,0.5,0,0,0,1),4,3)

Define the range of the space for the visualization and indicate the orientation of the cartesian
system to be projected on the screen.

>x<-seq(-0.5,2.5, length=10)
>y<-x
>z<-matrix(-0.5, 10, 10)
>res<-persp(x,y,z,zlim=c(-0.5, 1.5),theta=30,phi=15,r=10,
+ scale=F)

Plot the landmarks of the configuration.

>points(trans3d(tetra[,1],tetra[,2],tetra[,3],pm=res),
+ col=1,pch=16)

Add segments (“links”) between the landmarks of the configuration.

>lines(trans3d(tetra[-3,1],tetra[-3,2],tetra[-3,3],pm=res),
+ col=1,lw=2)
>lines(trans3d(tetra[-c(2,3),1],tetra[-c(2,3),2],
+ tetra[-c(2,3),3],pm =res),lw=2)
>lines(trans3d(tetra[-1,1],tetra[-1,2],tetra[-1,3],pm=res),
+ lty=3,lw=2)
>lines(trans3d(tetra[-c(2,4),1],tetra[-c(2,4),2],
+ tetra[-c(1,4),3],pm=res),lty=3,lw=2)

2.2 Data Acquisition with R 37

x
y

z

Fig. 2.2. Plotting 3D configurations with the function persp

The Xll() command opens a supplementary graphical device, and several
graphs can be presented on a single device with the layout function. The dev.set
(devicename) and dev.off(devicename) commands, respectively, close
and activate the device named “devicename.” One returns the list of devices by typ-
ing the command dev.list(). The script below opens three graphs on a single
devices and displays x, y, and z-projections of a 3D configuration, the resulting plots
are displayed in Fig. 2.3.

>layout(matrix(1:4, 2,2))
>res<-persp(x, y, z, zlim=c(-0.5, 2.5),theta=30,phi=30)
>points(trans3d(tetra[,1],tetra[,2],tetra[,3],pm = res),
+ col=1,pch=16)
>lines(trans3d(tetra[-3,1],tetra[-3,2],tetra[-3,3],pm=res),
+ col=1,lw=2)
>lines(trans3d(tetra[-c(2,3),1],tetra[-c(2,3),2],
+ tetra[-c(2,3),3],pm =res),lw=2)
>lines(trans3d(tetra[-1,1],tetra[-1,2],tetra[-1,3],pm=res),
+ lty=3,lw=2)
>lines(trans3d(tetra[-c(2,4),1],tetra[-c(2,4),2],
+ tetra[-c(1,4),3],pm=res),lty=3,lw=2)
>plot(tetra[,2:3],asp=1,xlab="y",ylab="z",
+ main="xprojection")
>polygon(tetra[,2:3])
>plot(tetra[,-2],asp=1,xlab="x",ylab="z",
+ main="yprojection")
>polygon(tetra[,-2])
>lines(tetra[c(2,4),-2])

38 2 Acquiring and Manipulating Morphometric Data

>plot(tetra[,1:2],asp=1,xlab="x",ylab="y",
+ main="zprojection")
>polygon(tetra[,1:2])
>lines(tetra[c(2,4),-3])
>lines(tetra[c(1,3),-3])

x
y

z

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

X projection

y

z

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

Y projection

x
z

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

Z projection

x

y

Fig. 2.3. Partitioning the graphical device using the function layout

The scatterplot3d function of the scatterplot3d package produces 3D
plots with the coordinates of points. Arguments and scripts are somehow simpler
than the persp function if the aim of users is to produce a cloud of points (there
is no need for specifying the volume of the space on which points will be plotted;
coordinates of points can be passed through a vector or a three-column matrix).

The locator and identify functions directly interact with the graphs. Other
possibilities are offered by the dynamicGraph and rgl packages which build inter-
active graphs and where users can modify some parameters using the mouse.

The rgl package is obviously a useful tool for visualizing and manipulating 3D
configurations or surfaces (Fig. 2.4). Let’s see some script for visualizing the config-
uration of the previously defined tetrahedron. In addition, animation of the scene is
easily produced.

Load the package rgl, and clear the scene of the rgl graphical device.

>library(rgl)
>rgl.clear()

2.2 Data Acquisition with R 39

>coll<-palette(gray(seq(0.4,.95,length=4)))

Set the color of the background.

>bg3d("white")

Draw triangle surfaces using their coordinates.

>for(i in 1:4)
+ {rgl.triangles(tetra[-i,1],tetra[-i,2],tetra[-i,3],
+ colors=coll[i])}

Add spheres at the location of landmarks.

>rgl.spheres(tetra[,1],tetra[,2],tetra[,3]
+ ,radius=0.1,col=1)

Create an animation.

>for (i in 1:360) {rgl.viewpoint(i,45)}

Fig. 2.4. The rgl graphical device

Of course, more complex configurations can be displayed. Fig. 2.5 corresponds
to the location of landmarks recorded on the bony shell of the turtle Dermatemys. To
obtain the graph2, I adapted the same commands, and I underlined contacts between
bones with the rgl.lines function.

In addition to reading image files, the pixmap, rtiff, and rimage packages offer
a way to display the image classes as graphs using the generic plot function. The
image function of the base package, with care about pixel size, can provide the
same results. Indeed, image creates a grid of colored rectangles with colors corre-
sponding to the values of a matrix. Note that x and y-axes have to be inverted and
that the plot must be further reflected to display a very similar result (Fig. 2.6). Let’s
see some applications with the picture of sea shell mytilus.jpg3 that we have
2 The matrix of landmark coordinates and the code are available in the online supplement.
3 Available in the online supplement

40 2 Acquiring and Manipulating Morphometric Data

Fig. 2.5. Three dimensional display of a configuration digitized on a turtle shell with the rgl
graphical device

formerly converted into a *.ppm format. This file is sufficiently small (less that 50
Ko) for being read and rapidly interpreted by R.

>setwd("/home/juju/morph")
>shell("convert mytilus.jpg mytilus.ppm")
>library(pixmap)
>M<- read.pnm("mytilus.ppm")
>plot(M)

Convert the RGB image to a gray-scale image.

>M<- as(M, "pixmapGrey")
>plot(M)
>layout(matrix(1:4, 2,2))

Similar operations using the image function. Note the way to scale the color in the second
argument, and the asp argument set to 2/3, or 3/4, or 9/16 for avoiding distortion due to pixel
width on length ratio (see below). It is possible to play with the depth of the color scale for
displaying various images.

>image(t(M@grey[dim(M@grey)[1]:1,]),col=gray(0:255/255),
+ asp=9/16,axes=F,main="Gray-scale: 8-bits")

Plot the same image with a 2-bit gray-scale depth, and with a binary depth.

>image(t(M@grey[dim(M@grey)[1]:1,]),col=gray(0:3/3),
+ asp=9/16,axes=F,main="Gray-scale: 2 bits")
>image(t(M@grey[dim(M@grey)[1]:1,]),col=gray(0:1/1),
+ asp=9/16,axes=F,main="Monochrome: 1 bit")

Exploring possibilities offered by the contour function .

2.2 Data Acquisition with R 41

>contour(t(M@grey[dim(M@grey)[1]:1,]),asp=9/16,axes=F,
+ levels=0:10/10, main="Contour plot",drawlabels=F)

The image and contour functions displays interesting graphs when their argu-
ment is a gray-scale image matrix, or any tone channel matrix.

Gray-scale: 8 bits

Gray-scale: 2 bits

Monochrome: 1 bit

Contour plot

Fig. 2.6. Displaying images with various gray-scale depths, or by using contour plot

2.2.6 Image Analysis and Morphometric Data Acquisition with R

The locator function reads the position of the graphic cursor when the left mouse
button is pressed. It can digitize coordinates of points on any displayed image file
by the graphical interface. Specifying arguments in the locator function offers
further possibilities: printing digitized points, linking them with a line, etc. (see
Fig. 2.7). In addition, one can combine locator with low-level graphical func-
tions such as points or lines, or polygon to directly interact and draw on the
graphical device.

>par(mar=c(1,1,1,1))

The mar graphical parameter sets the margin of the plot; one can set many other graphical
parameters with the par function. You can find the image file in the online supplement.

>library(rimage)
>x<-read.jpeg("/home/juju/morph/wing.jpg")
>plot(x)
>ji<-locator(5,type="p",pch=3)

locator returns an object of the list class with a vector of x and a vector of y-coordinates.

42 2 Acquiring and Manipulating Morphometric Data

>ji
$x
[1] 327.0152 443.4394 662.5909 618.0758 814.9697

$y
[1] 269.3939 207.7576 240.2879 322.4697 320.7576
>text(ji, pos=2, labels=1:5)
>ju<-locator(5,type="l")
>polygon(ju, density=12)

1

2
3

4

5

Fig. 2.7. Digitizing landmark locations with R

Calibrating the actual size is possible if one knows any interlandmark distance
on the image . I invite users to photograph the object together with a scale (ruler, mi-
crometer . . .). One can then obtain actual interlandmark distances using the cartesian
coordinates of the scale (see the script and Fig. 2.8).

We first open an image,4 and we invert it for an easier digitization process. We produce the
inverted image by taking the absolute value of the difference of pixel values minus one.

>library(rimage)
>x<-read.jpeg("/home/juju/morph/jawd.jpg")
>x<-rgb2grey(x)
>x<-1-abs(x)
>plot(x)

Use locator for localizing landmarks separated by 1 cm on the ruler.

>a<-locator(2,type="o",pch=8,lwd=2,col="grey60",lty="11")

Determine the size of a known distance (1 cm) on the graph.

>scale1<- sqrt(sum(diff(a$x)^2+diff(a$y)^2))

Return the vector of scaled coordinates.

4 The image file of the example is available in the online supplement

2.2 Data Acquisition with R 43

>b<-unlist(locator(10,type="p",pch=21,bg="white"))/scale1

Return the scaled configuration matrix.

>matrix(b, 5, 2)

An alternative manipulation.

>d<- locator (10, type="p"))
>d<- rbind(dx, dy)/scale1

Fig. 2.8. Digitizing landmarks, and measuring the virtual size of the scale with the locator
function. The digitized scale is indicated by gray stars and dotted segment, while circles indi-
cate digitized landmarks

Depending on the camera or on the screen display, users must be careful with
pixel size and non-square pixels that may produce a 3:2, 4:3, or 16:9 aspect ratio (see
[68]). Correcting for pixel distortion requires multiplying or dividing matrix indices
by corresponding ratios, or resizing one of the two dimensions.

Most of the time, one wants to simplify the image to find pixels of interest more
easily. These simplifications involve defining a threshold pixel values and binarizing
the images (Fig. 2.9). The following example illustrates these simple manipulations
of pixel values. Using thresholds can help in calculating the surface of a specified
area, especially when this area is well contrasted from the surrounding background.
Logical indexing and the threshold value can be used to specify a desired surface. We
can check whether the threshold is reliable for our task by assigning a new value or
new color to the pixels of interest, and by plotting the binarized image. I tried three
different thresholds on the Mytilus shell image.

>setwd("/home/juju/morph")
>x<- read.pnm("mytilus.ppm")
>y<- as(x, "pixmapGrey")
>rm(x)
>par(mar=c(1,3,2,1))

44 2 Acquiring and Manipulating Morphometric Data

>Y<-y@grey
>layout(matrix(1:4, 2,2))
>plot(y, main="Gray-scale image")
>y@grey[which(Y>=0.1)]<-1
>y@grey[which(Y<0.1)]<-0
>plot(y, main="Bin image, threshold=0.1")
>y@grey[which(Y>=0.3)]<-1
>y@grey[which(Y<0.3)]<-0
>plot(y, main="Bin image, threshold=0.3")
>y@grey[which(Y>=0.9)]<-1
>y@grey[which(Y<0.9)]<-0
>plot(y, main="Bin image, threshold=0.9")

Estimate the number of pixels included in the surface of interest (which have values below the
threshold in this case).

>length(y@grey[which(Y<0.9)])
[1] 29102

Gray-scale image

Bin image: threshold=0.3

Bin image: threshold=0.1

Bin image: threshold=0.9

Fig. 2.9. Image binarization using a homemade threshold filter

Applying a threshold to pixel values of an image confers some other advantages
for manipulating image files with R. Color image files, indeed, usually require an
important memory size; therefore binarizing offers possibilities for compressing the
size of the image object. One can extract the coordinates or the indices of the pixel
of interest in a two-column matrix to release useless information contained in the
background. The plot function can easily restitute the part of the image that is in-
teresting for us. These manipulations are especially useful for processing with outline
or surface extraction. The image file used for the example is available online.

2.2 Data Acquisition with R 45

>x <- read.jpeg("/home/juju/morph/jaw3.jpg")
>plot(x)
>dim(x)
[1] 378 891

Calculate the matrix indices of pixels of interest, with the integer division and the modulo
operators.

>xx<-which(x<=0.5)%%378
>yy<-which(x<=0.5)%/%378
>plot(yy, -xx, type="p",pch=24, cex=0.1)

Following the same methodology, it is possible to export the slice number (if
there is a series of images at different depths for a 3D object) together with the xx
and yy in an object of the array or list classes for defining 3D surfaces or 3D
volumes.

Inverting image can reveal features that could have been less visible on the nor-
mal image. For this, we have simply to invert the value of pixels for each channel: the
biggest becomes the smallest and vice versa. Since the minimal and maximal pixel
values are between zero and one, respectively, the inversion is straightforward. We
may wish to accentuate the value of a single color channel, or to remove a channel
as in the following example.

>x<-read.pnm(system.file("pictures/logo.ppm",
+ package="pixmap")[1])

Invert the red channel.

>x@red<-abs(1-x@red)

Invert the green channel.

>x@green<-abs(1-x@green)

Invert the blue channel.

>x@blue<-abs(1-x@blue)
>plot(x)

Accentuate the red channel.

>x@red<-0.5+x@red/2

Remove the green channel.

>x@green<-0

During image acquisition, it is possible to accentuate the contrast between the
object and the background. This makes some manipulation easier, such as contour
extraction. If the range of pixel values is less than 1, enlarging the full range to 1 will
make details of the object more contrasted to identify specific features (although it
does not increase the number of possible pixel values).

46 2 Acquiring and Manipulating Morphometric Data

>x<- read.pnm(system.file("pictures/logo.ppm",
+ package="pixmap")[1])
>x<- as(x, "pixmapGrey")
>x@grey<- x@grey /diff(range (x@grey))
>x@grey <-x@grey - min (xgrey)
>plot(x)

We easily modify the brightness of the picture using the power operator.

>x<- read.pnm(system.file("pictures/logo.ppm",
+ package="pixmap")[1])
>x<- as(x, "pixmapGrey")
>y<-x
>y@grey<- y@grey^2
>plot(y)

Other possibilities are offered for modifying a picture. Displaying the histogram
of pixel values (with the hist function) can help to understand how to transform
pixel values appropriately for a given channel. Histograms can reveal undesirable
values of pixels (for example, marginal values) that can be easily eliminated using
a few functions, similarly to the way that we have processed for thresholding pixel
values). One can also change the distribution of pixels so it could become uniform,
or one can modify the symmetry of the distribution using one of the link functions to
rescale pixel values between 0 and 1.

Some morphometric techniques are dedicated to the analysis of outline. I present
here a small function called Conte. It extracts the coordinates of pixels defining an
outline from a picture file. The function is the transcription of an outline extraction
algorithm. The function starts with a point and looks for the nearest neighbor pixels,
rotating and extracting coordinates on the outline in a clockwise way. Notice that we
here use a threshold of 0.3 for finding the first point of the outline, and 0.1 for finding
the nearest neighbor. One can modify these subjective values to adapt for the outline
one wants to extract. You can store the function on an ASCII file somewhere in your
computer, and paste it on the computer when you need it.

Function 2.1. Conte

Arguments:
x: Vector of the x and y-coordinates for the starting point. This starting point must be

chosen on the left part and inside the object.
imagematrix: imagematrix object (the picture for which one wants to extract the

outline).
Values:

X: x-coordinates of the outline.
Y: y-coordinates of the outline.

2.2 Data Acquisition with R 47

1 Conte<-function(x, imagematrix)
2 {I<-imagematrix
3 x<-rev(x)
4 x[1]<-dim(I)[1]-x[1]

The first step consists of moving a cursor from the selected pixel to the left until you find two
pixels that significantly differ in their values for setting the “true starting point” of the outline.
The function is not finding the closest pixel to the selected starting points but the pixel of the
outline located on the left side of the selected location. This pixel will be the first point of the
outline.

5 while (abs(I[x[1],x[2]]-I[x[1],(x[2]-1)])<0.1){x[2]<-x[2]-1}
6 a<-1

The M matrix contains the indices (coordinates) of pixels that are located around the current
pixel; the current pixel values are momently set to (0,0).

7 M<-matrix(c(0,-1,-1,-1,0,1,1,1,1,1,0,-1,-1,-1,0,1),
8 2,8,byrow=T)
9 M<-cbind(M[,8],M,M[,1])

The X, Y, x1, x2, SS, and S values are initialized before the contour extraction to start.

10 X<-0; Y<-0;
11 x1<-x[1]; x2<-x[2]
12 SS<-NA; S<-6

The index of the pixel corresponds to a. It is incremented by 1 every time the next pixel of the
contour is found in a clockwise way. X and Y record the successive coordinates; the algorithm
evaluates the following pixel value turning a block of three pixels clockwise around the current
pixel, and progresses pixel by pixel until the location of the next pixel belonging to the outline
is found.

13 while ((any(c(X[a],Y[a])!=c(x1,x2)) | length(X)<3))
14 {if (abs(I[x[1]+M[1,S+1],x[2]+M[2,S+1]]-I[x[1],x[2]])<0.1)
15 {a<-a+1;X[a]<-x[1];Y[a]<-x[2];x<-x+M[,S+1]
16 SS[a]<-S+1; S<-(S+7)%%8}
17 else if (abs(I[x[1]+M[1,S+2],x[2]+M[2,S+2]]
18 -I[x[1],x[2]])<0.1)
19 {a<-a+1;X[a]<-x[1];Y[a]<-x[2];x<-x+M[,S+2]
20 SS[a]<-S+2; S<-(S+7)%%8}
21 else if (abs(I[x[1]+M[1,(S+3)],x[2]+M[2,(S+3)]]
22 -I[x[1],x[2]])<0.1)
23 {a<-a+1;X[a]<-x[1];Y[a]<-x[2];x<-x+M[,(S+3)]
24 SS[a]<-S+3; S<-(S+7)%%8}
25 else S<-(S+1)%%8}

Return the resulting objects of the function under the form of a list containing the X and Y
vectors of x and y-coordinates for pixels of the outline.

26 list(X=(Y[-1]), Y=((dim(I)[1]-X))[-1])}

48 2 Acquiring and Manipulating Morphometric Data

We can use this new function to extract the outline coordinates of the shell on the
Mytilus image.

Binarize the image.

>y<- read.pnm("mytilus.ppm")
>y<- as(y, "pixmapGrey")
>y@grey[which(y@grey>=0.9)]<-1
>y@grey[which(y@grey<0.9)]<-0.7
>par(mar=c(1,1,1,1))
>plot(y)

Use locator for defining the starting point.

>start<-locator(1)
>Rc<-Conte(c(round(start$x),round(start$y)),y@grey)
>lines(RcX, RcY, lwd=4)

Draw an arrow at the starting point.

>arrows(0,Rc$Y[1],Rc$X[1],Rc$Y[1],length=0.1)

Fig. 2.10. Automated outline extraction. The arrow indicates the starting point

Defining a function for digitizing open curves is rather easy and uses most parts
of this algorithm. There is simply a need for inputting the coordinates of the end-
ing point, or rather their approximate position. Notice that you must first have prior
knowledge about how coordinates of pixels are handled and how they are plotted on
the graphic device; indeed, typing plot(y) here displays something quite different
than the image(y@grey) command.

The Conte function can be adapted for a series of scanner images for extracting
a 3D surfaces. It presents the advantage that the indices of pixel coordinates corre-
spond to the elementary curvilinear abscissa.

2.3 Manipulating and Creating Data with R

After the acquisition of raw data, it is often necessary to reorganize or slightly trans-
form them to start operationally analyzing the morphometric data. Here are some of

2.3 Manipulating and Creating Data with R 49

the very usual data manipulations: scaling an image, obtaining angles or distances
from coordinates of points. We will also program some more specific tools such as
one function for obtaining regularly spaced landmarks on a given outline.

2.3.1 Obtaining Distance from Coordinates of Points

The distance dEF between two landmarks E and F in two or three dimensions is the
square root of the sum of the squared differences between each coordinate. It is given
by the relationship

dEF =

√
√
√
√

k∑

i=1

(Ei − Fi)2 .

The transcription in R language is simple:

Acquisition of the coordinates of the landmarks E and F.

>E<-c(1, 4)
>F<-c(6, 8)

Computation of the interlandmark distance between E and F.

>sqrt(sum((E-F)^2))
[1] 6.403124

We implement this relationship in the ild function. This function computes the dis-
tance between any pair of landmarks:

Function 2.2. ild

Arguments:
E: x and y-coordinates of the first point as a vector object.
F: x and y-coordinates of the first point as a vector object.

Value:
Distance between the two points.

1 ild<-function(E, F){ sqrt(sum((E-F)^2))}

>ild(E, F)
[1] 6.403124

When the function is loaded on the computer, it correctly computes the distances
between two landmarks, provided that landmarks have the same number of dimen-
sions and that their coordinates are written in the same order.

50 2 Acquiring and Manipulating Morphometric Data

2.3.2 Calculating an Angle from Two Interlandmark Vectors

The angle θ between two vectors −−→
AB and −−→

CD is defined as the difference of their
arguments using C vectors.

>CD<-c(2, 4)
>AB<-B-A
>ABc<-complex(real=AB[1], imaginary=AB[2])
>CDc<-complex(real=CD[1], imaginary=CD[2])
>ABc; CDc
[1] 5+4i
[1] 2+4i

The Arg function returns the argument of a complex number. The angle between vectors
corresponds to the difference of their arguments. The function uses properties of complex
numbers for calculating the angle between the CD and AB vectors.

>Arg(ABc)
[1] 0.674741
>Arg(CDc)
[1] 1.107149
>Arg(ABc)-Arg(CDc)
[1] -0.4324078

Calculate the result in degrees.

>Arg(ABc)-Arg(CDc) / pi * 180
[1] -62.76021

The angle2d function calculates the angle between two 2D v1 and v2 vectors.

Function 2.3. angle2d

Arguments:
v1: 2D vector of numeric mode.
v2: 2D vector of numeric mode.

Value:
Angle between the two vectors in radians.

1 angle2d <- function(v1,v2)
2 {v1<-complex(1,v1[1],v1[2])
3 v2<-complex(1,v2[1],v2[2])
4 (pi+Arg(v1)-Arg(v2))%%(2*pi)-pi}

To calculate the angle θ between two vectors of higher dimensions, one must use
the relationship between their norm and their dot product such that

|θ| =
−−→
CD · −−→AB

‖−−→AB‖‖−−→CD‖
.

2.3 Manipulating and Creating Data with R 51

The angle function uses the norm and dot product relationship to calculate the an-
gle between two vectors. However, the orientation of this angle will not be signed.

Function 2.4. angle

Arguments:
v1: Vector of numeric mode.
v2: Vector of numeric mode and of length equal to the length of v1.

Value:
Angle between the two vectors in radians.

1 angle<-function(v1, v2)
2 {temp <- sum(v1*v2)/(sqrt(sum(v1^2))*sqrt(sum(v2^2)))
3 acos (temp)}

For 3D vectors, one must check the sign of the determinant of a 3 × 3 matrix
with the first row being a triple unit vector (1), and the next two rows corresponding
to the vector coordinates. This operation corresponds to a triple scalar product such
that

det

∣
∣
∣
∣
∣
∣

1−−→
AB−−→
CD

∣
∣
∣
∣
∣
∣

= 1 · (−−→AB ×−−→
CD) ,

where “×” denotes the vector cross-product. The angle3 function calculates the
signed angle between two 3D vectors, it depends on the angle function:

Function 2.5. angle3

Arguments:
v1: 3D vector of numeric mode.
v2: 3D vector of numeric mode.

Value:
Signed angle between the two vectors in radians.

1 angle3<-function(v1, v2)
2 {a<-angle(v1, v2)
3 b<-sign(det(rbind(1, v1, v2)))
4 if (a == 0 & b == 1){jo<-pi/2}
5 else if (a == 0 & b == -1){jo<- - pi/2}
6 else {jo<- a * b}
7 (pi+jo)%%(2*pi)-pi}

2.3.3 Regularly Spaced Pseudolandmarks

In morphometrics, in particular with Fourier analysis of outlines (see Chapter 4),
prior operations are usually performed on the collection of coordinates of pixels

52 2 Acquiring and Manipulating Morphometric Data

defining the outline. One of these operations is to obtain equally spaced pseudoland-
marks on the digitized outline (see Fig. 2.12). Our Conte function extracts coordi-
nates of points on an outline with a one pixel in length curvilinear abscissa. If there
are enough pixels, one can extract a given number of equally spaced pixels using the
regular sequence-generating function of R.

Obtaining 32 equally spaced pseudolandmarks on the outline of the Mytilus shell (Rc$X and
Rc$Y are coordinates of pixels of the outline).

>layout(matrix(c(1,2), 1,2))
>Rc32x<-(Rc$X[seq(1,length(Rc$X),length=33)])[-1]
>Rc32y<-(Rc$Y[seq(1,length(Rc$Y),length=33)])[-1]
>plot(RcX, RcY, type="l", lwd=1.5, asp=1, axes=F
+ , main = "curvilinear")
>points(Rc32x, Rc32y)

One can also digitize equally spaced pseudolandmarks on any kind of curve that
one has approximated by digitizing several points by hand. For acquiring points on
the curve, one uses the locator function . Indeed, locator allows one to collect
coordinates that can define lines or segments. Then, one can obtain regularly spaced
landmarks on lines or surfaces with the spsample function of the sp package.
We will apply this exercise to the curve depicting the lower part of the rodent jaw.5

We will sample pseudolandmarks between two well-known landmarks (incisor-bone
contact and extremity of the angular apophysis) (see Fig. 2.11).

>library(rimage)
>layout(matrix(c(1,2), 1,2))
>par(mar=c(0,1,0,0))
>x<-read.jpeg("/home/juju/morph/jaw2.jpg")
>plot(x)
>dig<-locator(type="o",col="white",lwd=1.5)

Draw successive segments with the mouse for digitizing the curve of interest.

>DIG<-matrix(unlist(dig),length(dig$x),2)
>library(sp)
>Ldig<-Line(DIG)

Transform the object of theLine class for sampling pseudolandmarks on successive segments.
The matrix of sampled coordinates are inside the @coords slot returned by spsample.

>pseudo<-spsample(Ldig,16,type="regular",
+ offset=c(0,1))@coords

Do not forget to remove the last landmark digitized in the sample (because of the offset
argument), and plot landmarks and pseudolandmarks on a new graph.

>plot(x)
>points(DIG[c(1,dim(DIG)[1]),],cex=1.5,pch=20,
+ frame=F, axes=F,asp=1)
>points(pseudo[-nrow(pseudo),],pch=21,bg="white")

2.3 Manipulating and Creating Data with R 53

Fig. 2.11. Obtaining equally spaced pseudolandmarks using curve digitizing; pseudoland-
marks are white circles, and ending landmarks are black rounds on the right side graph

One can eventually adjust the sampling process by smoothing the original curve
(see later in this section).

Rather than selecting equally spaced points according to the curvilinear abscissa,
one may prefer to select landmarks that are spaced with a regular sequence of an-
gles taken between the outline coordinates and the centroid. Let say that the origin
O is the first digitized point. We must therefore transform every cartesian coordi-
nate into polar coordinates using complex numbers and operations for our task. The
regularradius function returns n points on equally spaced radii.

Function 2.6. regularradius

Arguments:
Rx: Vector containing the x-coordinates of the outline.
Ry: Vector containing the y-coordinates of the outline.
n: Number of points to be sampled.

Values:
pixindices: Vector of radius indices.
radii: Vector of sampled radii lengths.
coord: Coordinates of sampled points arranged in a two-column matrix.

1 regularradius<-function(Rx, Ry, n)
2 {le<-length(Rx)
3 M<-matrix(c(Rx, Ry), le, 2)
4 M1<-matrix(c(Rx-mean(Rx), Ry-mean(Ry)), le, 2)
5 V1<-complex(real=M1[,1], imaginary=M1[,2])
6 M2<-matrix(c(Arg(V1), Mod(V1)), le, 2)
7 V2<-NA

The following code finds the indices of the nearest pixel on the outline using the angular
increment.

8 for (i in 0:(n-1))
9 {V2[i+1]<-which.max((cos(M2[,1]-2*i*pi/n)))}

10 V2<-sort(V2)
11 list("pixindices"=V2,"radii"=M2[V2,2],"coord"=M1[V2,])}

5 The image file is available in the online supplement

54 2 Acquiring and Manipulating Morphometric Data

To visualize the outline and the equally spaced radii, we first need to calculate the
coordinates of the centroid of the outline. Here we work on the mytilus shell image.

The centroid coordinates Xc and Yc of the outline are defined as the mean of x and
y-coordinates sampled on the outline and are computed straightforwardly:

>Xc <- mean(Rc$X)
>Yc <- mean(Rc$Y)
>plot(RcX,RcY,type="l",lwd=1.5,asp=1,axes=F,main="polar")
>points(Xc, Yc, pch=4)

Using a loop, we draw the successive segments linking the centroid to the points sampled on
the outline.

>ju<-regularradius(RcX, RcY, 32)
>points(ju$coord[,1]+Xc, ju$coord[,2]+Yc)
>for (i in 1:32){
+ {segments(0+Xc,0+Yc,ju$coord[,1]+Xc,ju$coord[,2]+Yc)}

curvilinear polar

Fig. 2.12. Diverse types of pseudolandmarks automated digitizations with the outline of the
Mytilus shell. On the left, pseudolandmarks are equally spaced following an equal curvilinear
abscissa, while on the right, pseudolandmarks are spaced according to equally spaced angles
between segments departing from the centroid to the outline

2.3.4 Outline Smoothing

Depending on the resolution and the sensitivity of an automated outline extraction, it
is often necessary to smooth the outline for further analyses. When digitized outlines
with high resolution produce undesirable irregularities, Haines and Crampton [43]
recommend smoothing the outline based on the following formula:

(x, y)new
i =

1
4
(x, y)old

i−1 +
1
2
(x, y)old

i +
1
4
(x, y)old

i+1 .

A function that performs this operation requires two arguments; the first is the outline
coordinates to be smoothed, and the second is the number of iterations. We want to

2.3 Manipulating and Creating Data with R 55

apply n times this smoothing function to the raw configuration matrix. We program
this under the smoothout function:

Function 2.7. smouthout

Arguments:
M: x and y-coordinates of the outline arranged in a two-column matrix.
n: Number of iterations.

Value:
Matrix of smoothed coordinates.

1 smoothout<-function(M, n)
2 {p<-dim(M)[1]
3 a<-0
4 while (a<=n)
5 {a<-a+1
6 Ms<-rbind(M[p,],M[-p,])
7 Mi<-rbind(M[-1,],M[1,])
8 M<-M/2+Ms/4+Mi/4}
9 M}

Low resolution of images can be a source of error during automatic image dig-
itization. Artificially inflating the number of landmarks can provide some approxi-
mation of the reality. It can be achieved by interpolating supplementary landmarks
that correspond to the mean coordinates of two adjacent landmarks and writing
the landmark.addition function. One can later smooth this outline using the
smoothout function, if needed.

Function 2.8. landmarkaddition

Arguments:
M: x and y-coordinates of the outline arranged in a two-column matrix.
n: Number of iterations.

Value:
Matrix of original and interpolated coordinates.

1 landmark.addition<-function(M, n)
2 {a<-0
3 while(a<=n)
4 {p<-dim(M)[1]
5 k<-dim(M)[2]
6 N<-matrix (NA,2*p,k)
7 N[((1:p)*2)-1,]<-M
8 N[(1:p)*2,]<-(M+(rbind(M[-1,],M[1,])))/2
9 M<-N}

10 M}

56 2 Acquiring and Manipulating Morphometric Data

2.4 Saving and Converting Data

The easiest way to save objects with R is probably the save function which writes a
binary R file in a specified folder. The extension can be of any type. For reloading the
saved file, the load function loads the object on the working environment or follow
a specified path entered as argument. The original name of the object is loaded with
its value.

The write.table function is convenient for storing data frames. Finally, the
cat function can convert and concatenate objects to character strings, separating
them by a specified separator. In specifying "\n", one can write data on different
lines.

R can read many formats, most of them being primarily ascii files. Here my
goal is to show how one opens, converts, and interprets them through R, and how
to perform the reverse operation (for example, digitizing landmarks on R, and then
exporting them in the appropriate format).

The *.NTS format is one of the more commonly used in geometric morphomet-
rics. Software performing morphometric analyses (Morpheus,6 the TPS family7 etc.)
can save or convert data in this format. The data are stored as a matrix with the rows
corresponding to the configurations and the columns to the coordinates of each land-
mark. The first line of the file contains four or five arguments. The first and fourth
are fixed, while the second and third respectively correspond to the number of speci-
mens and the number of landmarks multiplied by the number of dimensions (k× p).
The fifth and optional argument specifies the number of dimensions, and follows the
string “DIM=”. By correctly filling the arguments of the scan function, we open
this type of file quite easily. If the string or the character for comments is the dou-
ble quoting mark along the file, the conversion requires not more than two lines as
illustrated below.

The RATS.NTS dataset can be found in the data sets of the freely available software
tpsRegr.8

>jo<-scan("/home/juju/morph/RATS.NTS",what="char",
+ quote="",sep="\n", comment.char="\"")

Obtain the number of dimensions k.

>jo1<-jo[1]
>l1<-unlist(strsplit(jo1, "="))
>l2<-unlist(strsplit(jo1, " "))
> if(length(l1)==1) {k<-2}
+ else {k<-as.numeric(l1[2])}
>k
[1] 2

Extract coordinates.

6 http://life.bio.sunysb.edu/morph/morpheus/
7 http://life.bio.sunysb.edu/morph/
8 http://life.bio.sunysb.edu/morph/

2.4 Saving and Converting Data 57

>jo2<-jo[-1]
>cat(jo2, file="jo2.txt")
>data<-matrix(scan("jo2.txt"), as.numeric(l2[2]),
+ as.numeric(l2[3]), byrow=T)
>unlink ("jo2.txt")

Delete the temporary file jo2.txt.

Notice the sep="\n" argument specified for the scan function; it indicates that
the separator corresponds to a new line.

A more complex format is the format *.tps that has been developed for a series of
programs by James Rohlf.9 Here is the code for importing configurations, and later
for importing names and coordinates that define curves. In the code below, we finally
plot configurations, and curves. Similarly one can extract and assign other attributes
to a list or an array.

The file sneathd.tps can be obtained from the datasets of the freely distributed software
tpsRelw.

>jo<-scan("/home/juju/morph/sneathd.tps", what="char",
+ quote="", sep="\n", strip.white=T)
>jo<-casefold(jo, upper=F)

Find the indices where each configuration starts.

>sp<-grep("lm=", jo)

Find the n number of configurations.

>n<-length(sp)

Find the p number of landmarks for each configuration, knowing that it is indicated after each
“=”.

> p <-as.numeric(unlist(strsplit(unlist(strsplit
+ (jo[sp[1]], "="))[2], " "))[1])

Find the k number of dimensions.

>k<-length(unlist(strsplit(jo[sp[1]+1],split=" +")))

Prepare an empty matrix that you assign to the new config object for storing coordinates of
configurations.

>config<-matrix(NA, n, p*k)
>for (i in 1:n)
+ {config[i,]<-as.numeric(unlist(strsplit(
+ jo[(sp[i]+1):(sp[i]+p)], split=" +")))}

Read and store the coordinates of the first curve and of the first object.

>curve1<-grep("curves", jo)

Find the q number of outlines in the object.

9 http://life.bio.sunysb.edu/morph/

58 2 Acquiring and Manipulating Morphometric Data

>q <-as.numeric(unlist(strsplit(unlist(strsplit(
+ jo[curve1[1]],"="))[2]," "))[1])
>point1<-grep("points", jo[sp[1]:sp[2]])

The nb object is a vector that will contain the number of landmarks stored for each curve.

>nb<-NA
>for (i in 1:length(point1))
+ {nb[i]<- as.numeric(unlist(strsplit(unlist
+ (strsplit(jo[point1[i]], "="))[2], " "))[1])}

Store the coordinates of the curve points in a list of q vectors.

>out1<-list()
>for (i in 1:q)
+ {out1[[i]]<- as.numeric(unlist(strsplit(jo[(
+ point1[i]+1):(point1[i]+nb[i])], split=" +")))}
>l<-length(unlist(out1))

Prepare the space required for the x and y-axes in the graph.

>m1<- min(unlist(out1)[(1:(l/2))*2])
[1] 90.21
>m2<- min(unlist(out1)[(1:(l/2))*2-1])
[1] 222.15
>M1<- max(unlist(out1)[(1:(l/2))*2])
[1] 1492.27
>M2<- max(unlist(out1)[(1:(l/2))*2-1])
[1] 1860.8

Plot the landmarks of the first configuration.

>par(mar=c(4,1,1,0))
>plot(matrix(config[1,],p,k,byrow=T),pch=20,
+ cex=1.5, xlim=c(m2-10,M2+10), ylim=c(m1-10,
+ M1+10), asp=1, xlab="Homo", ylab="",axes=F)

Plot the curves of the first configuration.

>for (i in 1:q)
+ {points(matrix(out1[[i]], nb[i],k, byrow=T),
+ type="l", lw=2, lty="11")}

Remark the casefold function in the script. It translates a character vector in upper or lower
case (useful for standardizing a dataset). The result is presented in Fig. 2.13. The grep and
sub functions are used for the conversion of parts of the ascii file because they return indices
and replace strings in a vector of characters respectively.

Exporting R data in one other format corresponds to the reverse operation and
is straightforward. The cat function with the separator argument specified as "\n"
allows manipulation of data for exporting an ascii file in an appropriate way. Given
two configuration matrices in R, M and N, each containing three 2D landmarks, one
converts these objects in *.NTS format as follows:

2.4 Saving and Converting Data 59

Homo

Fig. 2.13. Opening and printing a *.tps file

>M<-matrix(round(rnorm(6)),3, 2)
>M

[,1] [,2]
[1,] -2 1
[2,] 0 -1
[3,] 1 -3
>N<-matrix(round(rnorm(6)),3, 2)
>N

[,1] [,2]
[1,] 2 0
[2,] 0 0
[3,] -1 0
>config<-c(paste(t(M),collapse=" "),
+ paste(t(N), collapse=" "))
>commentl<-paste("\"","configurations ","M ","and N")
>firstl<-paste(1, 2, 6, 0, "dim=2")

Save configurations in a *.NTS file.

>cat(firstl,commentl,config,sep="\n",
+ file="/home/juju/morph/juju.NTS")

Print the file as it is.

>cat(firstl, commentl, config, sep="\n")
1 2 6 0 dim=2
" configurations M and N
1 0 -3 0 2 -1
1 2 0 0 1 0

60 2 Acquiring and Manipulating Morphometric Data

Writing a function for exporting data in a desired format involves looping around
this theme. Note the backslash for invoking quotation marks or new line in the code.

2.5 Missing Data

Many statistical functions in R contain an argument specifying how to handle miss-
ing data. This argument is on the na.rm, na.action, or use forms, and can be
specified to change its default value. For example, na.rm expects a logical for in-
dicating whether nonavailable data are dropped. Look at the help file of functions
such as cor, mean, and lm to understand the different available options. Although
one can choose to exclude one measurement or one landmark, one can sometimes
estimate missing values from original data.

2.5.1 Estimating Missing Measurements by Multiple Regression

When the studied sample shows some homogeneity in shape variation, measurements
are often related. This is often the case with a collection of biological distances.
Distances have often a high degree of intercorrelation because they correspond to
different body parts that often grow harmoniously during the development. Other
causes of the high degree of correlation can be biomechanic, architectural, or genetic.
This high correlation can help us infer missing values with regression techniques. It
is often better to use all the data to perform these inferences. Multiple regression can
be applied as in the following example:

Simulate four distance measurements a, b, c, and d for 30 individuals.

>a<-abs(rnorm(30))
>b<-2*a+rnorm(1, 5)+rnorm(30, 0, 0.5)
>c<-7*a+rnorm(1, 6)+rnorm(30, 0, 4)
>d<-12*a+rnorm(1, 3)+rnorm(30, 0, 3)
>data<-cbind(a, b, c,d)

Generate 10 missing values.

>data[sample(1:120)[1:10]]<-NA

Using the scale function scales the data with a variance=1 and a mean=0.

>datas<-scale(data)

Find the missing values and return the indices of their row with integer division operators and
the which function.

>indic<-which(is.na(data))
>ro<-indic%%30

The unique function removes duplicated values in ro.

>ro<-unique(ro)

Change the 0 indices to be 30.

2.5 Missing Data 61

>if (any(ro==0)){ro[which(ro==0)]<-30}
>for (i in 1:length(ro))
+ {ind<-which(is.na(data[ro[i],]))

The generic predict function is used for appraising fitted values according to a given model
(here a multiple linear model). The missing values are estimated with the prediction from the
other data. For removing a raw or a column in the matrix, notice the “-” for negative indexing.

>for (j in 1:length(ind))
+ {MOD<-lm(data[, ind[j]] ~ datas[,-ind])
+ data[ro[i],ind[j]]<-predict(MOD,data.frame(datas
+ [,-ind])[ro[i],])[ro[i]]} }

2.5.2 Estimating Missing Landmarks on Symmetrical Structures

Several objects exhibit bilateral symmetry. It is often useful to estimate the location
of landmarks missing on one side prior to morphometric or statistical analyses. This
is not too difficult because symmetric landmarks have a mirror copy. The location of
these landmarks is obtained by an appropriate geometric reflection.

The first step for obtaining a mirror image requires estimating the axis or plane of
symmetry of the object. Let missing values correspond to NA, and let the M configu-
ration be a matrix of p rows and k columns. We will define the indices of landmarks
theoretically lying on the symmetry plane or axis in the imp vector, those of left
landmarks in the pa1 vector and those of the right landmarks in the pa2 vector.
The axis (or plane) that passes through midline landmarks and at the midline of the
segments defined by paired landmarks is the axis (or plane) of symmetry. We define
the N matrix as containing the coordinates of the landmarks expected to be on the
symmetry axis, plus the coordinates of points defined at the midline between paired
and symmetric landmarks. Because all landmarks of the configuration contribute to
the definition of the symmetry axis, coordinates of points defined by left and right
sides are weighted twice. To estimate N, we have to keep the landmarks of the axis
and calculate the midline coordinates of remaining paired landmarks. We obtain N
using indexing and a few computations.

Obtain separate matrices for the midline, left-, and right-side coordinates.

>N1<-M[imp,]
>NL<-M[pa1,]
>NR<-M[pa2,]

Obtain the indices of the missing landmarks. The unique function is used for removing
duplicated elements, and sort allows a vector to be sorted in ascending order.

>no<-sort(unique(c(which(is.na(M[pa1,1])),
+ which(is.na(M[pa2,1])))))

Calculate coordinates of the points at the midline of segments defined by corresponding left
and right landmarks.

>N2<-(NL[-no,]+NR[-no,])/2
>N<-rbind(N1,N2, N2)

62 2 Acquiring and Manipulating Morphometric Data

In practice, coordinates of landmarks of N are rarely aligned along a straight line
(or on a plane, for 3D data). Indeed, there is usually some variation in the position
of landmarks on the axis of symmetry in comparison with their expected position
(biological asymmetries due to development, measurement error). For defining our
transformation, we could estimate the plane or axis equation using the coordinates
contained in N, and use this equation to perform our transformation. However, the
shortest way is to rotate our configuration and axis so that its coordinates will fit to
the line of coordinates y = 0 (for 2D data) or for the plane defined by z = 0 (for 3D
data). This axis or plane is minimizing distances between N (the raw rotated axis co-
ordinates) and the symmetry axis we will use for the reflection. The rotation is easily
appraised by decomposing the variance and covariance of the 2D or 3D coordinates
of N. We write the corresponding code in the function eigenrotation:

Function 2.9. eigenrotation

Arguments:
M: k-column matrix of landmark coordinates (missing landmarks excluded) to be ro-

tated.
N: k-column matrix of coordinates that belongs to the symmetry axis or plane (median

plane or midline landmarks, plus midline points estimated from paired symmetrical
points).

Value:
k-column matrix of rotated coordinates.

1 eigenrotation<-function(as.matrix(N), as.matrix(M))

The eigen function computes the eigenvectors and corresponding eigenvectors for a rec-
tangular matrix. eigen returns a list object with the first element being the normalized
eigenvector loadings.

2 sN<-eigen(var(N))$vectors

Data are projected on the eigenvectors of their own variance-covariance matrix. This performs
a rotation of the original data. These are then translated so that axis or the plane of reflection
includes the origin (remark that this may introduce undesired reflections).

3 k<-dim(N)[2]
4 p<-dim(M)[1]
5 Nn<-N%*%sN
6 Mn<-M%*%sN

Compute the vector that translates the landmark of the configuration so their centroid becomes
(0, 0).

7 uNn<-apply(Nn, 2, mean)

Translate the rotated data.

8 Mnf<-Mn-rep(1,p)%*%t(uNn)
9 Mnf}

2.6 Measurement Error 63

When the configuration is rotated, we have first to check whether the orientation be-
tween coordinates of landmarks in our data has been preserved. For 2D data, we can
check the angle between the first three landmark coordinates. If the sign of the vec-
tor has changed, we have to multiply the y- (or z-) coordinates by −1. The sign of
the angle can be checked using the angle2d function for 2D data, or the angle3
function for 3D data (see Section 2.3). Once reflection is checked, we appraise co-
ordinates of missing landmarks multiplying the corresponding landmark y (for 2D)
or z (for 3D) coordinates by −1, and we duplicate the x. To obtain the reflected
3D missing landmarks, the sign of the third coordinate of the corresponding paired
landmark is multiplied by −1.

Other solutions for estimating missing landmarks can involve functions like thin-
plate spline (see Section 4.3).

2.6 Measurement Error

Measurement error is defined as “the variability of repeated measurements of a par-
ticular character taken on the same individual, relative to its variability among indi-
viduals . . . ” for quoting Bailey and Byrnes [5]. The source of error is multiple.

2.6.1 Sources of Measurement Error

Measurement Error Due to the Measurement Device (Precision)

Measurement error and precision are close concepts. Most digitizing devices and
digtizers like observers produce an error that corresponds to their imprecision (pre-
cision is the level of similarity among the same, repeated measurement) and to their
inaccuracy (inaccuracy is measured as the difference between the measured value
and the true value). The cause of this error depends mostly on the reliability and the
sensitivity of the measuring device. If you digitize landmarks and measurements on
an image, the error depends on the size (number of pixels) and on the resolution of
the image (the resolution corresponds to the smaller details that can be seen on a
picture).

Measurement Error Due to the Definition of the Measure

Although the definition of the landmark position can be unequivocal (e.g., position
of a foramen, intersection between nervations), there can still remain a small vari-
ation around the landmark position. If the position of the landmark is as precise as
0.1 mm, this will generate a variation among measurements of the same object and
will contribute to the total measurement error. This may have some incidence when
the observer wants to compare objects that differ in size, and if recognizable land-
marks have the same imprecision between objects. For instance, we could consider
a landmark that corresponds to a foramen, and that this landmark would be digitized
among small and large skeletons; let the size of the foramen be similar in size for

64 2 Acquiring and Manipulating Morphometric Data

large and small objects, consequently the percent of error variation of the smaller
object will be inflated. Actually, this depends on the range of size variation among
objects you are exploring, and you can expect that error to decrease with the size of
objects.

Measurement Error Due to the Quality of the Measured Material

Some part of the error is inherent to the data themselves. For example, fossils can
show different levels of preservation that may affect the way we measure the object.
The imprecision in digitizing a given landmark will depend on the preservation of
objects. In this case, one expects a positive relationship between error and level of
preservation.

Measurement Error Due to the Measurer

Give a measuring tape to three different people and ask them to measure your own hip
circumference with a precision of one mm and you will probably get three different
measurements. People necessarily differ in the way that they measure distances, and
this depends on their individual condition: their degree of concentration, eye health,
stress, or knowledge and interest in the objects they measure may affect the outcome
of multiple measurements differently. Among users, the error terms vary not only
in intensity, but also in the geometrical way that the error is produced (for example,
some people will produce more error in positioning a landmark more laterally than
vertically, which will affect the covariation pattern in the error component of the
variation).

Measurement Error Due to the Environment of the Measurer

Another source of error comes from the direct environment of the observer. One
can expect that a noisy or peaceful environment differently influences the observer.
Change in luminosity and lighting may compete with the quality of the measurement
made by the observer. This is not only true with direct measurements (using a caliper
or a ruler) but also with indirect measurements obtained from pictures. In the latter
case, the source and intensity of light should be similar for each capture of image
(limiting errors arising from differences in shadows or contrasts). More generally,
reducing error requires keeping the same conditions for measurement acquisition
throughout the full session.

Measurement Error Due to the Measurement Protocol

The better the measurement protocol is established, and the lower the error is. Con-
sider a photography of a 3D object on which landmarks are later digitized; an im-
portant part of error may appear depending on the position of the object under the
camera. It is useful to set a reference plane from the object for photographing all

2.6 Measurement Error 65

similar objects according to the same orientation. Errors are inherent to most optical
devices because lenses usually slightly deform the shape of objects, especially when
focal distances are very short. Generating variation by focusing differently when cap-
turing an image inherently inflates error variation. To limit this source of error, the
user should set focal distance once and for all before digitizing.

2.6.2 Protocols for Estimating Measurement Error

Estimating measurement error involves taking into account most of its origins. It is
often interesting to explore the different possible sources of error variation in cate-
gorizing the variation. For some analyses of variation, it is strongly recommended to
estimate measurement error (especially when the investigated signal of variation is
expected to be low). Yezerinac et al. [124] suggest an ANOVA design to compute a
percent measurement error that allows further comparisons between different stud-
ies. Using a percent of measurement error allows results to be independent of the
range or the units of measured objects.

Repeating measurements on the same objects is always necessary to correctly
estimate measurement error. It is best repeat ALL measurements at least twice (mea-
surement error is influenced by objects themselves; we can think that some will be
more difficult to accurately measure than others, and the economy of time passed
through the digitization of a subsample may change our way of estimating the mea-
surement error). However, estimating measurement error using a smaller representa-
tive sample is a possible alternative.

The percentage of measurement error is defined as the ratio of the within-
measurement component of variance on the sum of the within- and among-measure-
ment component. Percent of measurement error %ME can be obtained as follows:

%ME =
s2
within

(s2
within + s2

among)
× 100 .

Components of variance [76] are themselves derived from the mean squares of the
one-way ANOVA considering the factor individual as a source of variation. The
among and within variation are estimated from the mean sum of squares:

s2
among =

MSSamong − MSSwithin
m

,

and
s2
within = MSSwithin ,

where m corresponds to the number of repeated measurements.
Doing different sessions under different conditions, with different observers, or

using different measurement devices is a way to inspect origins and contributions of
the putative candidates that may inflate error. Unfortunately, we can regret that this
boring stage is still not systematically present in scientific contributions performing
morphometric analyses. One can check whether there are differences in mean mea-
surements between both sessions with the significance of the session effect. I supply

66 2 Acquiring and Manipulating Morphometric Data

a short simulated example below invoking R commands in the case of a univariate
measurement.

Simulation of a set of 20 real distances following a normal distribution, with two measurement
sessions and with an error term normally distributed.

>truemeasures<-rnorm(20, 20, 3)
>measure1<-truemeasures + rnorm(20, 0, 1)
>measure2<-truemeasures + rnorm(20, 0, 1)
>sessionfactor<-gl(2, 20)
>individualfactor<-as.factor(rep(1:20, 2))
>totalobservation<-c(measure1, measure2)
>summary(aov(totalobservation~sessionfactor))

Df Sum Sq Mean Sq F value Pr(>F)
sessionfactor 1 1.77 1.77 0.1188 0.7323
Residuals 38 566.47 14.91

The one-way ANOVA reveals that there is not a strong influence of session on the measure-
ment and that variation between sessions is lower than within session in this example.

> mod<-summary(aov(totalobservation~individualfactor))
> mod

Df Sum Sq Mean Sq F value Pr(>F)
individualfactor 19 544.87 28.68 24.533 6.438e-10 ***
Residuals 20 23.38 1.17

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

This second one-way ANOVA shows that interindividual variation is much larger than within
individual variation, we can consider that measurement error is low enough to interpret in-
terindividual variation.

>s2within<-mswithin<-mod[[1]][2,3]
>mod[[1]][2, 3]
[1] 1.168932
>MSamong<-mod[[1]][1, 3]
>s2among<-(MSamong-MSwithin)/2
>s2within/(s2within+s2among)*100
[1] 7.833057

The percent measurement error is 7.8% in this example.

If you reiterate this example a large number of times, the averaged measurement
should be close to 1/9. This corresponds to the square of the division of the interindi-
vidual variance by the error variance that we introduce in our simulated data (1/3).

Problems

2.1. Extracting cartesian coordinates and initializing the cartesian system
Write a function for extracting cartesian coordinates on an image using the locator
function. This function must set the cartesian system to a 0 origin with x and y-axes

2.6 Measurement Error 67

that are initialized by clicking on the picture. The three first clicks correspond to the
position of the origin, the direction of the x-axis, and the orientation of the y-axis.

2.2. Calculating the surface of a digitized polygon
Use the splancs package and the area.pl function to calculate the surface of a
polygon drawn with the locator function.

2.3. Changing the class of R objects containing a collection of configurations
Write a function to change the organization of a collection of configuration from
an array to a data.frame object. Write the inverse function (transforming the
data.frame object into an array object).

2.4. Manually acquiring outline coordinates
Write a function that draws and acquires the coordinates of equally spaced points on
an outline that is digitized as the succession of small segments digitized by clicking
on the image. In this respect, you have to gather not only their coordinates, but also
compute the distance of each segments; read the help file of the locator and seq
functions for achieving this aim.

2.5. A magic tool for selecting an area on a picture
Write a function that finds indices of pixels that have values close to the pixel selected
by a left click (with the locator function).

2.6. Digitizing open curves
Adapt the Conte function (defined in Section 2.2.6) for digitizing open curves. The
coordinates of the starting and of ending points are entered as arguments with the
image file, or by clicking on the picture.

2.7. Writing the read.nts function
Use the code of Section 2.4 to write a read.nts function that opens morphometric
data stored with the *.nts extension.

2.8. Writing the export.nts function
Use the code of Section 2.4 to write a export.nts function that saves morphome-
tric data acquired with R.

2.9. Writing a comprehensive function for estimating coordinates of missing
landmarks of symmetric structures
Use the code of Section 2.5.2 to write a function that estimates the coordinates of
missing landmarks on either one or the other side for both 2D or 3D configurations.
The number of dimensions must be first estimated to apply adapted functions.

3

Traditional Statistics for Morphometrics

Chapter coauthored by: Julien Claude, Michel Baylac, Tristan Stayton

Traditional morphometrics deals with linear measurements of objects. Although
morphometrics and statistics saw considerable theoretical and technical develop-
ments at the end of the 19th Century and in the early 20th Century, they only became
united more recently. In the second half of the last century, multivariate statistics be-
came standard for analyzing large sets of measurements from different samples. The
development of statistics, especially in the field of biology, for integrating growth or
developmental features aided the development of the science of shape and size. Sta-
tistical developments concerning the concepts of shape, size, and growth emerged in
a series of seminal papers aimed at providing a rigorous methodology for the study of
size and shape (e.g., [50, 49, 16, 75]); these were initiated earlier by statisticians like
Galton, Teissier, and Fisher. The analysis of complex shapes has benefited from the
development of computers in the 1960s when publications of applied morphomet-
rics increased exponentionally in number. Although more modern tools are available
today, research is still necessary in the theory and methods of understanding the rela-
tionships between the raw set of measurements and both concepts of size and shape
variations.

3.1 Univariate Analyses

Univariate statistics and univariate plots can be very easily produced with little
knowledge to analyze a simple distance measurement (i.e., the size of an object).
Some of the most useful functions are summarized in Table 1.1. More specific func-
tions are presented in Table 3.1. These functions usually apply to objects of the
vector class containing numeric elements but most of them are generic and ac-
cept other specific arguments. Here we supply only the basics, and the user can refer
to references [25] or [120] for more details.

70 3 Traditional Statistics for Morphometrics

Table 3.1. Useful functions

Function Package Short Description

var stats computes the unbiased estimator of variance
sd stats unbiased estimator of the standard deviation
median stats computes the median
quantile stats produces sample quantile
summary base returns summarized univariate statistics
scale base normalizes a vector or a matrix
range base returns the minimum and maximum values
sum base returns the sum of elements
diff base returns a vector of iterated differences
cumsum base returns a vector of cumulative sums
cumprod base returns a vector of cumulative products

3.1.1 Visualizing and Testing the Distribution

The distribution of a variable can be visualized with a histogram using the hist
function. The freq argument of this function expects a logical. If freq=T, the
resulting graph is a representation of frequencies; if freq=F, the graph represents
a probability density (see Fig. 3.1). This function allows a basic exploration of the
distribution. For example, it can help for determining the number of modal values
in the distribution. For this task, using the breaks argument allows the number of
bins of the histogram to be specified. One can calculate a density line from the data
using thedensity function. Here is an example:

>layout(matrix(c(1,2),1,2))

Compute a random normally distributed variable.

>variable<-rnorm(1000, 2, 1)

Draw a histogram of frequencies.

>ju<-hist(variable, freq=T, main="Histogram of frequencies",
+ xlab="value")

Obtain the width of the histogram cells.

>wid<-ju$breaks[2]-ju$breaks[1]
>lines(density(variable, weights = rep(wid, 1000)), lw=2)

Draw a histogram of probability densities.

>hist(variable, freq=F, main="Histogram of
+ density probabilities", xlab="value")
>lines(density(variable), lw=2, lty=3)

There are several possible conformity tests on univariate distributions. For in-
stance, the Shapiro-Wilk test for normality is run with the shapiro.test function
on the numeric vector of interest. The ks.test function performs one or two-
sample Kolmogorov-Smirnov tests. The Kolmogorv-Smirnov test is recommended

3.1 Univariate Analyses 71

Histogram of frequencies

value

F
re

qu
en

cy

−2 −1 0 1 2 3 4 5

0
50

10
0

15
0

Histogram of
 density probabilities

value

D
en

si
ty

−2 −1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

Fig. 3.1. Producing frequency and density histograms with the hist and density functions

when you want to determine whether two samples are drawn from the same dis-
tribution, or whether a sample is drawn from a given distribution. You can run the
examples of these functions to further understand how to pass their arguments.

The observations (measured values) can belong to different categories. We will
simulate a dataset that could correspond to mouse tail lengths of three different
species. The data are summarized in a table of two columns: one containing val-
ues of the measured tails, the other being a category specifying a species (in R, it is
a factor object). To obtain the number of observations within each category, we
can use thetable function ; in addition, we can obtain summarized statistics of the
data.frame object with the summary function as exemplified below.

>mussp1<-rnorm(24, 7, 0.5)
>mussp2<-rnorm(24, 7.7, 0.5)
>mussp3<-rnorm(36, 8, 1)
>sp<-c(rep("sp1",24),rep("sp2",24),rep("sp3",36))
>tailsize<-c(mussp1, mussp2, mussp3)
>mus<-data.frame(tailsize, sp)
>table(mus$sp)
sp1 sp2 sp3
24 24 36
> summary(mus)

tailsize sp
Min. :4.986 sp1:24
1st Qu.:7.154 sp2:24
Median :7.557 sp3:36
Mean :7.657
3rd Qu.:8.165
Max. :9.920

72 3 Traditional Statistics for Morphometrics

3.1.2 When Data are Organized in Several Groups

Graphics

The barplot and piechart functions produce barplots and pie charts that rep-
resent graphically the numbers of observations or the relative frequency for each
group. There are many possibilities for filling cells or slice portions with colors or
with equally spaced lines as in the code below (Fig. 3.2).

>layout(matrix(c(1,2),1,2))
>pie(table(mus$sp),density=c(10,20,50),
+ angle=c(0,90,45),col="black",main="pie chart")
>barplot(table(mus$sp),density=c(10,20,50),
+ angle=c(0,90,45),col="black",main="bar plot")

sp1

sp2

sp3

pie chart

sp1 sp2 sp3

bar plot
0

5
10

15
20

25
30

35

Fig. 3.2. Pie chart and bar plot for categorized observations

One can extract values for each category using either logical indexing, or the
subset function. The apply, tapply, and lapply functions iterate the same
function according to the data frame organization or to a factor.

Summarized statistics for each group can be represented using box plots. You
can produce them easily with the boxplot function; it will draw the median and
the interquartile range and return an object of the boxplot class. Producing plots
with mean and standard deviation and/or standard error is elementary with R as well
(Fig. 3.3). An example is provided below. The notch option, activated with the de-
fault arguments, allows rapid checking of whether there are significant differences
between medians [19].

3.1 Univariate Analyses 73

>layout(matrix(c(1,2),1,2))

Box-plot with median, interquartile, and full range.

>ju<-boxplot(tailsize~sp, range=0,data=mus, notch=T,
+ main="median, interquartile, range")

Box-plot with mean, standard deviation, and 95% and 99% confidence intervals. For produc-
ing the graph, we changed the values of some elements in the object returned by the boxplot
function.

>musmn<-tapply(mus$tailsize, mus$sp, mean)
>mussd<-tapply(mus$tailsize, mus$sp, sd)
>musse<-mussd/sqrt(as.numeric(table(mus$sp)))
>ju$stats[3,]<-musmn
>ju$stats[c(2,4),]<-rbind(musmn-qnorm(0.995)*musse,
+ musmn+qnorm(0.995)*musse)
>ju$stats[c(1,5),]<-rbind(musmn-mussd, musmn+mussd)
>ju$conf<-rbind(musmn-qnorm(0.975)*musse, musmn+
+ qnorm(0.975)*musse)
>bxp(ju, notch=T, main="mean, 95%, 99% intervals, sd")

sp1 sp2 sp3

6
7

8
9

10

median, interquartile, range

sp1 sp2 sp3

7.
0

7.
5

8.
0

8.
5

9.
0

mean, 95%, 99% intervals, sd

Fig. 3.3. Box plots for categorized observations

Looking at the distribution of the individual measurements belonging to several
categories usually raises the following questions: are sample variances and sample
means equal, greater, or smaller relative to each other? These questions are usually
addressed with analysis of variance and related F -tests. For samples with more than
30 observations, the standard error estimate of the mean seM is calculated as

seM =
√

σ

n − 1
,

with σ being the standard deviation, and n the number of observations.

74 3 Traditional Statistics for Morphometrics

The confidence interval for the mean corresponds to [µ− t× seM , µ+ t× seM],
with µ being the sample mean, σ being the standard deviation of the sample, and t
corresponds to the upper critical value of the student-t distribution with n−1 degrees
of freedom. For sample size above 30, t can be estimated by the upper critical value
of the normal distribution. Here is an example in which we compute the confidence
interval for petal length of one Iris species that is stored in the R iris dataset.

>data(iris)
>setosa<-iris[iris$Species=="setosa",]$Petal.Length
>mset<-mean(setosa); sset<-sd(setosa); lset<-length(setosa)
> cat(paste("95% Conf. limits: [",
+ round(mset-qt(1-(0.05/2),lset-1)*sset/(lset-1),
+ 3),",",round(mset+qt(1-(0.05/2),lset-1)* sset/(lset
+ -1),3),"]\n",sep=""))
95% Conf. limits: [1.455,1.469]

Note the use of the cat function and of \n to return the result and to skip a new line.

The confidence interval for the sample variance is based on the Chi-square dis-
tribution. Indeed, χ2 = (

n − 1)s2/σ2 follows a χ2 distribution with n− 1 degrees of
freedom. Therefore, if α is the critical value, the confidence interval is calculated as
P (χ2 ≤ χ1) = α/2; P (χ2 ≥ χ2) = α/2. The variance is contained in the interval

Iα = [(n − 1)s2/χ2, (n − 1)s2/χ1]

where χ1 and χ2 corresponds to the lower and upper tail critical values of the χ2

distribution with n − 1 degrees of freedom. This interval of confidence is computed
below for the petal length of the species Iris setosa.

Lower bound at 95% for the variance of the petal length in I. setosa.

>var(setosa)*49/qchisq(0.975, 49)
[1] 0.02104456

Upper bound at 95% for the variance of the petal length in I. setosa.

>var(setosa)*49/qchisq(0.025, 49)
[1] 0.04683264

For other parameters like the median, there is no known distribution for esti-
mating confidence intervals. Instead, it is possible to obtain a bootstrap uncertainty
estimate. To estimate the null distribution of the statistics (here the variance), data
are resampled several times (usually 500 or 1,000 times), and the statistic is recalcu-
lated. The borders of lower and upper tails specify the endpoints of the confidence
interval. The sample function, allowing for resampling of the data, permits us this
estimation. Here is an example where we obtain a 95% median confidence interval
by bootstraping the data 1,000 times.

>bootstrap<-numeric(1000)
>for (i in 1:1000)
+ {bootstrap[i]<-median(sample(setosa, replace=T))}
>sort(bootstrap)[c(25, 975)]

3.1 Univariate Analyses 75

Note the numeric(1000) code for specifying an initial zero vector of length 1,000.

From the computation of simple confidence intervals, we can now develop tests
to discover whether two samples differ in their statistical parameters. The means M1

and M2 of two different samples with variances s2
1 and s2

2 and of size n1 and n2 are
different if the value

t =
M1 − M2
√

s2
1

n1
+ s2

2
n2

is below or above the critical value of the Student distribution (sample size ≤ 30)
with n1 +n2−2 degrees of freedom. This statistic follows the normal distribution of
parameters (0,1) for sample size > 30. The mean of samples can be compared with
the t-test using the t.test function of the stats package. In the arguments, the
variances have to be assumed to be equal; if not, R will correct degrees of freedom
using the so called “Welch” modification.

For comparing the variance of two samples, we use their ratio – the largest vari-
ance (or the expected one) being the numerator and the lowest being the denominator.
This gives an F -value that can be compared to the F -distribution with n1 − 1 and
n2 − 1 degrees of freedom.

Analysis of Variance

The basic idea behind analysis of variance (ANOVA) is to partition the observed vari-
ance according to an explanatory variable that is primarily a factor. There is a large
number of statistical models behind ANOVA. The simplest one is testing whether
there is a difference between the means of different samples. One uses ANOVA to
determine whether two or more groups differ in their mean. When performing an
ANOVA, the total sum of squares is decomposed into components related to the
effects. The remaining sum of squares is usually called the error term, and is not
explained by the model. In simple models, the sum of squares of effects add up with
the error term equaling the total sum of squares, while variances (sum of squares
divided by appropriated degrees of freedom) do not. The variances of the different
effects are compared in the analysis of variance to estimate the significance of an
effect. The variance of the effect (variation that is explained by the model) is usually
compared with the error term to appraise the significance of the between-group dif-
ferences. In the simplest model, we have j populations, and we want to test whether
the means of these populations are equal. Let Yij be the ith observation (or individual
measurement) within the jth population. Yij can be decomposed as

Yij = µ + αj + eij ,

where µ is the grand mean, αj is the deviation from the grand mean for the jth

treatment (α is sometimes called the effect term), and eij is the residual variation,
assumed to follow a normal distribution with mean zero.

Alternatively, Yij can be expressed as

Yij = µj + eij ,

76 3 Traditional Statistics for Morphometrics

where µj corresponds to the mean of the jth population. From these simple models,
we can produce an ANOVA table for analyzing variation due to effects. Assume we
have a treatments and a total of N observations, then the table can be summarized as
in Table 3.2.

Table 3.2. One-way ANOVA table

Var. Source df SS MSS F

effect a − 1 SSA =
∑j=a

j=1
nj(µj − µ)2 SSA

dfA
MSSA
MSSE

error N − a SSE =
∑j=a

j=1

∑i=nj

i=1
Yij − µj

SSE
dfE

total N − 1 SST =
∑i=nj

i=1

∑j=a

j=1
(Yij − µ)2 SST

dfT

The sum of squares of effect and the sum of squares of error correspond respectively
to the between and within-population sum of squares. The F -test compares between
and within variations. If variation between groups is greater than variation within
groups, then the F -value is greater than 1, and differences in mean values of groups
will be significantly greater than within groups. The following example illustrates
how to perform an ANOVA-test with R:

>summary(aov(mus$tailsize~as.factor(mus$sp)))
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(mus$sp) 2 12.433 6.217 10.296 0.0001037 ***
Residuals 81 48.907 0.604

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The ANOVA table summarizes the analysis: the first column corresponds to degrees
of freedom of effects and the residual error term, the second gives the sum of squares
of the effect, the third corresponds to the mean squares (sum of squares divided by
the respective df , analogs to the variance), and then the forth gives the F -value (note
that R divides mean squares of the effect with that of residuals when summary.aov
is used), and the last the p-value. The same table would have been returned using
anova(lm(mus$tailsize~as.factor(mus$sp))).

One can further investigate the differences between categories with post-hoc tests
such as the "Honestly Significantly Different" Tukey test. The TukeyHSD function
performs the test and creates a set of confidence intervals for the differences between
the means of the levels of a factor with the specified family-wise probability of cov-
erage. The resulting object returned by this function can be plotted using the function
plot.

One speaks about multi-way ANOVA when more than one effect is tested. For
two-way (or more effects) ANOVA, one must distinguish between fixed, mixed, or
random models that consider fixed, fixed and random, or random effects. This ter-
minology is that of hierarchical linear modeling. For factors, we speak about fixed
effects, when observations of the sample take all the possible modalities of the factor

3.1 Univariate Analyses 77

we investigate (sex or ecotype are likely to be fixed factors). There is no need of
extra- or interpolation to determine the significance of fixed-effect models. We speak
about random effect for a factor when just part of the modalities are available, or
drawn from a sample to extrapolate for the whole population. A random effect is of-
ten the factor “individual,” on which we apply several treatments, or that we measure
at several intervals during his existence; indeed we rarely have all the individuals
of one population. But, actually, if you want to test the differences between these
individuals, “individual” becomes a fixed effect, because here we will not infer any
hypothesis concerning the whole population of individuals. When at least one fixed
and one random effect is included in the model, we speak about mixed effect models.

Table 3.3. Two-way ANOVA table: fixed effects (γ and ε denotes the interaction and the error
term)

Source of
Variation df SS MSS F

α a − 1 SSA = nb
∑i=a

i=1
(µi − µ)2 SSA

dfA
MSSA
MSSE

β b − 1 SSB = na
∑j=b

j=1
(µj − µ)2 SSB

dfB
MSSB
MSSE

γ (a − 1)(b − 1) SSAB = SSAB
dfAB

MSSAB
MSSE

n
∑i=a

i=1

∑j=b

j=1
(µij − µi − µj + µ)2

ε ab(n − 1) SSE =
∑i=a

i=1

∑j=b

j=1

∑k=n

k=1
Yijk − µij

SSE
dfE

total N − 1 = nab − 1 SST =
∑i=a

i=1

∑j=b

j=1

∑k=n

k=1
(Yijk − µ)2 SST

dfT

The strategy for testing models with several factors is the same as for the one-way
ANOVA except that we have to consider more effects and their type. The distinction
between random-, fixed-, and mixed-effect models is not just a question of vocabu-
lary because they differ in what is included in the error variance. We will illustrate
the two-way case. Rather than determining the significance of a single effect on the
distribution of data, several effects and their interaction are tested. In practice, pure
random effect models are rare, and morphometric statistical analysis is restricted to
mixed and fixed models.

We start with fixed models and call α the first effect with i modalities ranging
from 1 to a and β, the second effect with j modalities ranging from 1 to b; γ is the
interaction between both effects. The total number of observations is N , and there is
n observations for each combination of factors. Models become more complicated
when group sizes differ between groups are defined by combination of effects. An
observation Yijk can be expressed as

Yijk = µ + αi + βj + γij + eijk .

We summarized the two-way ANOVA table for fixed factors in Table 3.3.
When entering several effects, we use an argument of the formula class using

the +, ∗, or/operators between effects. The second operator takes into account the

78 3 Traditional Statistics for Morphometrics

interaction between terms, and the third ensures that one factor (left of the slash) is
nested within a second factor (on the right).

Table 3.4. Operators in formulae

Operator Meaning Usage Equivalent

+ add effect B A + B
: interaction of A and B A:B
∗ crossed effects A * B A + B + A:B
− remove effect B A*B-B A + A:B
/ B nested effect in A A/B A + A:B

Here we investigate whether the distribution of tooth size is influenced by both
a genetic parameter (population) and sex in the dataset for the species Mus domesti-
cus. Populations differ in their chromosomal formula and the modalities of the factor
correspond to chromosome number. One population has only individuals with 40
chromosomes while the other population is composed by individuals with 22 chro-
mosomes.1

> musdom1<-read.table("musdom1.txt", header=T)
> LM1<-musdom[,4]
> Pop<-as.factor(musdom[,3])
> Sex<-as.factor(musdom[,2])
> summary(aov(LM1~Pop*Sex))

Df Sum Sq Mean Sq F value Pr(>F)
Pop 1 0.049562 0.049562 22.8378 1.180e-05 ***
Sex 1 0.007722 0.007722 3.5583 0.06409 .
Pop:Sex 1 0.000129 0.000129 0.0596 0.80793
Residuals 60 0.130210 0.002170

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The model.tables function computes a summary table with mean value for each category.

> model.tables(aov(LM1~Pop*Sex), type="means")
Tables of means
Grand mean

1.445609

Pop
Pop

22 40
1.4734 1.4178

1 The dataset is available in the online supplement.

3.1 Univariate Analyses 79

Sex
Sex

f m
1.4346 1.4566

Pop:Sex
Sex

Pop f m
22 1.4639 1.4830
40 1.4054 1.4302

Females have smaller anterior molars than males in both populations; however, this difference
is not significant. The population with 40 chromosomes has smaller anterior molars than does
the population with 22 chromosomes.

In the case of mixed models, the situation becomes different especially if the in-
teraction term becomes significant. The simple additive model is used loosely in this
situation, since the interaction contains a random factor term. Therefore, the fixed
effect is tested against the interaction, while the random effect is tested against the
error. For purely random models, the effects are usually tested against the interaction
term, especially if this is important. However, whether testing the factors against the
interaction or the residual error should not be considered as a rule: this depends on
the hypothesis that the observer wants to test. It is especially true for studies deal-
ing with fluctuating asymmetry (random difference between left and right sides of
genotypes), when this is considered as the interaction between individual (genotype)
and side. We rarely have all the individuals of a given population; the effect individ-
ual is then regarded as the random factor, while side is regarded as the fixed factor.
Palmer and Strobeck [78, 79] explain how to appraise the significance of directional
asymmetry and fluctuating asymmetry, and interindividual differences using a mixed
model. However, in this model (when the interaction is found significant: i.e., fluc-
tuating asymmetry), not only the side effect (directional asymmetry), but also the
genotype effect (symmetric individual variation) should be tested against the interac-
tion. Indeed, when we test for individual differences, we want to know whether they
are higher than intra-individual differences. It is likely that intra-individual variation
will be greater in terms of fluctuating asymmetry rather than in terms of measurement
error introduced by the user.

The example below uses the length of the first upper molar of Mus musculus
domesticus. The table consists of five columns, the first indicating the individual
code number, the second the sex, the third the side, the fourth the replication session
number, and the last the measurement. We have measured the teeth twice to allow
for the estimating of measurement error.2

>musdom<-read.table("musdom.txt",header =T)
>LM1<-musdom[,5]
>side<-as.factor(musdom[,3])
>ind<-as.factor(musdom[,1])

2 The dataset is available in the online supplement.

80 3 Traditional Statistics for Morphometrics

>musaov<-summary(aov(LM1~ind*side))
Df Sum Sq Mean Sq F value Pr(>F)

ind 23 0.294082 0.012786 243.5460 < 2.2e-16 ***
side 1 0.000301 0.000301 5.7341 0.02059 *
ind:side 23 0.004868 0.000212 4.0318 2.296e-05 ***
Residuals 48 0.002520 0.000053

Note that the test does not consider interaction as the error term.
F -test for individual variation:

>FIND<-musaov[[1]][1,3]/musaov[[1]][3,3]
>FIND
[1] 60.40554
>pf(FIND,musaov[[1]][1,1],musaov[[1]][3,1],lower.tail=F)
[1] 1.606294e-15

F -test for directional asymmetry:

>FSIDE
[1] 1.422208
>pf(FSIDE,musaov[[1]][2,1],musaov[[1]][3,1],lower.tail=F)
[1] 0.2451990

In this example, it is evident that the choice of the error term becomes the determinant
for conclusions concerning the significance of directional asymmetry. Actually, not
considering interaction as the error term in this design has consequences, because we
could conclude from the test that there is a significant directional asymmetry in the
studied sample although there is not.

If the combination of factors defines groups of equal size, there is no problem
with interpreting the table of results. Things becomes more difficult if effects are
unbalanced. In this latter case, results will depend on the order of entry of factors. In
other words, orthogonality between effects is missing and the principle of marginal-
ity precludes results to be easily interpreted in one single analysis. The car package
offers some possibilities for exploring these kinds of design. Remember that increas-
ing the complexity of the ANOVA design usually yields results more difficult to
interpret.

3.2 Bivariate Analyses

3.2.1 Graphics

One examines the relationships between two distance measurements with simple
bivariate plots. The plot function accepts either the vectors x and y or the first
two columns of a matrix as arguments for abscissa and ordinate coordinates of ob-
servations in the scatterplot. One can assign different symbols, colors, and size to
the points of the plot by entering specific arguments. This is particularly useful for
highlighting distributions according to one or more categories (for example, sex and

3.2 Bivariate Analyses 81

species). Plot is a generic function, it depends on the class of the argument. For ex-
ample, with an object of the groupedData class returned by functions of the nlme
package, you will not produce a bivariate but a treilli plot.

The pairs function is useful for displaying all possible bivariate relationships
between variables of a data frame.

>library(MASS)
>data(crabs)
>plot(crabs$FL,crabs$RW,bg=c("grey50", "white")[crabs$sex]
+ ,pch=c(21,22)[crabs$sp],cex=c(1.8,1)[crabs$sp])

10 15 20

6
8

10
12

14
16

18
20

crabs$FL

cr
ab

s$
R

W

Fig. 3.4. Scatterplot of crab measurements of the genus Leptograpsus according to the species
and sex: ‘FL’ frontal lobe size (mm) and ‘RW’ rear width (mm); males are gray, females
are white symbols, squares and circles correspond respectively to each species; data from
Campbell [17]

3.2.2 Analyzing the Relationship Between two Distance Measurements

Regression

The relationship between one dependent and one independent variable is usually
studied by regression analysis using a simple linear model. Regression of one nor-
mally distributed variable on one other is achieved using a linear model with the lm

82 3 Traditional Statistics for Morphometrics

function, which accepts a formula as its first argument. This function returns an ob-
ject of the lm class and prints some statistics. The result summary (produced with
the summary function) provides more properties concerning the parameters and for
the fit (slope, intercept, correlation, and goodness-of-fit).

>summary(lm(crabs$RW~crabs$FL))

Call:
lm(formula = crabs$RW ~ crabs$FL)

Residuals:
Min 1Q Median 3Q Max

-2.05794 -0.88826 -0.08583 0.85724 2.94821

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.33302 0.35187 6.63 3.11e-10 ***
crabs$FL 0.66775 0.02204 30.30 < 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.087 on 198 degrees of freedom
Multiple R-Squared: 0.8226, Adjusted R-squared: 0.8217
F-statistic: 918.3 on 1 and 198 DF, p-value: < 2.2e-16

The formula entered as a unique argument determines effects that are estimated
by the model. If an operation, a command, or a function is applied on a predictor
of the model, it has to be specified with the I function. One can use the anova
function to perform an ANOVA of predictors in the model. When anova receives
two or more formulae, it tests the models against one another in the specified order.
The interaction between terms, numeric variables, and the intercept can be implicitly
removed in the formula using 0+ or −1 in the formula.

Plotting an object of the lm class with the function plot provides different dis-
plays to examine outliers or residuals. This strategy provides a diagnostic tool to
examine whether the conditions are filled for using the model. The abline func-
tion can plot the regression line if one specifies the slope and intercepts in its ar-
guments. A variety of diagnostic tests for simple linear models exists in the lmtest
package. Examining fitted values and residuals is indeed important for determining
the validity of the model that explains the data. The residuals of a given model are
returned using the residuals function applied to the lm object; and the fitted
values using the predict function. Furthermore, it is also possible to fit nonlinear
models in R with the nls function, and to include mixed random and non-random ef-
fects using various linear and nonlinear modeling functions (lme, nlme of the nlme
package). The latter could be used in morphometrics in the case of longitudinal data
(e.g., measurements that are taken during the growth of a given animal). Instead of
linear models with fixed effects, you can alternatively use mixed-effect linear mod-
els with the lme or lmer functions of the nlme and lme4 packages. The models

3.2 Bivariate Analyses 83

implemented in these functions are becoming common and very useful. One can
also apply nonlinear mixed models on the data with nlme (nlme: nonlinear mixed
modeling). These models can be appropriate for analyzing grouped data and have
not yet received enough attention, although they permit interesting applications in
traditional and geometric morphometrics (especially for the analysis of growth pat-
terns and longitudinal data). Relative theory and practice are beyond the scope of this
book, but you can find additional information in references [119, 85, 121].

In our simple linear model, the R2 value describes the percent of variation in
one variable explained by the other variable. The syntax anova(lm(my_model))
returns the estimate of variance components. One can obtain the R2 from the variance
of the fitted and residuals values returned by the linear model.

>model<-(lm(crabs$RW~crabs$FL))

Compute the R2 with fitted and residual values.

>fv<-model$fitted.values; resv<-model$residuals
>sum((fv-mean(fv))^2)/(sum((fv-mean(fv))^2)+sum(resv^2))
[1] 0.8226265

Note that predict can return fitted values as well.
Compute the R2 coefficient by performing an analysis of variance on the model.

>anova(model)
Analysis of Variance Table

Response: crabs$RW
Df Sum Sq Mean Sq F value Pr(>F)

crabs$FL 1 1084.05 1084.05 918.29 < 2.2e-16 ***
Residuals 198 233.74 1.18

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

>anova(model)[1,2]/(anova(model)[1,2]+anova(model)[2,2])
[1] 0.8226265

Correlation

One can calculate the R2 coefficient using the covariance and the variances. In the
case of regression, the R coefficient corresponds to a measure of association between
both variables.

The covariance measures how two random variables vary together. It is calculated
as follows

σxy = cov(x, y) =
1
n

n∑

i=1

(xi − x̄)(yi − ȳ) ,

where x̄ is the mean of x. The unit of covariance is the product of the units of x and
y measurements.

84 3 Traditional Statistics for Morphometrics

The variance and covariance of two or more variables are computed with the
var function of R. If the variables vary in the same way, the covariance is positive.
It is negative when one variable increases, and the other decreases; and it is 0 when
variables vary independently.

The R(x, y) Pearson correlation coefficient is a linear, dimensionless measure of
dependence between variables. One computes this coefficient in “normalizing” the
covariance by the product of variances of each variable such that

R(x, y) =
∑

(xi − x)(yi − y)
√∑

(xi − x)2
√∑

(yi − y)2
.

By default, the cor function returns this correlation coefficient, which indicates the
strength and direction of the linear relationship between two variables. Unlike the
covariance, this measure is independent of the variance of each variable. In specify-
ing the method in the arguments, R alternatively computes the Spearman or Kendall
correlation coefficients. One can estimate the significance of the correlation coef-
ficient using a test of association between paired samples, this is returned by the
cor.test function.

One can interpret the square of the sample correlation (R2) as the fraction of the
variance in one variable explained by a linear fit of the variable with the other. The R2

coefficient is a measure of association between the variables but is independent on
the direction of the association. Here we check this using the var and cor functions.

>ju<-lm(crabs$RW~crabs$FL)
>(var(crabs$RW)-var(ju$residuals)) / var(crabs$RW)
[1] 0.8226265
>cor(crabs$RW, crabs$FL)^2
[1] 0.8226265

3.2.3 Analyzing the Relationship Between Two Distance Measurements
in Different Groups

We are interested in determining whether or not groups significantly overlap in their
distance measurements. We can draw a 95% interval with the function ellipse
of the car package. The Rmorph package contains an ellipse function that cal-
culates and draws confidence ellipses too. We can even program our own function:
ELLI”. It has to consider how many percents of the distribution we want to include
in the interval, the data (typically x and y-coordinates), and the number of points
used to plot the ellipse. We will fix some default arguments of ELLI: the default
confidence interval is 95% and the default number of points sampled on the plotted
ellipse is 50.

3.2 Bivariate Analyses 85

Function 3.1. ELLI

Arguments:
x: First variable (a numeric vector).
y: Second variable (a numeric vector).
conf: Confidence level in %.
np: Number of sampled points on the ellipse.

Value:
Coordinates of points sampled on the ellipse.

1 ELLI<-function(x,y,conf=0.95,np=50)
2 {centroid<-apply(cbind(x,y),2,mean)
3 ang <- seq(0,2*pi,length=np)
4 z<-cbind(cos(ang),sin(ang))
5 radiuscoef<-qnorm((1-conf)/2, lower.tail=F)
6 vcvxy<-var(cbind(x,y))
7 r<-cor(x,y)
8 M1<-matrix(c(1,1,-1,1),2,2)
9 M2<-matrix(c(var(x), var(y)),2,2)

10 M3<-matrix(c(1+r, 1-r),2,2, byrow=T)
11 ellpar<-M1*sqrt(M2*M3/2)
12 t(centroid + radiuscoef * ellpar %*% t(z))}

We plot confidence ellipses considering the factors sex and species in the crabs
morphological dataset.

>coul<-rep(c("grey40","black"),2)
>lwe<-c(2,2,1,1)
>plot(crabs$FL,crabs$RW,bg=c("grey50","white")[crabs$sex],
+ pch=c(21,22)[crabs$sp],cex=c(1.8,1)[crabs$sp])
>for (i in 1:4){a<-levels(crabs$sp:crabs$sex)[i]
+ lines(ELLI(crabs$FL[crabs$sp:crabs$sex==a],
+ crabs$RW[crabs$sp:crabs$sex==a]),col=coul[i],lwd=lwe[i])}

In Fig. 3.5, the species factor seems to be related to the overall size of the crabs since
both measurements seem slightly smaller in one species.

We see several features that are usually associated with morphometric measure-
ments in Fig. 3.5.

• Measurements are strongly related, and this is likely to be because of size varia-
tion; we have small and large individuals for each sample.

• Small individuals are more similar than large individuals. Differentiation accord-
ing to sex and species seems to occur because of growth.

• Some differences seem to be more related to the relationships between variables
rather than in the dispersion of the observations. Relationships between variables
are the expression of shape difference since they correspond to differences in
proportion or in proportional change during growth.

86 3 Traditional Statistics for Morphometrics

10 15 20

6
8

10
12

14
16

18
20

crabs$FL

cr
ab

s$
R

W

Fig. 3.5. 95% confidence ellipses for the crab measurements of the genus Leptograpsus ac-
cording to species and sex, with the same abbreviations as for Fig. 3.4. The different colors of
ellipses are for sexes, while the different line widths are for species

• If one estimates regression parameters using a linear model, one usually finds that
the intercept is significantly different from zero; this is because the relationships
between measurement variables are not constant or not the simple expression of
a linear expression during growth.

Continuing with the crabs dataset, we could be tempted in this case to use a
more complex model and mix categories (sex and/or species) and the relationship be-
tween measurements to examine shape and growth difference between species. This
could be resolved by analysis of covariance (ANCOVA), and could be easily com-
puted with the functions anova and and lm. Although categories are balanced in this
sample, the relationship between variables seems to be different between groups, and
in this latter case, we may not have equality between slopes of the different popu-
lations. The covariance model in this case is not appropriate since it violates mar-
ginality principles [77]. Instead of this, it is possible to compare equality between
regression lines.

The summary.lm function returns slope values and standard errors. We can
therefore apply a Student’s t-test for slope difference. This t-value is computed as
the difference between the two slopes divided by the square root of the sum of the
squared standard errors and can be expressed as

t =
β1 − β2

√

se2
β1

+ se2
β2

.

3.2 Bivariate Analyses 87

The test follows a t-distribution and has n1 + n2 − 4 degrees of freedom.
We will compare, for example, the regression slopes between sexes of the first

species of the crabs dataset.

Regression parameters and statistics for the first group.

>a<-summary(lm(crabs$RW[1:50]~crabs$FL[1:50]))$coefficients
>a

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.2490836 0.36496360 6.162488 1.415187e-07
crabs$FL[1:50] 0.6379812 0.02404744 26.530109 2.485878e-30

Regression parameters and statistics for the second group.

>b<-summary(lm(crabs$RW[51:100]~
+ crabs$FL[51:100]))$coefficients
>b

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.071914 0.3623808 0.1984 8.4353e-01
crabs$FL[51:100] 0.909275 0.0267982 33.9305 3.3365e-35

Computation of the t-value.

>tt<-(a[2,1]-b[2,1])/sqrt(a[2,2]^2+b[2,2]^2); tt
[1] -7.534725

Computation of the p-value in the case of a bilateral test.

>(1-pt(abs(-tt),(length(crabs$FL[1:100])-4)))*2
[1] 2.706035e-11

There is, however, a more sophisticated and elegant way to test differences be-
tween slopes and regression functions. Note that one can compare models giving
different linear models as arguments of the anova function. When several models
are entered as arguments in the anova function, the latter performs the general linear
test. If, instead of variances, models return likelihood or deviance, anova performs
an analysis of deviance between models. The anova function is thus interesting to
compare full and reduced models and to estimate whether the parameters added to
the reduced model significantly improve the explained part of variance. The general
linear test corresponds to an F -ratio between sums of squares of error-variance of
the full and the reduced model:

F =
SSerror − SSeffect

dferror − dfeffect
/
SSeffect

dfeffect
.

This value follows an F -distribution with (dferror − dfeffect), dfeffect degrees of free-
dom. In our example, sex and species are categorical factors; we can add them in
the model, and compare with simpler models to test their influence on morphology.
When several predictor variables are introduced in the model, we say that we perform
a multiple regression. We can remove predictor one by one from multiple to simple
regression models, and compare successive models to test the effect of predictor vari-
able on the variance. We can use a similar strategy to estimate whether sex or species

88 3 Traditional Statistics for Morphometrics

interact with regression parameters. If the interaction between the covariate and the
factor is negligible, it means that the slopes are similar between groups. In other
words, testing whether this interaction is negligible is similar to comparing models
with and without interaction. We will consider only the first species of crabs, and
determine whether sex influences morphology and interacts with growth.

>mod1<-lm(crabs$RW[1:100]~crabs$FL[1:100])
>mod2<-lm(crabs$RW[1:100]~crabs$FL[1:100]+
+ crabs$sex[1:100])
>fullmod<-lm(crabs$RW[1:100]~crabs$FL[1:100]*
+ crabs$sex[1:100])
>anova(fullmod,mod1)
Analysis of Variance Table

Model 1: crabs$RW[1:100]~crabs$FL[1:100] * crabs$sex[1:100]
Model 2: crabs$RW[1:100]~crabs$FL[1:100]
Res.Df RSS Df Sum of Sq F Pr(>F)

1 96 25.613
2 98 99.708 -2 -74.095 138.86 < 2.2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The regression functions differ between sexes.

>anova(fullmod,mod2)
Analysis of Variance Table

Model 1: crabs$RW[1:100]~crabs$FL[1:100] * crabs$sex[1:100]
Model 2: crabs$RW[1:100]~crabs$FL[1:100] + crabs$sex[1:100]
Res.Df RSS Df Sum of Sq F Pr(>F)

1 96 25.613
2 97 40.496 -1 -14.883 55.783 3.715e-11 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The slopes are different between both groups. Note that both tests yield very similar p-values.

Instead of confidence ellipses on scatterplots, one can estimate confidence inter-
val bands depending on the model fitted to the data. The ci.plot function of the
HH package plots them directly from the lm object. The predict function is a
generic function for predictions based on the results of various model-fitting func-
tions; it can estimate band interval as well. The matplot function is useful for
quickly plotting all the lines of the model since it plots the columns of one matrix
against those of another. Here we plot confidence intervals on both the prediction
and regression slopes.

>x <-crabs$FL[1:50]
>new<-data.frame(x=seq(max(crabs$FL[1:50]),
+ min(crabs$FL[1:50]), length=50))
>pred.int<- predict(lm(crabs$RW[1:50] ~ x), new,

3.2 Bivariate Analyses 89

+ interval="confidence")
>pred.fit<- predict(lm(crabs$RW[1:50] ~ x), new,
+ interval="prediction")
>plot(crabs$FL[1:50], crabs$RW[1:50],
+ pch=21,cex=1.8, bg="grey50",asp=1)
>matplot(new$x,cbind(pred.int),lty=c(1,2,2),type="l",
+ col=1,add=T)
>matplot(new$x,cbind(pred.p),lwd=c(1,2,2),lty=c(1,2,2),
+ col=c("black",rep("grey50",2)),type="l",add=T)

The default value for confidence interval level in predict.lm is 95%. We use the
argument “level” to modify this default value.

8 10 12 14 16 18 20

6
8

10
12

14
16

crabs$FL[1:50]

cr
ab

s$
R

W
[1

:5
0]

Fig. 3.6. Regression of the measurement ‘RW’ on ‘FL’ for the males of the blue species of
the crab Leptograpsus. 95% confidence band interval on the slope of the regression is printed
with black dashed lines, and confidence band interval on the prediction of the model is printed
with gray dashed lines, with the same abbreviations as for Fig. 3.4

3.2.4 A Short Excursion to Generalized Linear Models

R fits linear and nonlinear models, but can also fit generalized linear models with
the glm function and generalized estimating equations with functions of the gee
package. GEEs are an extension of GLMs that are appropriate when the data do not
consist of independent observations and/or when they consist of pseudoreplications.
GLMs are useful for some special morphometric applications and for logistic re-
gression, especially when one wants to explain a property by the morphology. This
will not be developed in detail here, but GLMs and related models can sometimes

90 3 Traditional Statistics for Morphometrics

deal with problems that cannot be solved with simple linear models. This is the case
when the response or the residuals are not normally distributed or lack homoscedas-
cicity. With GLMs, one can assume nonconstant variance for the response. For this,
the variance must be a function of the predictor variables through the mean re-
sponse. One important application of GLMs is in fitting logistic regression. In logistic
regression, the response takes two values, while the predictor variables can be of
different types.

We can simulate an example where two possible diets are predicted from the
mouth size of an hypothetical animal. The larger the mouth size, the higher the prob-
ability is that the animal is carnivorous, and the smaller the mouth size, the higher
is the probability that the animal is herbivorous. We assume that this probability in-
creases with mouth size. The problem is that this probability cannot exceed one, and
cannot be below zero. For a very large size, the probability of being carnivorous will
thus be nearly equal to one, and for a very small mouth size it will be nearly equal
to zero. Assume that for a mouth size smaller than five cm, the probability of eating
animal food is low and reaches 0.05, while the probability of predating only on an-
imals for a mouth larger than 10 cm in size is high and reaches 0.95. Between both
values the probability of being carnivorous varies linearly with mouth size. Code for
simulating the data is provided below.

We first simulate mouth size of a sample with 40 individuals having mouths ranging from 2 to
25 cm.

>msize<-runif(40, 2, 25)

We associate the probability of their diet according with their mouth size.

>prob<-numeric(40)
>for (i in 1:40){
+ if (msize[i] < 5) {prob[i]<-0.05}
+ else{if (msize[i] > 10) {prob[i]<-0.95}
+ else {prob[i]<-((msize[i]-5)/5)*0.95}}}

We simulate diet according to their mouth size with the rbinom random generator following
a binomial law of parameters (events, and probability).

>diet<-rbinom(40,1,prob)
>plot(msize, diet, xlab="Mouth size", ylab="Diet", axes=F)
>box(); axis(1)
>axis(2, at=c(0,1), labels=c("Herbivorous","Carnivorous"))

Once data are simulated, we have to fit a model to the observed data. For this, we
use the glm and predict.glm functions. The summary.glm function returns
some statistics on the parameters.

> summary(glm(diet~msize, family="binomial"))

Call:
glm(formula = diet ~ msize, family = "binomial")

Deviance Residuals:

3.2 Bivariate Analyses 91

Min 1Q Median 3Q Max
-1.52322 -0.14915 0.01390 0.11695 1.88194

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.3910 2.9872 -2.474 0.0134 *
msize 0.8335 0.3313 2.516 0.0119 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 50.446 on 39 degrees of freedom
Residual deviance: 13.261 on 38 degrees of freedom
AIC: 17.261

Number of Fisher Scoring iterations: 8

Draw the logistic regression line.

>z<-seq(min(msize),max(msize),length=50)
>pred<-predict(glm(diet~msize, family="binomial"),

data.frame(msize=z),type="response")
>lines(z,pred, type="l")

Here the family argument specifies a binomial response. It also states that the probability p
is linked linearly to the predictor variable by the link function log(p/(1 − p)).

Mouth size

D
ie

t

5 10 15 20 25H
er

bi
vo

ro
us

C
ar

ni
vo

ro
us

Fig. 3.7. Fitting a GLM to perform logistic regression

92 3 Traditional Statistics for Morphometrics

The link function is essential in GLMs and is the way to adapt the data so that
they can be fitted by a linear and simpler model. Families other than the logit one
exist for fitting GLMs (see the help file of the glm function). In addition to providing
basic statistics about model parameters (slope and intercept values are significant
in our example), summary.glm returns also two deviance values (null deviance
and residual deviance) and an AIC-value (Akaike Information Criterion), which is
not only a measure of goodness-of-fit of the statistical models, but also takes into
account the number of parameters included in the model. The deviance is equal to
−2 multiplied by the log of the likelihood of the model. The deviance is a variation of
the log-likelihood from the perfect model (a perfect model would assign a 0 or 100%
probability for each observation). The deviance of the perfect model is zero. The
variation in log-likelihood between the perfect model and the null model is the null
deviance. The variation in log-likelihood between the model and the perfect model
is the residual variance. The smaller it is, the better the fit is. By contrast with the
R2 value, the AIC is penalized by the number of parameters, therefore it increases
as we include more predictors. The AIC equals the residual deviance plus twice the
number of parameters of the model. The anova.glm function allows the effect of
the factors to be tested. The difference between the null deviance and the residual
deviance follows a Chi-square distribution.

>glm1<-predict(glm(diet~msize, family="binomial")
>anova(glm1, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: diet

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 39 40.032
msize 1 32.835 38 7.197 1.003e-08

We conclude from the analysis of the deviance table that the size effect is significantly related
to the diet.

Multinomial logistic regression can be performed with the multinomial func-
tion of the VGAM package, in which the user can find other general linear and gen-
eral additive models. We have applied GLMs in the case of logistic regression; but
you must keep in mind that GLMs can fit types of response other than binomial ones.

3.2.5 Interspecific Measurements and Phylogenetic Data

It is common in biology to study differences between species; this is the purpose of
comparative anatomy. When analyzing morphological data at the population level,

3.2 Bivariate Analyses 93

there is usually no major statistical problem because we consider that observa-
tions are independent. Statistical problems occur when we want to explain inter-
specific variation in relation to one or more explanatory variables. Indeed, one can
not consider data recorded on species as independent because of the evolutionary
relationships between species. Somehow, interspecific data contain a longitudinal
component. Felsenstein illustrated the problem well in 1985 [30]. Simply speaking,
species that share recent common ancestors will look more alike than species sharing
a more distant ancestor. An elephant will look more similar to a mammoth and a hu-
man more similar to a chimpanzee, while difference between members of each group
will be more spectacular. Consider the relationship between hindlimb and nose (or
proboscis) size in a sample mostly constituted of elephants and mammoths to which
you have added data from apes. It is likely that the covariation will be high, al-
though in fact there are no functional relationships between limb size and nose size.
The problem could be solved by taking into account the evolutionary relationship
between the species.

Several methods have been developed in the last 20 years to overcome these
problems: autocorrelation, contrast analysis, GLS, GEE, etc. Most of them have
been programmed for R in the ape package [83]; one can be find some other in the
PHYLOGR and ade4 packages. The relative functions are summarized in Table 3.5.

Table 3.5. Comparative methods in R

Method Authors Function Package

Phylogenetic independent contrasts [30] pic ape
Cheverud’s method [20] compar.cheverud ape
Lynch’s method [67] compar.lynch ape
Generalized estimating equations [82] compar.gee ape
Phylogenetic ANOVA [40, 26] variance.phylog ade4
GLS linear model [34] phylog.gls.fit PHYLOGR

A complete book has been devoted to the analysis of phylogenetic data with R [81];
application of comparative methods to biological measurements (morphological or
not) is provided as well.

Here I illustrate how to perform a contrast analysis between interspecific mea-
surements, and how to obtain ancestral character states. The method of phylogenet-
ically independent contrast was developed by Felsenstein in 1985. The idea was to
examine paired differences between direct descendants of every node of the phy-
logeny. Values at ancestral nodes are approximated using weighted means of de-
scendant taxa. When comparing several continuous characters, the contrasts are used
instead of the original variables, which avoids the inflation of degrees of freedom
introduced by the dependencies of data in the phylogeny. The data used here are
taken from Garland and Janis [35]. Data are log-transformed for improving normal-
ity and homoscadisticity. Note that this log transformation has a direct impact on the

94 3 Traditional Statistics for Morphometrics

estimation of ancestor morphologies or other phenotypic properties. We follow what
was done in the initial paper.

>library(ade4)
>library(ape)
>hl<-log(carniherbi49$tab2$hindlength)
>speed<-log(carniherbi49$tab2$runningspeed)
>cor.test(hl,speed)

Pearson’s product-moment correlation

data: hl and speed
t = 2.9593, df = 47, p-value = 0.004817
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1295547 0.6095775
sample estimates:

cor
0.3963135

There is a significant correlation between both variables when phylogeny is not taken into
account.

>tre1<-read.tree(text=carniherbi49$tre1)
>pic.hl<-pic(hl, tre1)
>pic.speed<-pic(speed, tre1)
>summary(lm(pic.hl~pic.speed-1))

Call:
lm(formula = pic.hl ~ pic.speed - 1)

Residuals:
Min 1Q Median 3Q Max

-0.16534 -0.02411 0.00868 0.07365 0.14900

Coefficients:
Estimate Std. Error t value Pr(>|t|)

pic.speed 0.1644 0.1602 1.027 0.31

Residual standard error: 0.0784 on 47 degrees of freedom
Multiple R-Squared: 0.02193, Adjusted R-squared: 0.001119
F-statistic: 1.054 on 1 and 47 DF, p-value: 0.3099

Note that the regression line passes through the origin for contrast data. This is reasonable and
to be expected since contrasts for the same species or very closely related species are expected
to be null.

This example shows that taking phylogeny into account yields different results
from analyses ignoring this kind of dependencies.

Since morphological characters are often only available from fossils, it is often
necessary to appraise ancestral morphologies. The ace function of ape estimates

3.2 Bivariate Analyses 95

ancestral character states. Here we investigate whether estimating ancestral character
states differs whether raw or log-transformed data are used.

> exp(ace(log(hl), tre1, method="pic")$ace[1:5])
50 51 52 53 54

63.31105 41.36165 34.37632 33.51877 70.78191
>ace(hl, tre1, method="pic")$ace[1:5]

50 51 52 53 54
71.35941 46.40598 39.39102 40.52667 71.21333

Whether the log-transformation or the measurement itself evolves according to
a given model has two different meanings in morphological evolution. Thus, one
must be careful when one uses the log-transformation before applying phylogenetic
correction.

3.2.6 Allometry and Isometry

The relationship between two measured variables is not always linear, and this is
especially true for biological measurements during growth. Most organisms exhibit
growth. Growth can be isomorphic (shape is constant during growth – variation be-
tween forms only concerns differences in size) or allometric (shape changes during
growth). If growth is allometric, growth gradients (or relative growth) are not equal
between organs or within a given organ. An organ that becomes longer relative to
its width during growth is said to exhibit an allometric pattern. One should not con-
fuse the concept of allometry with the study of growth curves and rates during on-
togeny, since here we are not determining the relationship between one measurement
and age.

Considering that the ratios of relative growth rates in organs to the relative growth
of the body remain constant, one can express the relationship between two distances
in an organism using the formula published by Huxley [47]

y = βxα ,

where x and y are two measurements, α is the constant differential growth ratio,
and β is a constant. This equation is also known as the Huxley allometry equa-
tion (although Huxley was speaking about “heterogeny” in his original publications
[46, 47]). Huxley and Teissier coined the term “allometry” later in 1936 in a joint
publication [36, 48]. α is also the differential rate of change in y according to x as
shown by the following equation:

α =
dy

y
/
dx

x
.

In taking logs of both sides of the equation, we obtain

log y = α log x + log β .

96 3 Traditional Statistics for Morphometrics

Note the recurrent use of logarithms in classic morphometrics. Note, however, that
it is important to understand whether the transformation is necessary. There is no
reason to transform the data if it is not justified. One can use logarithms for two
purposes:

1. Linearizing relationships between variables.
2. Altering the distribution of variables to obtain normally distributed observations

and residuals respecting homoscedascicity.

Before performing this transformation, one should examine the linear model con-
structed with raw data, and examine whether logarithms have resolved problems with
homoscedascicity and normality with residuals; if not, one should find one solution
in nonlinear models with the nls function for example. Finally, one should remem-
ber that one analyzes the relationships between logarithms and not those between
raw measurements.

It is possible by linear regression to determine whether both measurements are
linked by some allometric relationship. If the slope is 1 between both logs of mea-
surements, we can conclude that isometry is present. However, the concept of allom-
etry is obviously when one variable (size) is a predictor of one other (shape). The
statement of allometry or isometry implicitly requires a size standard to be defined
if one estimates these patterns by regression. The standard is usually one measured
distance that serves as size. When two measurements are available, the one that the
morphometrician considers as size or shape is arbitrary, and performing regression
is not necessarily straightforward. Residual variation in the regression model is only
variation in response, and it may be reasonable to think that this residual variation is
shared by both measurements. In this case, the axis passing through the bivariate scat-
terplot should reduce the net distances of observations to the fitted regression. One
can estimate this axis and rotate data accordingly using major axis or reduced major
axis methods. These methods are equivalent to principal component analysis for bi-
variate data, and the main axis parameters are calculated so that it passes through the
centroid of the bivariate scatters. While the major axis method works on raw data and
on the variance-covariance matrix, the reduced major axis method works on centered
and reduced variables and on the correlation matrix. The second method is recom-
mended when one scales measurements that have noncomparable units (e.g., weight
and metric measurements). Warton et al. [123] have recently reviewed bivariate line
fitting in the context of allometry. Table 3.6 summarizes estimates for the slope and
intercept in the ordinary regression, major axis, and reduced major axis methods.

Table 3.6. Estimation of the slope a and intercept b parameters in ordinary regression, major
axis, and reduced major axis methods

Parameter Regression Major Axis Reduced Major Axis

a
sxy

s2
x

s2
y−s2

x+
√

(s2
y+s2

x)2+4sxy

2sxy
sign(sxy)

sy

sx

b ȳ − ax̄ ȳ − ax̄ ȳ − ax̄

3.2 Bivariate Analyses 97

Warton et al. have also developed a full package (smatr) for estimating slopes
and intercepts according to the major axis and reduced major axis methods. The
major axis Method is preferred over regression because one can interpret the major
axis as a size axis. The line.cis function estimates the slopes and the intercepts
according to the reduced major axis, major axis, or ordinary least-squares methods.
One can apply different tests to each fit according to the method: testing whether the
slope is different from one (testing for isometry in the case of log-transformed data),
whether slopes are different between samples (differences in allometric patterns
between populations), whether there is a lateral shift between the major axes, or
whether there are different intercepts. Some of the functions are summarized be-
low in Table 3.7. Other functions of the package estimate common axes and provide

Table 3.7. Test for bivariate line-fitting methods

Test Function

Slope equals a given value slope.test
Are axes sharing a common slope slope.com
Shift along the major axis shift.com
Intercept equals a given value elev.test
Equal intercept among several lines elev.com

confidence intervals for fit parameters.
We reuse our crabs dataset with both sexes of the first species to make infer-

ences in their growth and shape changes.

>library(MASS); library(smatr)
>data(crabs)
>MRW<-crabs$RW[1:50]; FRW<-crabs$RW[51:100]
>MFL<-crabs$FL[1:50]; FFL<-crabs$FL[51:100]

Computation of major axis slopes and intercepts for males and females of the blue species.

>line.cis(log(FFL), log(FRW), method="MA")
coef(MA) lower limit upper limit

elevation 0.1309508 0.004097290 0.2578042
slope 0.9833790 0.933546783 1.0358243
>line.cis(log(MFL), log(MRW), method="MA")

coef(MA) lower limit upper limit
elevation -0.2550968 -0.4541924 -0.05600117
slope 1.1980736 1.1198780 1.28278668

Test for isometry

>unlist(slope.test(log(FFL), log(FRW), method="MA"))
r p test.value b

-0.09325563 0.51948183 1.00000000 0.98337900
ci1 ci2

98 3 Traditional Statistics for Morphometrics

0.93354678 1.03582432
>unlist(slope.test(log(MFL), log(MRW), method="MA"))

r p test.value b
6.139065e-01 2.124640e-06 1.000000e+00 1.198074e+00

ci1 ci2
1.119878e+00 1.282787e+00

Test whether there is a difference in allometric growth between sexes.

>unlist(slope.com(crabs$FL[1:100],crabs$RW[1:100],
+ groups=crabs$sex[1:100],method="MA"))

LR p b ci1
4.306581e+01 5.292922e-11 1.205568e+00 1.114607e+00

ci2 varb lambda bs1
1.346128e+00 1.155037e-03 1.000000e+00 1.079202e+00

bs2 bs3 bs4 bs5
1.017174e+00 1.145318e+00 1.536700e+00 1.425999e+00

bs6
1.659867e+00

The tests for isometry are based on the sample correlation between residuals and
fitted values. Here, they show that while females have a growth pattern not different
from isometry, males show a significant allometric growth pattern. The test for com-
mon slopes shows that growth gradients for both measurements are different between
males and females.

3.3 Size: A Problem of Definition

Until now, we have not tried to isolate the shape and size components from a collec-
tion of measurements. Morphometric analyses attempt to decompose the form of an
object into one size and several shape components when several measurements have
been collected. The form variation can correspond to the total amount of variation
in a collection of measurements. The choice of size is arbitrary, and the definition of
shape depends on that of size, as we will see. Since shape and size are more arbitrary
concepts, one must define them prior to any analysis aiming to quantify shape and
size variation.

Size is a linear measure of some kind that has a unit of length. When a single
measurement is available, one measures size variation. When more measurements
are available, the user should define a scalar for size. Indeed, things are not intuitive
when defining the size of a triangle by comparison to the size of a segment: Which
triangle side should be chosen for scaling the others? Should we use the square root
of the area? In the case of more complex shapes, the size reference becomes even
more difficult to define.

When more than two measurements are present, a combination all distance mea-
surement xi→p seems to be more objective for defining size than the selection of
a specific standard measurement for the size variable. Several options exist: among
them, the arithmetic and geometric means of measurements, and the square root of

3.3 Size: A Problem of Definition 99

the sum of squared measurements are the more common. The respective formulae
are supplied below:

1/p

p
∑

i=1

xi ;
p

∏

i=1

x
1/p
i ;

√
√
√
√

p
∑

i=1

x2
i .

The geometric mean has several advantages when one deals with growth features
and allometries (see [75]).

Defining the shape component of forms is not obvious. In the bivariate case, the
size and shape relationships are estimated using the proportion of one variable on
the other considered to be the size variable. Actually, this concept of size is close
to that of scale, and the concept of shape to a proportion or a ratio in this case. The
shape variation of a rectangle will correspond to the variation of the ratio between
width and length. Length becomes a scaling factor, and can be used for measuring
size, while shape variation depends on variation of the width to length ratio. Here,
since the definition of size is dependent on what you use as a scaling function (you
could have chosen some other scaling option, using for example the square root
of the product of length times width), the definition of shape becomes dependent
on your size definition. In scaling data with one of these size functions, we have
what Mosimann [75] calls a shape vector. The ratios or proportions have no physical
dimensions and are shape descriptors.

z =
1

g(x)
x ,

with X being the vector of distance measurements, Z the shape vector, and g(X) the
size function. Two individuals are said to have the same shape if they have the same
shape vector. Mosimann [75] introduced the important following lemma: “Given any
set of measurement vectors x, then any shape vector Zj(x) = zj is a function of any
other shape vector Zi(x) = zi, and in particular zj = Zj(zi) = zi/gj(zi) for all
values zi, zj , and for any choice i, j of shape vector.” Calculating Mosimann shape
vectors is easy with the apply function that iterates the same function to one margin
of a matrix, data.frame or array object. We will use the turtles dataset
of Jolicoeur and Mosimann as an example [50]. We can find this dataset in the Flury
package. As an example, we compute the size and shape ratios as in the following
code.

>library(Flury)
>data(turtles)
>geosize<-(apply(turtles[,2:4],1,prod))^(1/length
+ (turtles[1,2:4]))
>shaperatio<-as.matrix(turtles[,2:4]/geosize)
>pairs(log(shaperatio),pch=21,cex=1.5,
+ bg=c("black","white")[turtles[,1]])

For illustrating all kinds of bivariate relationships between shape ratios, we use
the pairs function (Fig. 3.8). In our example, we see that males differ from females
in being relatively higher, narrower and shorter.

100 3 Traditional Statistics for Morphometrics

Length

0.10 0.14 0.18

0.
36

0.
40

0.
44

0.
10

0.
16 Width

0.36 0.40 0.44 −0.62 −0.56 −0.50

−
0.

62
−

0.
56

−
0.

50

Height

Fig. 3.8. Log-shape ratios applied to the turtles dataset. Males correspond to black rounds,
while females correspond to circles

One can log-transform the shape ratios, and compare them with log-sizes to
check for allometric or isometric variation. The analysis of variance of size varia-
tion explained by log-shape variables in a multivariate regression provides a test for
isometry.

>anova(lm(I(log(geosize[1:24,]))~I(log(shaperatio[1:24,]))))
Analysis of Variance Table

Response: I(log(geosize[1:24]))
Df Sum Sq Mean Sq

I(log(shaperatio[1:24,])) 2 0.093277 0.046639
Residuals 21 0.082110 0.003910

F value Pr(>F)
I(log(shaperatio[1:24,])) 11.928 0.0003461 ***
Residuals

The I function allows a variable to be directly transformed in a formula. The relationship
between variables is not purely isometric, as demonstrated by the significant F -value.

The lmosi and iso.lsr functions of the Rmorph package compute logshape
ratios and test for isometry respectively. One can determine the significance of al-
lometric relationships by fitting shape ratios on size. Actually most work that has

3.3 Size: A Problem of Definition 101

been done in multivariate statistics for “dividing” the form into size and shape is a
matter of describing proportional relationships since size is expected to be scalar.
The approaches presented in this chapter are those that are “thought of as working
on static mode” while modern morphometrics uses “a dynamic situation by means
of oriented procedure,” quoting Reyment [91]. Actually, Reyment [91] notices that
both approaches are not exclusive.

Methods exist for extracting shape components other than scaling data by size. In
addition, ratios are not exempt from problems. The advantages of ratios are that their
computation is simple and that one can easily interpret them in geometric terms of
shape variation. However, several papers have pointed out that working with ratios
introduces spurious correlations between variables (see [2, 3] and related papers in
the same issue of Systematic Zoology). The increase of correlation comes because
data become dependent after being standardized. Scaling affects the geometry of
the shape space, so that it becomes non-Euclidean. Although it removes the size
parameter, using ratios increases the correlation between data.

A second way to conceptualize shape and size is to consider shape as the re-
maining variation once variation explained by size has been filtered. In this second
case, size becomes the predictor and shape is contained in the residual variation.
One can filter size out of the variation with regression (look at Atchley et al. [2] and
Rohlf [103]). Considering size as a linear function of the measurements, one can
theoretically remove its effect by multivariate regression. Shape will correspond to
the residual variance. The summary.aov and anova.lm functions applied on the
regression model return multiple and multivariate tests of variance for estimating the
effect of size on form variation respectively. This approach has the disadvantage of
being more difficult than the former one for understanding variation in geometric
terms. Integrating several populations in the regression model is more complex and
has to take into account a group factor (see Section 3.2.3).

>regmod<-lm(as.matrix(turtles[1:24,2:4])~geosize[1:24])
>pairs(regmod$residuals,labels=(c("res.length","res.width",
+ "res.height")), pch=21, bg="black", cex=1.5)

In filtering size by regression, one obtains a new combination of variables on
which one can appraise the variation explained by the scalar size. Actually, this vari-
ation is isometric and also allometric variation because we authorized the intercept
to be estimated by the model. A solution is to force the model to pass through the
intercept.

>regmod1<-lm(as.matrix(turtles[1:24,2:4])~geosize[1:24]-1)
>pairs(regmod$residuals,labels=(c("res.length","res.width",
+ "res.height")))

We compute the percentage of variance explained by size.

>sum(diag(var(regmod$fitted.values)))/sum(diag(
+ var(as.matrix(turtles[1:24,2:4]))))
[1] 0.9683624
>sum(diag(var(regmod1$fitted.values)))/sum(diag(

102 3 Traditional Statistics for Morphometrics

+ var(as.matrix(turtles[1:24,2:4]))))
[1] 0.8453677

More than 96% of the morphological variation is explained by size alone in the first model,
while only 84.5% is explained in the second. The first regmod model reallocates some allo-
metric variation into the variation explained by size.

When analyzing to measurements and one size scalar, one can expect that allo-
metric relationships exist somewhere when a covariance persists between the resid-
uals of each measurement regressed on size. This allometric part is not caused by
the general growth trend contained in the data, and will remain “invisible” since the
size variation has been removed. Fig. 3.9 illustrates the residual variation of the first
model. In this figure, we can observe that residual variation in height and width co-
vary in opposite directions. Although this relationship occurs not only because of
overall size variation, it means that there is a trend in turtle carapace variation (flatter
and higher shell) that may be related to some allometric relationship: in becoming
wider, turtles become flatter.

res.length

−3 −1 1 2 3

−
2

0
2

4

−
3

−
1

1
3

res.width

−2 0 2 4 −1.0 0.0 1.0

−
1.

0
0.

0
1.

0

res.height

Fig. 3.9. Filtering size by regression with the turtles dataset (males only)

We expect that one dimension is lost because of regression. Examining eigen-
values of the variance-covariance matrix of residual variation of the first model tells
us what happens to the dimensionality of the new dataset. The function decomposes
svd a variance-covariance matrix and yields singular values.

3.3 Size: A Problem of Definition 103

>svd(var(regmod$residuals))$d
[1] 5.985543e-04 3.663968e-04 3.366490e-21

The last singular value is actually equal to zero (at tolerance approximation of
the function svd). This is not the case in the second model. This is because of the
degeneracy of regression.

svd(var(regmod1$residuals))$d
[1] 7.579346e-01 2.420254e-01 3.999751e-05

Working on log-transformed data allows possible allometric relationships to be
identified. In this case, the expectation for an isometric dataset will be equal slope
for every variable. A possible statistic for isometry would correspond to the angle
formed between the vector of slopes with a vector of similar size of all elements
equal to a given constant. The can be passed to a coli function that checks for
collinearity between two vectors. The function evaluates the angle between two vec-
tors (ev1 and ev2) and compares it with the distribution of angles obtained from
random vectors of similar size. We can use the property of the scalar product in this
function to compute the angle between vectors. The user can interact with this func-
tion by changing the number of permutations, and by telling whether the distribution
graph should be displayed.

Function 3.2. coli

Arguments:
ev1: Numeric vector.
ev2: Numeric vector of same length as ev1.
nperm: Number of permutations.
graph: Logical indicating whether a graph should be returned.

Values:
z.stat: Cosine of the angle between the two vectors.
p: p-value.
angle: Angle between the two vectors in radians

1 coli<-function(ev1, ev2, nperm=1000, graph=T)
2 {dist<-numeric(nperm)
3 n<-length(ev1)
4 Angle<-function(v1, v2)
5 {sum(v1*v2)/(sqrt(sum(v1^2))*sqrt(sum(v2^2)))}

The internal Angle function computes the cosine between the ev1 and ev2 vectors. Then
the function store the random cosine obtained for nperm permutations.

6 for (i in 1:nperm)
7 {X1<-runif(n, -1, 1); X2<-runif(n, -1, 1)
8 dist[i]<-angle(X1, X2)}

104 3 Traditional Statistics for Morphometrics

Compare the observed value with the null distribution.

9 zobs<-Angle(ev1, ev2)
10 pv<-length(dist[dist>zobs])/nperm

Produce a graph if the user asks for one.

11 if (graph)
12 {hist(dist,breaks=50,
13 main="Distribution of the cosine of the angle between 2
14 random vectors", xlab="Z statistic",ylab="# of vect.
15 éalaloire", sub=paste("Actual z-obs =",round(zobs,5),":
16 p<",round((1-abs(0.5-pv)),5)))
17 abline(v=zobs)}
18 list(z.stat=zobs,p=1-(abs(0.5-pv))*2, angle=acos(zobs))}

Here we check for isometry in one sex of our turtle example. For this task, we
test whether the angle between the vector containing the slope parameters of one sex
of turtles and a vector of one is sufficiently small compared angled obtained from a
random distribution of vectors.

>regmod<-lm(as.matrix(log(turtles[1:24,2:4]))~
+ log(geosize[1:24]))
>regmod$coefficients[2,]

Length Width Height
1.1912115 0.8935417 0.9152468
>unlist(coli(regmod$coefficients[2,],
+ rep(1,dim(regmod$coefficient)[2])))

z.stat p angle
0.9909448 0.0160000 0.1346768

The two vectors are significantly different and we conclude that there are non-
isometric relationships within the set of measurements. Note that the residual varia-
tion of regressed log-measurement variables corresponds to variation that cannot be
explained by growth.

Jolicoeur [51] used regression for this purpose; there are, however, some prob-
lematic issues to this because residuals record measurement error as well [15, 103].
Since regression is degenerate, it is usually preferable to use major axis or the first
principal component to approximate size.

By analogy with major axis methods for fitting regression, a third method con-
sists of considering the first principal component (see the following chapter) of vari-
ation as a size-axis. This method has been explained in detail by Jolicoeur in several
papers [49, 50]. As for the regression method, one should be careful when several
groups are present in the analysis since the size estimate is not necessarily the same
combination of initial variables. To examine differences between groups, it is possi-
ble to project the original data of one of the groups on the principal axes of the second
group as in the original paper of Jolicoeur and Mosimann [50]. It is presented in the
following Section dealing with multivariate morphometrics.

3.4 Multivariate Morphometrics 105

3.4 Multivariate Morphometrics

The description of geometric properties of objects usually requires more than two
variables and, hence multivariate analysis. It is possible to produce scatterplots for
three variables using some graphical way visualize volumes. An alternative possibil-
ity consists of using a triangle-plot visualization.

3.4.1 Visualization of More than Two Distance Measurements

One can simultaneously visualize every bivariate relationship between variables with
the pairs function. Even if this tool is convenient for visualizing every relationship,
it is not an easy way to examine the distribution of variables in the space they define;
especially when there are more than than 10 variables, which is usual in multivariate
morphometric analysis.

We have already seen functions and packages for representing data in a trivari-
ate space. The scatterplot3d, persp, and rgl plotting functions are diverse
alternatives for representing data in three dimensions.

One can produce triangle-plots using the triangle.plot function of the
ade4 package (Fig. 3.10).

>data(iris)
>library(ade4)
>tp<-triangle.plot(iris[,c(1,2,4)],cpoint=0,show.position=F)
>points(tp, pch=c(1,2,8)[iris[,5]])

0.5 0.3

Sepal.Length

0.8
0.2 Sepal.Width 0.5

0

Petal.Width

Fig. 3.10. Triangular plot for trivariate observations

106 3 Traditional Statistics for Morphometrics

This representation is not a direct representation of raw data, because it arranges data
so that the three variables present in one observation sum up to one. However, it can
be convenient if we consider the sum of variables to be a proxy for size. In this case,
this representation shows shape variation in the data.

When more than three variables are present, it becomes impossible to easily visu-
alize the space described by the variables in a simple graph. If one examines bivariate
plots between possible variables in a population sample, one usually notices that vari-
ables form both oblique and elongated scatters, and that most relationships between
pairs of variables behave similarly. It is thus trivial to understand that in a trivari-
ate space, one will produce an elongated ellipsoid. One can examine directions of
maximum variation along the axis as an exploration of possible causes for relation-
ships between variables. In morphometry, these causes are likely to have a geometric
interpretation, and the first principal axis reflects that all distance variables are pro-
portional to each other. This axis is thus interpreted as a size-axis.

3.4.2 Principal Component Analysis

The principal component analysis (PCA) involves nothing more than moving the
variable space and examining axes that reflect maximum of variation and covari-
ation. PCA transforms the data to a new coordinate system such that the greatest
variance of the data lies on the first transformed new variable (called the first prin-
cipal component), the second greatest variance on the second transformed variable,
and so on. The orthogonal axes of the PCA summarize variation decreasing in order
and individuals observation are projected along axes. The score of a given observa-
tion on a given axis corresponds to the projection of the data on that axis. Examining
variation on the first axes provides a way to reduce the variable space to dimensions
that express most variation. Actually, each axis corresponds to a linear combination
of original variables. The first corresponds to the main direction of the variance-
covariance structure of individual observations.

The score of individuals (y11→n) on the first axis corresponds to the linear com-
bination of variables x1, x2, x3, . . . xp with coefficients u1, u2, u3, . . . up so that

y11→n = u11x1 + u12x2 + . . . + u1pxp = U′
1x .

The variance of the scores σ2
y1

is maximized and equal to λ1. U1 is the first eigen-
vector, λ1 is called the first eigenvalue and is estimated from the sample dispersion
matrix (S) and U1. λ1 is defined by the relationship

λ1 = U′
1SU1 .

To find the solution, one solves the equation

(S − λ1I)U1 = 0 ,

I being the identity matrix. We generalize to obtain the whole set of eigenvectors U
and eigenvalues D. We will note D as the diagonal matrix of eigenvalues. We have

3.4 Multivariate Morphometrics 107

SU = UD , with UU′ = I .

It follows that S = UDU′.
R makes this calculation using the eigen function in the base package. In-

terpreting the signs and magnitude of the relative contribution of each variable on
eigenvectors is equivalent to understanding the shape and size variation along each
axis. Imagine a series of body measurements and one measurement of eye size. If an
axis shows that all body measurements have a positive contribution while eye size
has a negative contribution, the interpretation is that variation along the axis corre-
sponds to the variation between two extremes: large individuals with small eyes and
small individuals with large eyes.

The spectral decomposition has some interesting properties. Notice that the sum
of eigenvalues equals the sum of variances of each original variable. The relative
contribution of a given principal axis for explaining the overall variation corresponds
then to the ratio between its corresponding eigenvalue and the sum of eigenvalues.

Usually only a few components are necessary for describing most of the varia-
tion. How to choose the optimal number of components is a rather subjective matter.
For example, the analyst may select the first n principal axes so that they summarize
more than 99% of the overall variance. Some other criteria have been published [52],
but there is no true rule to follow.

Although PCA is nothing else than changing the coordinate system and manipu-
lating matrices, several packages are available to perform PCA. The reader can find
much of the theory, many applications, and further developments in Jolliffe [52].
The prcomp and princomp functions perform PCAs. These functions differ in
the way that they work on variance-covariance matrices or correlation matrices. The
first performs a singular-value decomposition, while the second one performs a spec-
tral decomposition.

Since in morphometrics, we perform the analysis for data that are all expressed
in the same unit, there is no reason to scale the data.

>library(Flury)
>data(turtles)
>prcomp(turtles[1:24,2:4])
Standard deviations:
[1] 13.974070 1.920563 1.050634

Rotation:
PC1 PC2 PC3

Length 0.8401219 -0.48810477 -0.23653541
Width 0.4919082 0.86938426 -0.04687583
Height 0.2285205 -0.07697229 0.97049145
>prcomp(turtles[1:24,2:4])$x

PC1 PC2 PC3
1 -24.9951007 -2.19437639 1.8904369
2 -22.6443870 0.94900046 -0.4745848
3 -19.9803270 1.71155944 -1.0414072
4 -12.8980031 2.44068345 1.4703782

108 3 Traditional Statistics for Morphometrics

5 -11.7944935 2.89893523 0.2164755
...

The prcomp function returns the standard deviation of each principal component.
Squared standard deviations are equal to singular values. The Rotation value con-
tains the contribution of the original variables on principal components. Note that
each column of this matrix corresponds to a vector of unit size. For projecting the
observations on eigenvectors, the original data are matrix post-multiplied by the ro-
tation matrix, or are more simply extracted using the x item (of the matrix class)
of the prcomp object. By analyzing contributions, one can interpret the meaning
of each principal component. The first PC is positively related to all measurements;
it corresponds, in addition, to the major axis of variation and can be interpreted as
a size axis. The second PC contrasts width, and both length and height, and thus
corresponds to the relative width of the turtle carapace; the last corresponds to the
relative height and opposes high and low carapaces for individuals of similar size.
The summary.prcomp function returns the percent of variation explained by each
principal component.

>summary(prcomp(turtles[1:24,2:4]))
Importance of components:

PC1 PC2 PC3
Standard deviation 13.974 1.9206 1.05063
Proportion of Variance 0.976 0.0184 0.00552
Cumulative Proportion 0.976 0.9945 1.00000

The first axis represents 97.6% of the total variation, which is slightly more than
when we used the regression model for filtering size (even when ignoring the inter-
cept). This is normal, since like the major axis method, the PCA finds the fit that
minimizes net distance to the axes. We have seen earlier that we can interpret the
first component as a size axis. In contrast, further axes correspond to shape axes. By
using the principal component approach to decompose morphological variation, the
size axis becomes a function of the original variables.

The biplot function is convenient for producing a biplot graph where both
observations and variables are projected in the same graph, making the interpretation
easier (Fig. 3.11). biplot summarizes the results of the previous analysis for two
PCs (in the example below: the first two PCs of the turtles dataset). The left and
bottom axes use the unit for observations, while the top and right axes are graduated
according to the contributions of original variables.

>biplot(prcomp(turtles[1:24,2:4]),xlim=c(-0.4,0.5),col=1)

Although the first axis represents a size-axis when one works on raw measure-
ments, we know that growth in organisms is not always isometric. The relation-
ships between measurement distances follow the allometry equation of Huxley (see
Section 3.2.6). Transforming raw data into their logarithms allows allometry to be
recorded by the first PC. The first component of a PCA of logged variables corre-
sponds to a growth-axis, recording both isometric and allometric variations. The two

3.4 Multivariate Morphometrics 109

−0.4 −0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2
0.

4

PC1

P
C

2

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

−60 −40 −20 0 20 40 60

−
40

−
20

0
20

40
60

Length

Width

Height

Fig. 3.11. Biplot graph for the PCA applied to the measurements of the males from the
turtles dataset

remaining components correspond to variation not explained by isometry or allom-
etry. In other words, they correspond to variation not explained by general growth.
One can estimate whether growth follows an isometric model by comparing the first
axis with an hypothetical isometric axis as demonstrated in Jolicoeur [49]. Jolicoeur
suggests using a Chi-square test on the value

(n − 1)(λ1V1S−1V ′
1 +

1
λ1

V1SV ′
1 − 2) ,

with n being the number of observations, V1, the theoretical eigenvector under the
hypothesis of isometry (i.e., all components equal to

√
1
p), with λ1 being the first

eigenvalue (variance on the first PC), S the variance-covariance matrix, and p being
the number of log-transformed variables. The isojoli function performs this new
multivariate test for isometry on a matrix of measurements.

110 3 Traditional Statistics for Morphometrics

Function 3.3. isojoli

Argument:
mat: Matrix of n observations and p variables.

Values:
Chisp: Observed statistic for testing isometry.
p: p-value.

1 isojoli<-function(mat)
2 {n<-dim(mat)[1]; p<-dim(mat)[2]
3 S<-var(log(mat))
4 V1<-rep(sqrt(1/p),p)

Compute the first singular value.

5 L1<-svd(S)$d[1]
6 chiobs<-(n-1)*(L1*t(V1)%*%ginv(S)%*%V1+(1/L1)
7 + *t(V1)%*%S%*%V1-2)
8 unlist(list(Chisq=chiobs, p=pchisq(chiobs,p-1,
9 + lower.tail=F)))}

This new function is applied on the turtles dataset to discover whether growth
is iso- or allometric.

>isojoli(turtles[1:24,2:4]
Chisq p

2.662345e+01 1.654976e-06

The test tells that variation because of size is not fully isometric.

To test for allometry, one can alternatively compute the angle between the the-
oretical axis of isometry and that of allometry, and compare this angle with a null
distribution of angles obtained from random vectors.

>unlist(coli(prcomp(log(turtles[1:24,2:4]))[[2]][,1],
+ rep(sqrt(1/3),3)))
z.stat p angle
0.9906529 0.0180000 0.1368338

Understanding shape differences between groups is fundamental in morphomet-
rics. In our dataset, we wish to evaluate whether sex dimorphism is present. For a
given population, the first principal axis represents the size variable. However, one
cannot a priori think that males and females have a similar first PC. One can nonethe-
less project the whole data on the PCs defined by one group as in Jolicoeur [49],
and examine the distribution of observations on the second and third axes of shape
(Fig. 3.12).

>pca<-prcomp(turtles[1:24,2:4])
>proj<-turtles[,2:4]%*%pca[[2]]
>plot(proj[,2:3], xlab="PC2", ylab="PC3",pch=21,

3.4 Multivariate Morphometrics 111

> bg=c("black","white")[turtles[,1]],asp=1)
>lines(ELLI(proj[1:24,2], proj[1:24,3]))
>lines(ELLI(proj[25:48,2], proj[25:48,3]))

12 14 16 18 20 22 24 26

6
8

10
12

14
16

18

PC2

P
C

3

Fig. 3.12. Projection of the male and female observation on the second and third principal axes
defined by variation of male turtles

In our example, males and females differentiate on the third axis, which is related
to relative height variation (Fig. 3.12). We can interpret the PCA in terms of shape
difference between sexes. However, PCA is not the preferred way to explore shape
differences.

3.4.3 Analyzing Several Groups with Several Variables

Two questions can be addressed when several variables are measured on several
groups.

• What are the differences between groups? If one can characterize differences
between groups, it means that one has some reference for identifying unknown
observations as belonging to one or the other group. Characterizing differences
between groups is the goal of discriminant analysis.

• Are groups significantly different? This is the goal of multivariate analysis of
variance.

For addressing both questions, the total variation T has to be decomposed in a
between-group variation B and in a within-group variation W. Let’s say that we

112 3 Traditional Statistics for Morphometrics

have b groups, each containing n1→b observations, and that each observation is de-
picted by p variables. X is The total matrix of observations and contains

∑
ni = n

observations. The total sum of squares and cross-products is calculated as

T = (X − X̄)′(X − X̄) ,

where X̄ is the matrix of n rows with p columns with values equal to the mean
of corresponding columns of X. This total sum of squares and cross-products has
(
∑

ni) − 1 degrees of freedom and can be partitioned into a within-group and
between-group sums of squares.

The within-group sum of squares and cross-products corresponds to the sum
of within-group sum of squares which has (

∑
ni) − b degrees of freedom. It is

obtained as

W =
b∑

1

Wi .

The between-group sum of squares and cross-products is calculated from differ-
ences between total and within-group variation.

B = T − W ;

B has b−1 degrees of freedom. Discriminant analysis and MANOVA work basically
with B and W.

Linear Discriminant Analysis

Discriminant analysis finds linear combinations of variables that describe intergroup
differences. These combinations define linear discriminant functions. The linear dis-
criminant coefficients are defined from the non-null eigenvectors of the between-
group variance-covariance “scaled” by the within-group variance-covariance.

The variance-covariance matrix is first computed VB = B/(b − 1) and VW =
W/(n − b). Then VB is premultiplied by the inverse of VW to obtain the VB/W

matrix, such that
VB/W = V−1

W VB .

The VB/W matrix has k = b − 1 non-null eigenvalues. The corresponding eigen-
vectors Uk are conserved to calculate scaled eigenvectors C. These correspond to
the linear discriminant coefficients an are obtained such as

C = U(U′VWU)−0.5 .

The original data are projected onto the functions defined by the standardized
linear discriminant coefficients to obtain individual scores.

The lda function of the MASS package performs all these operations. We use
the raw data of Anderson iris dataset to check it. The first argument is the matrix
of observations, the second is the grouping factor.

3.4 Multivariate Morphometrics 113

>library(MASS); data(iris)
>miris<-as.matrix(iris[,1:4])
>lda(miris,as.factor(iris[,5]))
Call:
lda(miris, as.factor(iris[, 5]))

Prior probabilities of groups:
setosa versicolor virginica

0.3333333 0.3333333 0.3333333

Group means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

Coefficients of linear discriminants:
LD1 LD2

Sepal.Length 0.8293776 0.02410215
Sepal.Width 1.5344731 2.16452123
Petal.Length -2.2012117 -0.93192121
Petal.Width -2.8104603 2.83918785

Proportion of trace:
LD1 LD2

0.9912 0.0088

The function returns the group mean, the probability for each observation to belong
to a given group, the group means, the coefficients of the linear discriminant, and
the proportion of the trace explained by the discriminant functions (here two, since
we have three groups). The first discriminant function explains most of the between-
group variation. It opposes flowers with small petals and large sepals with flowers
with large petals and small sepals.

The plot.lda function projects the observations on linear discriminant and
displays a plot. One can alternatively calculate the projection by post-multiplying
the observations by the coefficients of the linear discriminant functions. The discrim-
inant analysis has been performed on the whole morphology, taking into account size
and shape, but it can be applied to shape variables or log-shape ratios as well to in-
vestigate shape differences. We compare both analyses. Both plots are illustrated in
Fig. 3.13.

>size<-apply(miris,1,prod)^(1/(dim(miris)[2]))
>shapeiris<-miris/size
>formlda<-lda(miris, as.factor(iris[,5]))
>shapelda<-lda(shapeiris, as.factor(iris[,5]))
>proj1<-miris%*%formlda$scaling
>proj2<-shapeiris%*%shapelda$scaling
>layout(matrix(c(1,2),1,2))

114 3 Traditional Statistics for Morphometrics

>plot(proj1,pch=(1:3)[as.factor(iris[,5])],asp=1,
+ cex=0.6,xlab="FD1",ylab="FD2",main="Form FDA")
>plot(proj2,pch=(1:3)[as.factor(iris[,5])],asp=1,
+ cex=0.6,xlab="FD1",ylab="FD2",main="Shape FDA")

−10 −5 0 5

0
5

10

Form FDA

FD1

F
D

2

−25 −15
−

35
−

25

Shape FDA

FD1

F
D

2

Fig. 3.13. Plot of linear discriminant analyses applied to the iris dataset considering form
and shape variables respectively. The three species are represented by different symbols (Iris
setosa: circles, Iris virginica: crosses, Iris versicolor: triangles)

The first linear discriminant scores returned by both analyses show that there is an
important differentiation between I. setosa and both I. virginica and I. versicolor.
The second axis shows a slight differentiation between virginica and the two other
species. There is, however, considerable overlap on the second axis (Fig. 3.13).

An important quantity related to discriminant analysis is the Mahalanobis dis-
tance dm. It is calculated from group means and from a variance-covariance ma-
trix. This distance is a measure of distance between group means and is scaled by
the pooled within-group covariance VW . This measure is meaningful, if the within-
group variance-covariance matrices are similar enough between groups to be pooled
(if not, things become much more difficult to estimate in practice, but solutions are
available such as the quadratic discriminant analysis that is computed with the qda
function of the MASS package). Given two mean vectors X̄i and X̄j defining the
centroid of two groups, the Mahalanobis distance dm between these groups is given
by the relationship

dm =
√

(X̄i − X̄j)′VW
−1(X̄i − X̄j) ,

where dm is the distance separating groups according to the discriminant axes. We
check this with a few lines of code:

First, compute distances between mean groups in the space defined by discriminant functions.

3.4 Multivariate Morphometrics 115

>meangroup<-formlda$mean
>meanproj<-meangroup%*%formula$scaling
>dist(meanproj)

setosa versicolor
versicolor 9.479672
virginica 13.393458 4.147417

Compute the Mahalanobis distance between the first two groups “by hand.”

>W<-var(miris[1:50,])*49+var(miris[51:100,])*49+
+ var(miris[101:150,])*49
>VCVw<-W/(150-3)
>sqrt(diff(meangroup[1:2,])%*%solve(VCVw)
+ %*%t(diff(meangroup[1:2,])))

versicolor
versicolor 9.479672

Or, for simplicity, use the predict function.

>dist(predict(formlda, meangroup)$x)
setosa versicolor

versicolor 9.479672
virginica 13.393458 4.147417

Since dm is a measure of distance between groups, taking into account within-
group variation, it is a very useful quantity for multivariate statistics. Consider the
problem of deciding whether an observation belongs to one group. One needs not
only to define the distance of the point to the centroid of the group, but also to know
the variation in the scatter of points. The closer the point is to the centroid of the
group, the more difficult it is to distinguish it from any other point of the group.
Although one can assume that variation around the centroid is multinormal, it may
not be equal in all directions. To resolve this problem, one must consider the matrix of
intragroup variance-covariance that measures variation in all directions. For a unique
observation, one can understand the Mahalanobis distance as the distance of the point
from the center of the group divided by the width of the ellipsoid in the direction
of the tested point. This distance measures the distance between a point and the
group mean, taking into account the within-group covariance-variance matrix (VW),
such as

dm(Xi) =
√

(Xi − X̄)′V−1
W (Xi − X̄) .

This equation corresponds to the generalization of the Mahalanobis distance defined
from two groups to the Mahalanobis distance between a group mean and a given
observation. It can be used for predicting the probability that any observation belongs
to a given group. The predict function is useful for allocating an observation to
a given group. Indeed, it returns the probability of one observation belonging to
any given group. Given any new observation, the discriminant analysis provides a
diagnostic tool whose accuracy depends on sampling effort.

>model<-lda(iris[1:148,1:4],as.factor(iris[1:148,5]))

116 3 Traditional Statistics for Morphometrics

>predict(model, iris[149:150,1:4])
$class
[1] virginica virginica
Levels: setosa versicolor virginica

$posterior
setosa versicolor virginica

149 3.525273e-40 1.546625e-05 0.9999845
150 6.312764e-33 2.167781e-02 0.9783222

$x
LD1 LD2

149 -5.918934 2.3626043
150 -4.715782 0.3282361

The model has allocated the two unknown observations to the species virginica; this
is reliable. The function returns the posterior probabilities of these observations as a
member of one of the three groups, and returns their position (scores) in the discrimi-
nant space. If allocation of observations is always exact, one can infer that differences
between groups are significant.

MANOVA

Multivariate analysis of variance tests whether groups are similar. It is based on a
multivariate extension of the F -test. The Mahalanobis distance is very close to the
Hotelling t2 statistic which corresponds to a multivariate generalization of the Stu-
dent test for hypothesis testing. This generalization also holds for testing any given
multivariate linear model. The Hotelling t2 statistic is obtained such that

t2 = ni(X̄i − X̄)′VWi

−1(X̄i − X̄) ,

ni being the number of observation in the sample, X̄i being a sample mean, X̄ the
population mean, and VWi

the sample variance-covariance matrix.
t2 follows a distribution T 2 (Hotelling T-square distribution) of parameters, p

(number of variables) and ni (number of individuals in the sample). If Xi is a random
multivariate observation of p elements following a multivariate Gaussian distribution
of parameters ∼ Np(X̄,V), and VWi

∼ VWp
(m,V) follows a Wishart distribution

with the same variance-covariance V then

m − p + 1
pm

T 2 ∼ Fp,m−p+1 .

This property allows hypothesis testing. The Hotelling’s two-sample t2-statistic is
calculated as

t2 =
n1n2

n1 + n2
(X̄1 − X̄2)′VW

−1(X̄1 − X̄2) ∼ T 2(p, n1 + n2 − 2) ,

and can be related to the F -distribution by the equation

3.4 Multivariate Morphometrics 117

n1 + n2 − p − 1
(n1 + n2 − 2)p

t2 ∼ F (p, n1 + n2 − 1 − p) ,

X̄1 and X̄2 are the multivariate group means, and VW is the intragroup pooled
variance-covariance matrix. In the two-group case, VW is obtained as follows

VW =
∑n1

i=1(X1i − X̄1)(X1i − X̄1)′ +
∑n2

i=1(X2i − X̄2)(X2i − X̄2)′

n1 + n2 − 2
.

The Hotelling-Lawley trace T 2
HL is an extension of the Hotelling two-sample t2-

statistics for comparing multivariate variances. One can use it in multivariate analysis
of variance. It is given by

t2HL = trace(BW−1) ,

where B is the effect sum of squares and cross-products, and W is the error sum
of squares and cross-products. One can approximate the Hotelling trace T 2

HL by the
F -distribution. The approximation is different whether the number of dimensions is
smaller or greater than the number of degrees of freedom for the error term. For the
following, N is the total number of observations, k is the degrees of freedom for
the effect term (factor levels - 1), w = n − k − 1 is the degrees of freedom of the
error term, and p is the number of variables (or space dimensions). To calculate the
F -approximation, first define m = w−p−1

2 . Then, the approximation is given by
the relationship

2(sm + 1)
s2(2t + s + 1)

T 2
HL ∼ F (s(2t + s + 1), 2(sm + 1)) ,

with
s = min(p, k) ,

and

t =
|p − k| − 1

2
.

If m > 0, Mckeon [73] gives an alternative approximation:

4 + pk+2
b−1

pk

T 2
HL

c
∼ F (pk, 4 +

pk + 2
b − 1

) ,

with

b =
(p + 2m)(k + 2m)
(2m + 1)(2m − 2)

,

and

c =
2 + pk+2

b−1

2m
.

Mckeon [73] showed that this approximation is closer to the actual estimate.

118 3 Traditional Statistics for Morphometrics

Other multivariate tests are available such as Pillai, Wilks lambda, etc. The
manova and summary.manova functions return the results of the tests and dif-
ferent degrees of freedom. Users must adapt the method whenever they consider
interaction should be taken into account as the error term. The resulting table for the
iris dataset is produced as follows:

>summary(manova(miris~as.factor(iris[,5])),test="Hotelling")
Df Hotelling-Lawley approx F

as.factor(iris[, 5]) 2 32.48 580.53
Residuals 147

num Df den Df Pr(>F)
as.factor(iris[, 5]) 8 286 < 2.2e-16 ***
Residuals

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The first column of the table summarizes degrees of freedom of the effect and resid-
ual variance-covariance matrices, the second gives the Hotelling-Lawley value, and
the third to fifth give the transposition of the multivariate test in terms of an F -test
with respective degrees of freedom. The last cell is the probability for accepting the
null hypothesis of equality between groups. In the example, the interspecific variance
is larger than the intraspecific one.

The same rules of ANOVA concerning factor type and marginality apply to
MANOVA; users have to be careful when performing two-way MANOVA to under-
stand the assumptions of the test and determine whether they may violate marginality
principles.

Burnaby’s Approach

Some special extensions for morphometric data have been developed in multivariate
statistics. The approach of Burnaby [16, 103] allows growth invariant discriminant
functions to be defined. The originality of the approach is to project the original data
onto a subspace orthogonal to the growth vectors, or to any other nuisance factors (for
example, an ecological one). For projecting data on a given vector or a given space,
we post-multiply the data by the eigenvectors or the linear discriminant function
defining a new base. One projects the data orthogonally to a given base G by post-
multiplying them by I − G(G′G)−1G′, with I being the identity matrix, G being
the matrix of p× k rows and columns, k being the number of nuisance vectors, p the
number of variables.

Other methods with similar aims have been developed (for example, see [44]) but
most of them have drawbacks (see [103]). We will use the method of Burnaby for
generating a growth independent dataset with the crabs dataset for the first species.
The idea is to project data orthogonally to both of the growth vectors defining each
sex. Since we are removing two growth functions, we expect to find in-fine only 5−2
dimensions in the final invariant growth space.

3.4 Multivariate Morphometrics 119

>data(crabs)
>crab<-as.matrix(log(crabs[1:100,4:8]))
>G<-cbind(prcomp(crab[1:50,])[[2]][,1],
+ prcomp(crab[51:100,])[[2]][,1])
>I<-diag(1,5)
>ortho<-I-G%*%ginv(t(G)%*%G)%*%t(G)
>newdata<-crab%*%prcomp(crab%*%ortho)[[2]][,1:3]
>summary(manova(newdata~ as.factor(crabs[1:100,2])))

Df Pillai approx F num Df
as.factor(crabs[1:100, 2]) 1 0.2603 11.2628 3
Residuals 98

den Df Pr(>F)
as.factor(crabs[1:100, 2]) 96 2.138e-06 ***
Residuals

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Sex dimorphism in crabs does not alter only size or growth patterns but the test
indicates that relative body depth is different for females and males of similar size.
Further observations of bivariate plots, especially when examining body depths and
rear widths, show that the body is deeper and the rear body is narrower for males in
comparison to females of similar size.

Clustering

Grouping factors are not always known and the user may wish to see whether the
data have a grouping structure. R offers many methods for examining similarities
between observations and for possibly inferring a grouping structure between obser-
vation in morphometric datasets. Clustering, k-means, or Gaussian mixture models
are among the most current in use, although their applications to morphometrics are
still uncommon in the literature. There are several related functions and packages in
R (see Section 3.8).

There is two groups of methods for identifying whether data are structured: hi-
erarchical clustering methods and partitional clustering methods. Hierarchical clus-
tering builds the hierarchy from the individual elements by progressively merging
clusters, while partitional clustering assigns an observation to a given group. The
first method provides the relationships between all observations, but does not define
groups a posteriori, while the second classifies observations into a given number of
groups. Here we have to determine whether it is possible to identify three groups
from the iris dataset using both methods.

All hierarchical clustering methods usually work on a dissimilarity matrix com-
puted either by the function or supplied by the user. One can calculate dissimilarity
matrices from the data using several functions, but the more common is dist. The
dist function calculates a dissimilarity matrix from a set of observations and vari-
ables according to several distance metrics. For measurements, it is typical to use the
Euclidean distance that is the default method of the function.

120 3 Traditional Statistics for Morphometrics

Table 3.8. Some packages for exploration of grouping structures

Function Method Package Name

hclust Hierarchical clustering stats
agnes Hierarchical clustering cluster
nj Neighbour joining tree estimation ape
mst Minimum spanning tree ape
spantree Minimum spanning tree vegan
kmeans k-means clustering stats
clara Defines k cluster from a dataset cluster
fanny Determines spherical cluster by fuzzy clustering cluster
pam partition the data into k cluster cluster
Mclust find the optimal model for partioning the data mclust

Hierarchical clustering returns a tree or dendrogram that is a representation of
similarity and dissimilarity between individuals. There are many different algorithms
for clustering the observations, and the final tree nodes and branch length depends
on the method used for clustering the observations. If the initial aim is to define
clusters from the data without trying to understand the relationship between data, the
"ward" method will have the advantage of finding rather spherical clusters; but if
the idea is to appraise the structure of the data in the form space, the "average"
method can be more easily understood.

>data(iris)
>rownames(iris)<-paste(toupper(substr(iris[,5],1,2)),
+ rownames(iris), sep="")
>bb<-hclust(dist(iris[,1:4]), method="ave")
>dend<-as.dendrogram(bb)

Note the use of the toupper function for capitalizing fonts of the extracted strings. plot
plots directly the hclust object, however, the dendrogram function combined with plot
provides more possibilities with the graphic device. For displaying different colors and sym-
bols for tips of the dendrogram, we modify the class of the dendrogram object with a local
function placed as argument of the dendrapply function.

>local({
+ colLab <<- function(n) {
+ if(is.leaf(n)) {
+ a <- attributes(n)
+ i <<- i+1
+ attr(n, "nodePar") <-
+ c(a$nodePar, list(lab.col = mycols[i],
+ pch=mysymbols[i],col=mycols[i],
+ lab.cex=0.5, cex=0.5))}
+ n }
+ mycols <- c("blue","red","green")[as.factor
+ (substr(labels(dend),1,2))]
+ mysymbols<-c(15,17,1)[as.factor(substr(labels(dend),

3.4 Multivariate Morphometrics 121

+ 1,2))]
+ i <- 0})
>b <- dendrapply(dend, colLab)
>plot(b, main="UPGMA on the iris data set")

Notice some new commands in the colLab function. There is the substr function for ex-
tracting a string within a vector. The attributes and attr functions access the attributes
and a specific attribute of an object respectively.

Since there is a large number of species in the set, we may prefer to display species on
a circular tree, rather than on a rectangular one. We can take advantage of functions that are
actually used for plotting phylogenies. The radial.phylog function of the ade4 package
plots a radial tree and returns a graphical display easier to visualize. First, we have to transform
the hierarchical clustering into a tree with the newick2phylog function.

>library(ade4)
>kk<-hclust2phylog(bb, FALSE)
>radial.phylog(kk,clabel.l=0.5,cleaves=0,circle=1.7)
>points(0,0,pch=21,cex=2,bg="grey")

SE42
SE15
SE16
SE33
SE34

SE37
SE21

SE32
SE44SE24SE27SE36SE5SE38SE50SE8SE40SE28SE29SE41SE1SE

18SE
45SE

6SE
19S
E

17

S
E

11

S
E

49

S
E

47

S
E

20

S
E

22

S
E

23

S
E

14

S
E

43

S
E

9
S

E
39

S
E

12
S

E
25

S
E

7
S

E
13

S
E

2
S

E
46

S
E

26
S

E
10

S
E

35
S

E
30

S
E

31
S

E
3

S
E

4
SE

48
VI

10
5

VI
12

9
VI

13
3

VI1
12

VI1
04

VI1
17

VI13
8

VI111

VI148

VI113

VI140

VI142

VI146

VI116

VI137

VI149

VI101

VI125

VI121

VI144

VI141

VI145

VI109

VI135
VI110
VI118
VI132
VI119
VI106
VI123

VI136
VI108

VI131 VI103 VI126 VI130 VE61 VE99 VE58 VE94 VE66 VE76 VE55 VE59 VE78 VE77

VE87

VE51

VE53

VE86

V
E

52

V
E

57

V
E

74

V
E

79

V
E

64

V
E

92

V
E

72

V
E

75

V
E

98

V
I120

V
E

69
V

E
88

V
I115

V
I122

V
I114

V
I102

V
I143

V
I150

V
E

71
V

I128
V

I139
V

I147
V

I124
V

I127
VE73

VE84
VI134

VI107
VE63

VE68
VE83

VE93

VE62

VE95

VE100

VE89

VE96

VE97

VE67

VE85

VE56

VE91

VE65

VE80

VE60

VE54

VE90

VE70

VE81
VE82

Fig. 3.14. Hierarchical clustering organized in a circular dendrogram on observations of the
iris dataset. The three species are represented by abbreviations VI, VE, SE followed by
numbers indicating their rank in the dataset

122 3 Traditional Statistics for Morphometrics

The plot (Fig. 3.14) shows that Iris setosa forms a clear cluster while the two other
species are clustered together. In this second cluster, some members of the virginica
group are clustered with versicolor.

The kmeans, pam or clara functions are some of the numerous partitional
clustering methods implemented in R; they need, in addition to the data file, a spec-
ified numbers of clusters in their arguments. Users can let the function calculate the
dissimilarity matrix or they can specify it with functions such as dist or daisy.

> pam(iris[,1:4],3, stand=F)$clustering
[1] 1

[26] 1
[51] 2 2 3 2
[76] 2 2 3 2
[101] 3 2 3 3 3 3 2 3 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3
[126] 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 2
>palette(c("black", "grey50"))
>par(mar=c(5,4,1,1))
>plot(pam(x=iris[,1:4],k=3), main="",col.p="black")

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

Fig. 3.15. Partitional clustering plot on the iris dataset. The three groups are represented by
different symbols and ellipses are drawn around groups

The pam function returns two plots when combined with plot. The second
plot (Fig. 3.15) is a principal component on the correlation matrix with the group as
identified by the algorithm. When we used the pam function on raw measurements,
all individuals of the first group “setosa” have been correctly identified, there were

3.4 Multivariate Morphometrics 123

two misidentified virginica as versicolor, and 14 misidentifications of versicolor as
virginica.

The ideal number of clusters is not known in advance. There is a graphical way
to select the best number of clusters called the elbow criterion. In progressing on
the graph from the left to the right, and in successively removing dots of the curve,
the last point permitting a convex elbow corresponds to the number of clusters. For
obtaining the number of clusters, we first need to plot the evolution of the ratio of
within-group variances by the total variance. The best number of clusters is appraised
when adding a group does not improve the explained variance more than expected.
This method is arbitrary but sensible. We will see how to implement this protocol
for the k-means method (remember, however, that the method of k-means is not an
exploration of the best partition; here, it deserves an example and partitions should
be reiterated).

>totv<-sum(diag(var(iris[,1:4])))*149
>SSratio<-numeric(10)
>for (i in 2:10)
+ {mod<-kmeans(iris[,1:4],i)
+ SSratio[i]<-(totv-sum(mod$withinss))/totv}
>plot(1:10, SSratio, type="l",xlab="number of clusters",
+ ylab="% of explained variance")
>points(1:10, c(0,SSratio[2:10]), pch=3)

By examining the plot produced in Fig. 3.16, the optimal number of clusters for the iris
dataset is two or three with the k-means method.

2 4 6 8 10

0.
0

0.
4

0.
8

Number of clusters

%
 o

f e
xp

la
in

ed
 v

ar
ia

nc
e

Fig. 3.16. The elbow method for selecting the number of clusters. Here it is applied to the
iris dataset with the k-means method

Once clusters are defined with hierarchical or partitional clustering methods, you
can check whether they correspond to a taxonomic entity.

It may be convenient to select not only the optimal number of clusters, but also
the method for partitioning the data. For this goal, the mclust package provides

124 3 Traditional Statistics for Morphometrics

many possibilities and has functions for selecting the best model. For other functions
performing partitional clustering, examples provided with the functions in R can
serve as good tutorials.

Note that clustering can work not only on observations, but also on variables. One
can use clustering methods to identify whether some variables are closer together. In
this respect, the variable clustering should be estimated on the basis of the correlation
matrix rather than on the covariance.

3.4.4 Analyzing Relationships Between Different Sets of Variables

One possible aim of morphometrics is to compare morphometric measurements si-
multaneously with a set of ecological variables, with correspondence tables, or with
one other set of morphometric measurements performed on the same individuals.

The iris dataset actually has two categories of measurements: two on petals
and two on sepals. This dataset allows the study of relationships not only between
two measurements but between two structures: sepal and petal. Here we want to
discover whether there is a relationship between sepal measurements and petal mea-
surements; and we want characterize this relationship. Several strategies are avail-
able: canonical correlation analysis or two-block partial least-squares.

Rohlf and Corti [105] give other reasons for preferring the two-block partial
least-squares approach with examples taken from morphometrics. The two-block
partial least-squares is a simple methodology for exploring the relationships between
two sets of variables. Given n observations with p variables forming a dataset M, one
can decompose this dataset into two subsets M1 and M2, each of size n × p1 and
n× p2 with p1 + p2 = p. One can partition the total variance-covariance matrix (V)
or correlation matrix (R) of M such that

V =
(

V11 V12

V21 V22

)

;

V11 and V22 are the variance-covariance matrices of each set M1 and M2, while
V12 or its transpose V21 contains the covariance between the two sets.

The approach decomposes V12 in F1DF′
2 by singular-value decomposition.

The diagonal matrix (D) corresponds to the singular values, while the columns of
F1 are the contributions for the linear combination of the variables of the first set
and F2 are those for the second set. The first columns of F1 and F2 give the best
least-squares approximation of the covariance between both sets. This relationship
is measured by the ratio of the sum of the first singular values by the total sum of
the singular values of the dataset. The sum of singular values is a measure of the to-
tal covariance between the two sets. If, rather than using the covariation matrix, one
works on the correlation matrix, the ratio of the sum of eigenvalues by p1 × p2 pro-
vides a measure of the overall squared covariance between the two sets of variables.
It is possible to project the observations onto the singular vectors for constructing
different plots. The projection is achieved by matrix multiplication. To interpret as
principal component axis, the final projection should be centered (for example, with

3.4 Multivariate Morphometrics 125

the scale function, and scale=F argument). The observations are projected on
F1 by post-multiplying original data by F1 M1 × F1.

There are several measures of association between the two sets of variables. We
would recommend using the Rv coefficient defined by Escoufier [29] because it
works directly on covariance and variance rather than on correlations. This coeffi-
cient is a measure of correlation between both sets. Its squared value is analogous to
the R2 coefficient in the bivariate case. It is the percentage of covariance of one set
predicted by the other set. We compute it such that

Rv =
trace(V21V12)

√

traceV11
2traceV22

2
.

If variables in one set have different metrics, then one must work on correlation
rather than on covariance matrices. The computations are similar.

Here, we write the pls function that computes the singular values, singular vec-
tors, and the Rv coefficient from two subsets of variables organized as two matrices.
Working on correlation rather than on covariance is similar to using the scaled orig-
inal values.

Function 3.4. pls

Arguments:
M1: First variable subset arranged in a matrix of n observations and of p1 variables.
M2: Second variable subset arranged in a matrix of n observations and of p2 variables.

Values:
Rv: Rv coefficient.
F1: Singular vectors for the first set.
F2: Singular vectors for the second set.
D: Singular values.

1 pls<-function(M1, M2)
2 {p1<-dim(M1)[2]; p2<-dim(M2)[2]; n<-dim(M1)[1]
3 sM12<-svd(var(cbind(M1,M2))[1:p1, (p1+1):(p1+p2)])
4 vM12<-var(cbind(M1,M2))[1:p1, (p1+1):(p1+p2)]
5 vM21<-var(cbind(M1,M2))[(p1+1):(p1+p2), 1:p1]
6 v11<-var(M1)
7 v22<-var(M2)
8 D<-sM12$d; F1<-sM12$u; F2<-sM12$v
9 Rv<-sum(diag(vM12%*%vM21))/sqrt(sum(diag(v11%*%v11))*

10 sum(diag(v22%*%v22)))
11 list(Rv=Rv, F1=F1, F2=F2, D=D)}

The covariation between petal and sepal forms of the iris dataset is investigated
for the first species of the set.

>pls1<-pls(iris[1:50,1:2], iris[1:50,3:4]); pls1
$Rv

126 3 Traditional Statistics for Morphometrics

[1] 0.07605671

$F1
[,1] [,2]

[1,] -0.7918234 -0.6107501
[2,] -0.6107501 0.7918234

$F2
[,1] [,2]

[1,] 0.8232088 -0.5677388
[2,] -0.5677388 -0.8232088

$D
[1] 0.024410433 0.001279043

The covariation between sepal and petal morphologies is rather low (Rv < 0.1).
When we examine singular values, we notice that most of the covariation for shape
or form is concentrated on the first dimension of covariation. In terms of morphol-
ogy, variables are all similarly signed on the first axes, indicating that covariation
is primarily explained by size (big petals are found with big sepals). The second
axis shows a second pattern of covariation with longer than wide petals related with
longer than wide sepals. In our case, one can interpret the first axis as a covariation
axis because of isometric growth, and the second as a major axis of shape covariation.
It is possible to reiterate the procedure for the three species, one will find similar co-
variation patterns in all. These covariations are stronger for the second species. This
shows that petal and sepal morphologies are more coordinated in the second species
than in the others. One can bootstrap variables among observations to obtain a con-
fidence interval for the Rv coefficient, and to compare different Rv coefficients.

The CCA package provides other functions for computing canonical correlation
analysis that permits similar studies. The cancor function of the stats package is
also performing canonical correlation analysis.

One can appraise relationships between sets of variables using variable clustering.
The Hmisc package provides the varclus function for this purpose. The distances
between variables are based by default on correlations, but alternative methods are
available. You can also have a look at Qannari et al. [86] to appraise other distances
between quantitative variables. For each species of the iris dataset, the variables
are clustered according to the UPGMA method. After the analysis, one can compare
the branching patterns between species in trees for interpreting changes of covaria-
tion (Fig. 3.17).

>library(Hmisc)
>plot(varclus(as.matrix((iris[1:50,1:4])),method="ave"))
>title("setosa")
>plot(varclus(as.matrix((iris[51:100,1:4])),method="ave"))
>title("versicolor")
>plot(varclus(as.matrix((iris[101:150,1:4])),method="ave"))
>title("virginica")

3.4 Multivariate Morphometrics 127

P
et

al
.L

en
gt

h

P
et

al
.W

id
th

S
ep

al
.L

en
gt

h

S
ep

al
.W

id
th

0.
6

0.
2

S
pe

ar
m

an
 ρ

2
setosa

S
ep

al
.W

id
th

S
ep

al
.L

en
gt

h

P
et

al
.L

en
gt

h

P
et

al
.W

id
th

0.
65

0.
40

S
pe

ar
m

an
 ρ

2

versicolor

S
ep

al
.L

en
gt

h

P
et

al
.L

en
gt

h

S
ep

al
.W

id
th

P
et

al
.W

id
th

0.
7

0.
2

S
pe

ar
m

an
 ρ

2

virginica

Fig. 3.17. Variable clustering among the different Iris species

Measurements are clustered in Iris setosa and Iris versicolor according to structures
(sepal or petal) while the measurements are clustered according analogous shape
measurements (length and width) in Iris virginica (Fig. 3.17).

One can appraise the significance of the relationships between two sets of vari-
ables with the Mantel or Procrustes tests.

The Mantel test aims to determine whether dissimilarities or covariation matrix
are similar. For instance, the Mantel test [70] is used to determine whether there is
a relationship between geographical distances versus morphological Euclidean dis-
tances, or ecological data versus morphological data. One can use the Mantel test to
investigate whether the position of observations is similar between shape spaces or
form spaces. The dist function produces a dissimilarity matrix according to sev-
eral kinds of distance. One can compare the distance matrices using the mantel
function of vegan, mantel.test of ape, or mantel.rtest of ade4.

>library(ape)
>unlist(mantel.test(as.matrix(dist(iris[1:50,1:2])),

as.matrix(dist(iris[1:50,3:4]))))
z.stat p
188.9105 0.2530

We can compare the relative positions of Iris observations in the space defined
by original variables between two sets M1 and M2 with a Procrustes test (see [84]).
Actually, we can interpret each individual observation as a location in the p1 and
p2 dimensioned spaces. If the relative position of individuals is similar between both
spaces, it means that the first and second variable sets are related. Applying a PCA on
the data can reduce the space dimensions of the two sets to make them comparable.
The x first components of both spaces are extracted, and the test determines whether
the position of observations depict a similar configuration in each variable set. To
determine whether the relative position of each observation is comparable, what-
ever the variables used, one uses the Procrustes test with the protest function of
the vegan package. The test performs scaling, rotations, translations and eventually
reflections for finding the best match between configurations. Since the test allows
reflection, it looks at the geometry of the space rather than at functional relationships

128 3 Traditional Statistics for Morphometrics

between its components. The statistic used is the Procrustes distance between both
configurations (see the following chapter), and the test works in permuting rows of
one of the configurations to appraise the statistical distribution.

>library(vegan)
>protest(iris[1:50, 1:2], iris[1:50,3:4])
Call:
protest(X = iris[1:50, 1:2], Y = iris[1:50, 3:4])

Correlation in a symmetric Procrustes rotation: 0.2443
Significance: 0.083
Based on 1000 permutations.

The protest function returns an object which can be plotted with plot. This
provides a graphical display for examining the fit.

Neither Procrustes nor Mantel tests find significant similarity between distances
obtained from the sepal and petal measurements for the first species of Iris (Iris
setosa). The relationships between morphologies are nonetheless significant for the
two other species. A last alternative test could be used to compute a χ2 statistic
measure of association between the two covariance matrices; however, the degrees
of freedom are uncertain because of the correlative nature of the data.

3.4.5 Comparing Covariation or Dissimilarity Patterns Between Two Groups

Similarly to the previous section, the data matrix is partitioned into different groups
of observations. One has p variables and each group has ni observations. One can
characterize each group by its proper covariation or correlation matrix that contains
information needed for making between-group comparisons. Since one can cluster
variables, this can be a first tool for analyzing qualitatively whether two or more
groups differ in their covariation patterns.

One can compare the difference between covariance matrices using a Mantel
test, or using a nonparametric test on the singular vectors of the variance-covariance
matrix (for example, comparing angles between eigenvectors and angles between
random vectors). To test for similarity between covariation matrices with the Mantel
test, one should include the diagonal, which contains variances. There is the pos-
sibility to modify a function in the R environment with the fix function. Writ-
ing fix(myfunction) edits the function code; users can thus use the editor
to modify the function. In the function for the Mantel test, we must specify to
take into account the lower triangle matrix, by including the diagonal. In typing
fix(mantel.test), we notice that several other internal functions are needed
for running the test, especially those for computing the observed and theoretical val-
ues. This function, called mant.zstat, works with the function lower.triang.
In this latter function, we have to replace “<” by “<=” to select the lower triangle
that includes the diagonal term. Once done, one can close the editor, and the
mantel.test function will be modified in the R environment. This will not
be saved for a future session if the environment is not saved.

3.4 Multivariate Morphometrics 129

Whether covariation between measurements is similar between the first two
species of Iris is assessed with the help of this modified Mantel test.

>unlist(mantel.test(var(iris[1:50,1:4]),
+ var(iris[51:100,1:4])))

z.stat p
0.06815982 0.22100000
>unlist(mantel.test(var(iris[1:50,1:4]),
+ var(iris[101:150,1:4])))

z.stat p
0.09155193 0.22200000
>unlist(mantel.test(var(iris[51:100,1:4]),
+ var(iris[101:150,1:4])))

z.stat p
0.2658072 0.0000000

Covariation patterns are different between Iris setosa and Iris versicolor and between
Iris setosa and textitIris virginica but similar between versicolor and virginica.

The coli function, programmed in Section 3.3 of this chapter, can investigate
similarity between singular or eigen vectors. Singular vectors or eigenvectors of
the different covariance matrices represent the main axes of covariation; this tests
whether the principal axes are collinear. We can perform every possible comparison
between singular vectors, and store them in a matrix. If one uses this test repeatedly,
the values must be corrected by Bonferroni adjustment.

>res<-matrix(NA,4,4)
>for (i in 1:4)
+ {for (j in 1:i)
+ {res[i,j]<-coli(svd(var(iris[1:50,1:4]))$u[,i],
+ svd(var(iris[51:100,1:4]))$u[,j])$p}}

[,1] [,2] [,3] [,4]
[1,] 0.136 NA NA NA
[2,] 0.336 0.364 NA NA
[3,] 0.552 0.092 0.470 NA
[4,] 0.982 0.638 0.918 0.012

Contrary to the Mantel test, we find that most singular vectors are similar. The differ-
ence is because the Mantel test incorporates information about the overall variance-
covariance contained in the data, while the test for collinearity only considers the
directions of principal axes of variation (without considering the amount of variance
they carry).

Problems

3.1. Using lmer
Load the nlme package, and perform an analysis of variance on the musdom.txt
dataset with the lmer function. Are there any major differences in the presentation

130 3 Traditional Statistics for Morphometrics

of results when compared with the traditional ANOVA approach? Can you directly
obtain the results with aov by specifying the error term in the formula?

3.2. Using car
Construct an unbalanced two-way ANOVA design. Change the order of entrance of
each factor. What do you notice with the standard summary.aov command? Use
the Anova function of the car package. How can we calculate sums of squares of
type II, writing code using the base and stats packages?

3.3. Using diagnostic tools for examining residuals
Load the lmtest package and perform diagnostics on the linear models that have
been applied in this section. Do they all meet required conditions?

3.4. Phylogenetic comparative methods
Load the carniherbi49 dataset of the ade4 package. Plot the first phylogeny;
using the pic function, calculate phylogenetic independent contrasts for body Mass,
hind limb measurement, and running speed. Is the computed relationship between
variables influenced by taking into account the phylogeny?

Using the cubic root of mass as an approximation for size, do you find any signif-
icant relationships with body size? Divide running speed by body length to appraise
running speed relative to body size. Do heavier animals move faster or slower than
light ones? Do you have to transform the variables before assuming a linear relation-
ship?

3.5. Standardized discriminant vectors
We have used the lda function to compute standardized linear discriminant vectors.
Using the formula in the book, develop a function using linear models for appraising
variance-covariance matrices in the iris dataset, and calculate the eigenvalues and
the standardized linear coefficients. To appraise the inverse square root of a matrix,
one must diagonalize the desired symmetric matrix, and then obtain the singular or
eigenvectors U and eigenvalues D. The square root is given by

UD0.5U′ .

The square root of a diagonal matrix corresponds to the matrix of the square root of
its diagonal elements.

3.6. Isometry and allometry
Test whether there is isometry in each sex of the turtles dataset. If so, test whether
allometry is expressed the same way in males and females. Develop appropriate lin-
ear models and use the anova function to investigate the effect of sex on allometric
growth.

3.7. Clustering
By applying the partional clustering method of the pam function to shape variation
in the iris dataset, check whether groups are identical to those defined on form
variation.

3.4 Multivariate Morphometrics 131

3.8. Clustering
Using the elbow method and the pam function, estimate the number of groups that
are present in the iris dataset on the basis of shape and form variation.

3.9. Two-block partial least-squares
Write a function to perform a test on the significance of the correlation coefficient
between two sets of variables. Use this function to test the significance of covariation
between sepal and petal morphologies.

4

Modern Morphometrics Based on Configurations
of Landmarks

Most modern morphometric methods deal directly with the geometric information
contained in the configuration rather than on a collections of ad-hoc measured dis-
tances. Traditional collection of distances have, indeed, few chances to extract ex-
haustively the geometric information contained in landmarks (see reference [116]
for a critical view of traditional morphometrics). Furthermore, new techniques based
on configurations have the enormous advantages of offering a visualization and a
geometrical interpretation of variation or change of the whole configuration (in con-
trast to multivariate morphometrics for which the analyst must examine loadings of
transformed variables on principal, discriminant or canonical axes).

I explain and detail how to use geometrical and modern techniques in the follow-
ing two chapters; statistical aspects are exposed in Chapter 6. This chapter addresses
the application of modern morphometrics to sets of points whose relative positions
have anatomical and homologous grounds basis. Chapter 5 mainly deals with con-
figurations made of sets of points (pseudolandmarks) describing an outlines.

Considerable advances have been made in the last 30 years for taking into con-
sideration as much geometric information as possible from a set of landmarks. Many
of the landmark-based methods that have been developed in the second half of the
last century have isolated the shape component in removing a scale factor, translation
and rotation effects on the configuration (see Sections 4.2, 4.3). However, some other
approaches developed in the 1990s have undertaken a very different protocol, using
methods that were not dependent on mathematical procedures performing transla-
tion, rotation and scaling (Sections 4.4, 4.5) which confer on them some advantages.
The former methods, however, have the enormous advantage of having undergone
more statistical and methodological developments concerning visualization and de-
composition of shape variation along several components.

4.1 The Truss Network Approach of Strauss and Bookstein

The truss network approach described in Strauss and Bookstein [116] is one of
the first protocols described for visualizing and understanding shape changes and

134 4 Modern Morphometrics Based on Configurations of Landmarks

variation from a given set of configurations. The approach consists of selecting dis-
tances of objects objectively rather than randomly, and it allows reconstruction of
landmark locations from the set of distance measurements. The method based on
the truss network approach, however, has been less successful and less used than su-
perimposition methods; and even if location of landmarks can be obtained using a
limited number of measurements, this method should be avoided [10].

Here I briefly present some R implementations, from the selection of landmarks
to the reconstruction of the shape. Although not commonly used, it provides a link
between multivariate morphometrics and geometric morphometrics. In exhaustively
registering information concerning landmark positions on the shape by using dis-
tance measurements, this approach is considered to be less biased than classic meth-
ods, which tend to accentuate the effect of certain landmarks without intending to
do so. The truss network approach allows coordinates of landmarks to be estimated
from a minimum set of measurements when no digitizing device is available. It thus
constitutes a link between data acquisition and geometric morphometric analysis.

In the truss network approach, the morphology is systematically covered by a
set of landmarks organized in quadrilaterals each having two diagonals (that can be
considered as tetrahedrons too). The truss is easy to define uniquely for elongated
structures, where landmarks lie close to the outline. However, the landmark connec-
tion becomes less objective when landmarks occupy both the outline and span the
inner part of the object. Defining the set of quadrilaterals is easy for a 2-multiple
number of landmarks (Fig. 4.1). It is more difficult if there is a landmark left over
at one end. Nevertheless, its position can be defined by its orientation relative to the
last quadrilateral.

For starting, one must find some automatic definition of a truss network. For
convenience, we will first need to align the main axis of the M configuration along
the x-axis. One achieves this by multiplying the coordinates by the eigenvectors of
the covariation matrix estimated from the coordinates, and by checking for eventual
final reflection of the configuration.

1

2

34

5

6

7
8

Fig. 4.1. The distances of the truss network for the dataset gorf.dat of the shapes package

4.1 The Truss Network Approach of Strauss and Bookstein 135

>library(shapes)
>M<-gorf.dat[,,3]

Orient the longer axis of the configuration parallel to the x-axis.

>Ma<-M%*%svd(var(M))$u

Compare the sign of the first angle of the original configuration with the one of the rotated con-
figuration to detect for reflection with the angle2d function defined in the previous chapter
(see Section 2.5.2).

>if(round(angle2d(M[1,]-M[2,],M[3,]-M[2,]),3)!=
+ round(angle2d(Ma[1,]-Ma[2,],Ma[3,]-Ma[2,]),3))
+ {Ma[,1]=-Ma[,1]}

We need to define the landmarks at the vertices of each quadrilateral, and to store
them in an object. In the example developed below, I used an object of the list
class, each element of the list being a vector containing the indices of landmarks
involved in the quadrilateral. First quadrilateral vertices are chosen as the set of four
landmarks, which coordinates are the more on the left. Further quadrilateral vertices
are successively selected from the left to the right along the x-axis.

I followed the approach of Carpenter et al. [18] for reconstructing the configura-
tion. For this approach, we need all landmarks to be involved in at least three inter-
landmark distances. If we have an odd number of landmarks, the landmark left over
at an end is registered with one of the vertex of the closest quadrilateral. It results
that each element of the list is obligatory in a set of indices for a quadrilateral.

>Ma1<-Ma
>truss<-list()
>rownames(Ma1)<-1:nrow(Ma1)
>a<-1
>while (nrow(Ma1)>4)
+ {truss[[a]]<-NA
+ vert1<-as.numeric(rownames(Ma1)[which.min(Ma1)])
+ truss[[a]][1]<-vert1; Ma1<-Ma1[-which.min(Ma1),]
+ vert1<-as.numeric(rownames(Ma1)[which.min(Ma1)])
+ truss[[a]][2]<-vert1; Ma1<-Ma1[-which.min(Ma1),]
+ vert2<-as.numeric(rownames(Ma1)[which.min(Ma1)])
+ truss[[a]][3]<-vert2; Ma2<-Ma1[-which.min(Ma1),]
+ vert2<-as.numeric(rownames(Ma2)[which.min(Ma2)])
+ truss[[a]][4]<-vert2; Ma2<-Ma2[-which.min(Ma2),]
+ a<-a+1}
>truss[[a]]<-as.numeric(rownames(Ma1))
>if(length(truss[[a]])==3)
+ {truss[[a]]<-c(truss[[a]],truss[[a-1]][2])}
>truss
[[1]]
[1] 1 6 7 5
[[2]]
[1] 7 5 4 8

136 4 Modern Morphometrics Based on Configurations of Landmarks

[[3]]
[1] 2 3 4 8

For drawing the truss as in Fig. 4.1, we apply a triple loop.

>plot(Ma,asp=1,axes=F,xlab="", ylab="")
>nq<-length(truss)
>for (i in 1:nq)
+ {for (j in 1:length(truss[[i]])){
+ for (k in 1:j){
+ segments(Ma[truss[[i]][k],1],Ma[truss[[i]][k],2],
+ Ma[truss[[i]][j],1],Ma[truss[[i]][j],2])}}}

Reconstructing the relative positions of landmarks from the distances of the net-
work is less obvious [18, 116]. The approach of Carpenter et al. [18] estimates the
location of the series of landmarks starting from a prototype and weighting for known
interlandmark distances. For the truss not to fold onto itself or not be reflected, it is
recommended to start with an initial approximate prototype. I tried the algorithm
with a prototype of random landmark positions, that nonetheless, most of the time,
finds the correct initial configuration. The algorithm works with different matrices
and vector X, Y, and β, so that

X =

⎛

⎜
⎝

x1 y1 1
...

...
...

xp yp 1

⎞

⎟
⎠ ; β =

⎛

⎝

−2xi

−2yi

r2
i

⎞

⎠ ; and Y =

⎛

⎜
⎝

d2
i1 − r2

1
...

d2
ip − r2

p

⎞

⎟
⎠ ,

where dij is the distance between landmarks i and j, and where ri is the distance of
the landmark i to the origin. The above vectors and matrices satisfy the equation

Xβ = Y .

One can calculate β using the equation

β = (X′IX)−1(X′IY) ,

where I is the identity matrix. Then the identity matrix is exchanged by a diago-
nal matrix named W where wij diagonal elements equal to 1 if the dij distance is
available and to 0 otherwise, which allows us to weight for known distances. Then
the above equation is used by replacing I with W for finding the new locations for
all landmarks, starting from the first to the last. The newly calculated configuration
replaces the prototype and one iterates the procedure until convergence. Carpenter
et al. [18] suggest translating the coordinates of the centroid of successive configu-
rations to the origin for insuring convergence, and to limit the number of iterations
to 50.

4.1 The Truss Network Approach of Strauss and Bookstein 137

In the example, the second configuration of the verb+gorf.dat+ dataset is used as prototype
shape. I divided its coordinates by 10 to show that the algorithm works well even if the first
estimated distances are far from those in the final shape.

>Xap<-gorf.dat[,,2]/10

Dista, the matrix of available distances, is obtained using the truss network approach (as
defined in the previous code). Nonavailable distances appear as NA in the matrix.

>Dista<-matrix(NA,8,8)
> for (i in 1:nq){for (j in 1:4){for (k in 1:4){
+ a<-truss[[i]][k]; b<-truss[[i]][j]
+ Dista[a,b]<-sqrt(sum((Ma[a,]-Ma[b,])^2))}}}
>DD<-Dista

In the code below, inc corresponds to the indices of missing interlandmark distances includ-
ing the ith landmark and any other.

>a<-1
>b<-10
>while (a<50 & b>0.01){
+ X1<-Xap
+ for (i in 1:8){
+ inc<-which(is.na(Dista[,i]))
+ d1<-dim(Xap[inc,])[1]
+ d2<-dim(Xap[inc,])[2]
+ Dista[inc,i]<-sqrt(apply((Xap[inc,]-
+ matrix(Xap[i,],d1,d2,byrow=T))^2,1,sum))
+ Ra<-apply(Xap^2,1,sum)
+ Y<-Dista[,i]^2-Ra
+ W<-diag(1,8); diag(W)[inc]<-0

The solve function returns the inverse of a matrix.

+ coord<-solve((t(cbind(Xap,1))%*%W%*%
+ cbind(Xap,1)))%*%(t(cbind(Xap,1))%*%W%*%Y)
+ Xap[i,1]<--coord[1]/2
+ Xap[i,2]<--coord[2]/2}

Translate the centroid of the new configuration on the origin.

+ Xap[,1]<-Xap[,1]-mean(Xap[,1])
+ Xap[,2]<-Xap[,2]-mean(Xap[,2])
+ b<-sum(abs(dist(Xap)-dist(X1)))
+ Dista<-DD
+ a<-a+1}
>points(Xap,asp=1)

There are other ways to select a minimal number of distances for covering in-
formation on the object; for example, the selection of distances can be based on
a Delaunay triangulation returned by the delaunayn function of the geometry
package. The delaunayn function returns the vertices of triangles involved in the
triangulation – then stored as a matrix. The trimesh function displays the triangle

138 4 Modern Morphometrics Based on Configurations of Landmarks

mesh. We type the following code to produce the Fig. 4.2. Note, however, that unlike
the truss network method, reconstructing the relative position of the landmarks can
be ambiguous.

>plot(Ma,asp=1,axes=F,xlab="",ylab="")
>dd<-delaunayn(Ma)
>dd

[,1] [,2] [,3]
[1,] 4 3 2
[2,] 4 8 2
[3,] 4 7 8
[4,] 4 7 5
[5,] 6 5 1
[6,] 6 7 1
[7,] 6 7 5
>trimesh(dd,Ma,add=T)

Note the add=T argument, used for displaying the Delaunay triangles on the configuration.

Fig. 4.2. A Delaunay triangulation on the third configuration of the gorf.dat dataset

When measurements are selected, it is theoretically possible to perform any kind
of multivariate analysis and to interpret changes by reconstructing morphologies by
using the truss network estimated on PC, LD or canonical axes.

4.2 Superimposition Methods

Although the idea of superimposing configurations to quantify their form or shape
difference seems rather trivial, the first application of superimposition methods in the
field of morphometrics is rather young. This first application may be that of Sneath
[115] who used the Procrustes method developed by Green [41] for multivariate
statistics. The term Procrustes for statistical purposes was first coined by Hurley and
Cattel [45]. In fact “Procrustes” is an analogy from the Greek mythology. Procrustes

4.2 Superimposition Methods 139

was a bandit who trapped travelers in Attica. He later invited his victims to lie down
on an iron bed and compared their size with the bed size. Limbs of too-tall victims
were amputated while too-short victims were stretched (or flattened) to fit the bed
size. Like Procrustes did with his victims, superimposition methods fit and scale one
configuration (the victim) onto a reference (the bed).

4.2.1 Removing the Size Effect

Superimposition methods first attempt to remove the size, orientation and position
information from the form information contained in the configuration (note this is
true for the methods exposed in the three following sections but not the last one).
Although the definition of size is not trivial, it is an important feature that can differ
within a set of configurations, and that can drive shape variation (allometry). One
must therefore estimate size from the set of configurations, and test factors that could
influence size. Size is considered as a univariate measure, calculated by applying a
function of size measure to the original coordinates. A g(M) function of size measure
must be real valued and should satisfy

g(aM) = ag(M) for any positive scalar a .

The most commonly used measure of size for a configuration is the centroid size
(e.g., [8, 38, 54, 27]) . It is defined as the square root of the sum of squared distances
from each landmark to the centroid of the configuration. It is independent of position
or orientation of the configuration. One computes centroid size directly from raw
coordinates. The distances of landmarks to the centroid are calculated as the square
root of the sum of squares of the difference between their coordinates and those
of the centroid. Let M be a configuration matrix with p landmarks (in rows) and k
coordinates (in columns) and scM be the centroid size of M, then

scM =

√
√
√
√

p
∑

i=1

k∑

j=1

(Mij − M.j)2 .

The centroid coordinates Mc of the configuration are the arithmetic mean for
each coordinate dimension:

Mc =
1
p

p
∑

i

Mp .

If the configuration is arranged in a matrix, one can calculate centroid coordinates
with the apply function of R that applies the same function to the margin of a ma-
trix. The following centcoord function calculates the coordinates of the centroid
of the M configuration.

140 4 Modern Morphometrics Based on Configurations of Landmarks

Function 4.1. centcoord

Argument:
M: Configuration matrix.

Value:
Vector of centroid coordinates.

1 centcoord<-function(M){apply(M,2,mean)}

We can use it for plotting a configuration and its centroid.

>M<-matrix (c(2,0,1,1,0,0,0,-1,2,-2),5,2, byrow=T)
>centcoord(M)
>plot(M)
>polygon(M)
>points(t(centcoord(M))

The coordinates of the scaled configuration (Ms) are calculated by dividing the
original coordinates of the configuration by the centroid size, such as

Ms =
M

scM
.

We program a small function, centsiz, for scaling the configuration to unit cen-
troid size, and for returning both the scaled configuration and the centroid size. The
configuration passed as argument of the function is organized as a matrix object (M)
of p rows and k columns. We could have used the centcoord function, which
would then become an internal function of centsiz. However, it is also simpler to
derive the centroid size directly from the variance of each x, y or z-dimension of the
configuration.

Function 4.2. centsiz

Argument:
M: Configuration matrix.

Values:
centroid_size: Centroid size.
scaled: Configuration matrix, scaled to centroid size.

1 centsiz<-function(M)
2 {p<-dim(M)[1]
3 size<-sqrt(sum(apply(M, 2,var))*(p-1))
4 list("centroid_size" = size,"scaled" = M/size)}

The csize function of the Rmorph package calculates the centroid size of a set
of configurations. One can pass this set into argument of the function under various
types of object (vector (of size k × p), matrix (of dimensions n and k × p), or array of

4.2 Superimposition Methods 141

dimensions p, k, and n). The second argument of that function indicates the number
of dimensions.

Dryden and Mardia [27] have proposed a normalized form of the centroid size
(scM/

√
p or scM/

√
p × k) for comparing configurations with different numbers of

landmark.
The distance between two landmarks dp1p2 defining a baseline has also been pro-

posed as a measure of the size scalar [33] and was later used by Bookstein [7, 10]
as geometric registration for extracting shape information of 2D configurations. We
write the basesiz function. It returns the baseline size and the scaled configura-
tion and accepts an M argument of the matrix class. The function should take into
account the p1 and p2 indices of the baseline landmarks as well.

Function 4.3. basesiz

Arguments:
M: Configuration matrix.
p1: Index of the first baseline landmark.
p2: Index of the second baseline landmark.

Value:
Baseline size.

1 basesiz<-function(M, p1, p2)
2 {sqrt(sum((M[p1,]-M[p2,])^2))}

4.2.2 Baseline Registration and Bookstein Coordinates

For 2D data, Bookstein [7, 10] suggests removing the effect of similarity transfor-
mation by sending the two landmarks Mp1 and Mp2 defining the baseline to a fixed
position of respective coordinates (−1/2, 0) and (1/2, 0). These Bookstein coordi-
nates Mbi1 and Mbi2 are defined so that

Mbi1 = (Mp21−Mp11)(Mpi1−Mp11)+(Mp22−Mp12)(Mpi2−Mp12)/d2
p1p2

− 1
2

,

and

Mbi2 = (Mp21 − Mp11)(Mpi2 − Mp12) − (Mp22 − Mp12)(Mpi1 − Mp11)/d2
p1p2

,

where dp1p2 is the baseline size.
The booksteinM function is written to compute the coordinates of superim-

posed configurations using the baseline registration. We will write it for a configu-
ration matrix passed as the M argument of dimensions p and k. The function calls
basesiz, which we have developed above. The function rotates, translates and
scales M onto the baseline defined by the p1 and p2 landmark indices.

142 4 Modern Morphometrics Based on Configurations of Landmarks

Function 4.4. booksteinM

Arguments:
M: Configuration matrix.
p1: Index of the first baseline landmark.
p2: Index of the second baseline landmark.

Value:
Scaled configuration matrix aligned on the baseline of coordinates (−0.5, 0) and

(0.5, 0).
Required function: basesiz.

1 booksteinM<-function(M, p1, p2)
2 {D<-basesiz(M, p1, p2)
3 m<-matrix(NA, nrow(M), ncol(M))
4 p1<-M[p1,]
5 p2<-M[p2,]
6 m[,1]<-(((p2[1]-p1[1])*(M[,1]-p1[1])+(p2[2]-p1[2])
7 + *(M[,2]-p1[2]))/(D^2))-0.5
8 m[,2]<-((p2[1]-p1[1])*(M[,2]-p1[2])-(p2[2]-p1[2])
9 + *(M[,1]-p1[1]))/(D^2)

10 m}

We use this function for performing the same task on a set of configurations or-
ganized in an array object using a single loop. This is implemented within the
booksteinA function.

Function 4.5. booksteinA

Arguments:
A: Array containing configuration matrices.
p1: Index of the first baseline landmark.
p2: Index of the second baseline landmark.

Value:
Array of scaled configuration matrices aligned on the baseline of coordinates (−0.5, 0)

and (0.5, 0).
Required functions: booksteinM, basesiz.

1 booksteinA<-function(A, p1, p2)
2 {B<-array(NA, dim=c(dim(A)[1],dim(A)[2],dim(A)[3]))
3 for (i in 1: dim(A)[3])
4 {B[,,i]<-booksteinM(A[,,i], p1, p2)}
5 B}

We can appraise a mean shape using the Bookstein coordinates as the config-
uration of coordinates corresponding to the mean of all individual coordinates. We
develop the mbshape function to perform this task. The function returns the mean
shape matrix and works with the same arguments as in booksteinA.

4.2 Superimposition Methods 143

Function 4.6. mbshape

Arguments:
A: Array containing configuration matrices.
p1: Index of the first baseline landmark.
p2: Index of the second baseline landmark.

Value:
Matrix of mean shape coordinates.

Required functions: booksteinA, booksteinM, basesiz.

1 mbshape<-function(A,p1, p2)
2 {B<-booksteinA(A, p1, p2)
3 k<-dim(A)[2]
4 mbshape<-matrix(NA, dim(A)[1], dim(A)[2])
5 for (i in 1:k)
6 {mbshape[,i]<-apply(B[,i,], 1, mean)}
7 mbshape}

The bookstein2d function of the shapes package performs a baseline reg-
istration for 2D data. We plot the resulting superimposition with the plotshapes
function of the same package (see Fig. 4.3).

>library(shapes)
>data(gorf.dat)
>B<-bookstein2d(gorf.dat)
>plotshapes(B$bshpv)

We can produce more customized graphs with our own functions. Here is an
example of code and the corresponding graph (see Fig. 4.4).

>layout(matrix(c(1,2),1,2))
>data(gorm.dat)
>plot(mbshape(gorf.dat,1,2),pch=18,asp=1,
+ xlab="",ylab="",axes=F)
>points(mbshape(gorm.dat,1,2), pch=22)
>lines(mbshape(gorm.dat,1,2)[c(1,6,7,8,2,3,4,5,1),])
>lines(mbshape(gorf.dat,1,2)[c(1,6,7,8,2,3,4,5,1),],lty=2)
>Fe<-booksteinA(gorf.dat, 1, 2)
>Ma<-booksteinA(gorm.dat, 1, 2)
>plot(Fe[,1,],Fe[,2,],asp=1,axes=F, xlab="",ylab="",
+ cex=0.5,pch=18)
>points(Ma[,1,],Ma[,2,], cex=0.5,pch=22)
>segments(-0.5,0,0.5,0, lw=2)

The baseline corresponds to the location of two landmarks for the 2D registration;
as a consequence the set of all possible shapes can be expressed in a p × (2 − 4)k
space, k being the number of dimensions of the configuration. It is possible to check
it by computing the singular values of the variance-covariance matrix: the last four
singular values should be null. The svd function returns a list containing singular
vectors and singular values of a rectangular matrix.

144 4 Modern Morphometrics Based on Configurations of Landmarks

−0.6 −0.2 0.0 0.2 0.4 0.6

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

Fig. 4.3. A visualization of the Bookstein registration obtained with functions of the shapes
package: configurations corresponding to eight landmarks digitized on the midline section for
30 female gorilla skulls are registered onto the first two landmarks

Fig. 4.4. Customized visualization of the Bookstein registration, on the left: mean skull shapes
for male and female gorilla (from the gorf.data dataset); on the right: superimposed con-
figurations of the 30 and 28 individuals for both sexes, with the baseline plotted as a full
segment

4.2 Superimposition Methods 145

>a<-mbshape(gorf.dat,1,2)

Reorganize data so that each configuration corresponds to a row with coordinates of landmarks
in columns.

>ma<-matrix(Fe, 30, 16, byrow=T)

Compute the variance-covariance matrix.

>vma<-var(ma)

Compute the singular values.

>round(svd(vma)$d,6)
[1] 0.002213 0.000753 0.000600 0.000228 0.000170 0.000101
[7] 0.000093 0.000087 0.000071 0.000047 0.000028 0.000021
[13] 0.000000 0.000000 0.000000 0.000000

As expected the four last singular values are null.

Bookstein registration is possible for 3D data. In this case, two landmarks, Mp1

and Mp2 , are set at coordinates (−1/2, 0, 0) and (1/2, 0, 0). The third landmark,
Mp3 , used for the registration, is set on the x, y-plane. The transformed coordinates
of Mp3 are then: (Mbp31, Mbp32, 0). The Mbp32 coordinate is enforced to be positive
in order to avoid reflection. Registration needs three translations, 1 scaling, and three
rotations for removing location, orientation and scale effects. Bookstein coordinates
vary thus in a space of 3×p−7 dimensions. Producing the registered configurations
follows three steps. The first step translates the configurations so that the mid point
between Mp1 and Mp2 corresponds to the origin of the system. The coordinates of
the mid point are thus removed from the coordinates of the whole configuration (M)
for each dimension k to obtain a translated configuration (Mt), such as

Mt.k = M.k − 1
Mp1k + Mp2k

2
,

with 1 being a column vector of p 1, p being the number of landmarks in the config-
uration. In R code, the corresponding tranb function computes the transformation
for a configuration matrix so that the middle of the baseline becomes of coordinates
(0, 0, 0).

Function 4.7. tranb

Arguments:
M: Configuration matrix.
p1: Index of the first baseline landmark.
p2: Index of the second baseline landmark.

Value:
Translated configuration matrix.

1 tranb<-function(M, p1, p2)
2 {M-matrix((M[p1,]+M[p2,])/2, nrow(M), ncol(M), byrow=T)}

146 4 Modern Morphometrics Based on Configurations of Landmarks

Translated configurations (Mt) are later rescaled by dividing the coordinates by
the baseline distance between the points Mp1 and Mp2 :

Mts = Mt/dp1p2 .

The transb function translates and scales the M using a baseline registration de-
fined by the landmarks p1 and p2. It is developed below.

Function 4.8. transb
Arguments:

M: Configuration matrix.
p1: Index of the first baseline landmark.
p2: Index of the second baseline landmark.

Value:
Translated and scaled configuration matrix.

Required function: basesiz.

1 transb<-function(M, p1, p2)
2 {tranb(M, p1, p2)/basesiz(M, p1, p2)}

The third step is more difficult to implement since we have to operate a series
of clockwise rotations around the x, y and z-axes through respective angles θ, ω, φ.
One calculates these angles from the transformed coordinates of the three selected
landmarks Mtspk of the Mts matrix. We calculate them following three more steps.

1. Align the baseline on the (x, z)-plane, and compute the first angle θ. This angle
is a rotation along the z-axis. It corresponds to the angle between the positive
x-axis and the x and y-coordinates of the second landmark Mtsp2 . The configu-
ration is rotated around the z-axis, using the Γz rotation matrix defined as

Γz =

⎛

⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞

⎠ .

We calculate the rotated coordinates Mtsr so that

Mtsr = (ΓzMts′)′ .

2. Align the baseline along the x-axis. One must rotate the new Mtsr to send the
points Mtsrp1,p2 to the coordinates (−0.5, 0, 0) and (0.5, 0, 0). This involves a
rotation of ω around the y-axis. This angle is defined by the vectors −−−−−−→Mtsrp2, O,
and (0.5, 0, 0). Then rotate Mtsr around the y-axis using the Γy rotation matrix
such that

Γy =

⎛

⎝

cos ω 0 − sin ω
0 1 0

sin ω 0 cos ω

⎞

⎠ .

We calculate the new rotated coordinates Mtsrr as

Mtsrr = (ΓyMtsr′)′ .

4.2 Superimposition Methods 147

3. Align the triangle Mtsrrp1,p2,p3 on the (x, y)-plane. Since Mtsrrp1,p2 are
already aligned on the x-axis, this corresponds to a rotation of φ along the
x-axis. One must rotate the new Mtsrr to send the points Mtsrrp3 to the co-
ordinates (x, y, 0). The rotation angle is defined by the vectors (0,Mtsrrp32, 0)
and (0,Mtsrrp32,Mtsrrp33). Then, one rotates Mtsrr around the y-axis using
the Γx rotation matrix defined as

Γx =

⎛

⎝

cos φ 0 sinφ
0 1 0

− sin φ 0 cos φ

⎞

⎠ ,

The rotated matrix of coordinates (Mb) is obtained as

Mb = (ΓxMtsrr′)′ .

These coordinates are the 3D Bookstein coordinates Mb. They finally
correspond to

Mb = (ΓxΓyΓzMts′)′ .

We write the bookstein3d function that performs a 3D registration of a given
configuration according to a baseline and a reference plane defined by three land-
marks p1, p2 and p3.

Function 4.9. bookstein3d

Arguments:
M: Configuration matrix.
p1: Index of the first baseline landmark.
p2: Index of the second baseline landmark.
p3: Index of the third landmark of the reference plane.

Value:
Scaled configuration matrix aligned on reference plane and on the baseline of coordi-

nates (−0.5, 0) and (0.5, 0).
Required functions: transb, basesiz, angle3.

1 bookstein3d<-function(M, p1, p2, p3)
2 {m<-transb(M, p1, p2)
3 te1<-angle3(c(1,0,0),c(m[p2,1],m[p2,2],0))
4 Rz<-matrix(c(cos(te1),sin(te1),0,-sin(te1),cos(te1),0,
5 0,0,1),3,3,byrow=T)
6 m1<-t(Rz%*%t(m))
7 om1<-angle3(c(m1[p2,1],0,0),c(m1[p2,1],0,m1[p2,3]))
8 Ry<-matrix(c(cos(om1),0,-sin(om1),0,1,0,
9 sin(om1),0,cos(om1)),3,3,byrow=T)

10 m2<-t((Ry)%*%(Rz)%*%t(m))/basesiz(M,p1,p2)
11 ph1<-angle3(c(0,m2[p3,2],0),c(0,m2[p3,2:3]))
12 Rx<-matrix(c(1,0,0,0,cos(ph1),sin(ph1),
13 0,-sin(ph1),cos(ph1)),3,3,byrow=T)
14 t(Rx%*%Ry%*%Rz%*%t(m))}

148 4 Modern Morphometrics Based on Configurations of Landmarks

Since it is possible to define a mean shape with Bookstein coordinates, we
can analyze shape variation. Some variability models have been developed around
Bookstein coordinates (for example, see [27]; however, these registrations usually
introduce spurious correlations because of the registration protocol. Moreover, the
superimposition depends on the definition of the baseline (and for 3D on the defini-
tion of the reference plane).

4.2.3 Procrustes Methods and Kendall Coordinates

The choice of the baseline for registration methods is not always trivial, and this
strategy introduces some further biases; it is therefore desirable to find a more ob-
jective method for inferring scale, translation and rotation from the whole dataset
of landmarks. This is the purpose of Procrustean methods that have been developed
throughout the 20th Century. An important part of the revolution of morphometrics
announced by Rohlf and Marcus in 1993 has been done in the quest for optimally
superimposing a set of configuration and inferring shape variation from these su-
perimpositions. This quest began with the research of Kendall [54], Goodall [38]
and Bookstein [7, 8]. Important theoretical work and statistics have been developed
around the dimensionalty and geometry of this space during the last two decades,
which gave rise to the science of shape statistics. Kendall [54] introduced the Pro-
crustes distance as a metric of a shape space defined by a general superimposition
procedure. This space later received the name of the Kendall shape space [114] for
which I provide a summarized explanation in Section 4.2.4.

The Least Squares Approach

Procrustes superimpositions in their strict sense are least-squares methods to esti-
mate superimposition parameters (scale, rotation, translation) between configura-
tions. The protocol used for the Procrustes superimposition aims to minimize the
sum of squared distances between similar landmarks of configurations by allowing
size, rotation and translation to be adjusted. This sum is called the Procrustes distance
dFM1,M2 .

The superimposition of two configuration matrices, M1 and M2, involves esti-
mating three parameters α, Γ, and β to minimize the quantity dF(M1,M2) . Therefore,

dF(M1,M2) = min ‖M2 − βM1Γ − 1pα
′‖ ,

where β is a scalar for the size parameter, Γ is a square rotation matrix of k × k
dimensions for the orientation parameter, α is the location parameter corresponding
to a vector of k values, and 1p is a column vector of p 1.

Removing Location

One can filter the location effect by removing the centroid coordinates M1c and M2c

for M1 and M2 configurations. The coordinates of the centroid define the translation

4.2 Superimposition Methods 149

parameter α. We have already written the centcoord function for returning the
coordinates of the centroid of the configuration when we have been defining the cen-
troid size (Section 4.2.1). To perform the translation, one must remove the value of
these coordinates from the ones of the original configuration. This yields the centered
the configuration (noted X in the following section). The transl function translates
a configuration so that its centroid is set at the origin.

Function 4.10. transl
Argument:

M: Configuration matrix.
Value:

Translated configuration matrix (so that the centroid is sent at the origin).
Required function: centcoord.

1 transl<-function(M)
2 {M - matrix(centcoord(M), nrow(M), ncol(M), byrow=T)}

The scale function with the scale=F argument performs the same task more
rapidly. It is used in the trans1 function that faster computes the coordinate of the
translated configuration.

Function 4.11. trans1
Argument:

M: Configuration matrix.
Value:

Translated configuration matrix (so that the centroid is sent at the origin).

1 trans1<-function(M){scale(M,scale=F)}

Here we check that our functions work properly: The centroid coordinates of
the centered configuration should equal zero, and the centroid size of the centered
configuration should be the same as the original one.

>test<-gorf.dat[,,5]
>ntest<-trans1(test)
>apply(ntest, 2, mean)
[1] 0 0
>centsiz(test)[[1]]
[1] 229.2441
>centsiz(ntest)[[1]]
[1] 229.2441

Alternatively one can obtain the centered configurations (noted X) from original
configurations (M) by premultiplying the configuration matrix (M) by the centering
matrix. The centering matrix has a diagonal equal to 1 − 1/p and lower and upper
triangle cells equal to −1/p. This multiplication is easy to compute in R. In our
example, we must type the code:

150 4 Modern Morphometrics Based on Configurations of Landmarks

>p<-nrow(test)
>cm1<-diag(1,p)-1/p
>cm1%*%test

[,1] [,2]
[1,] -10.125 111.5
[2,] 21.875 -98.5
[3,] ...

More interestingly, one can calculate the centering matrix by premultiplying the
sub Helmert matrix by its transpose [27]. The Helmert matrix is a square p × p
orthogonal matrix with the first row of elements equal to 1/

√
p , then the ith row

has i − 1 elements equal to −1/
√

i(i − 1), followed by one element equal to
(i− 1)× 1/

√

i(i − 1), and p− i zeros. The sub-Helmert matrix is a Helmert matrix
with its first row dropped. The helmert function allows us to compute the Helmert
matrix of size p × p:

Function 4.12. helmert

Argument:
p: Number of landmarks.

Value:
Helmert matrix.

1 helmert<-function(p)
2 {H<-matrix(0, p, p)
3 diag(H)<--(0:(p-1)) * (-((0:(p-1))*((0:(p-1))+1))^(-0.5))
4 for (i in 2:p){H[i,1:(i-1)]<- -((i-1)*(i))^(-0.5)}
5 H[1,]<-1/sqrt(p)
6 H}

We check that the premultiplication of the sub-Helmert matrix by its transpose is
equal to the centering matrix:

>t(helmert(4)[-1,])%*%helmert(4)[-1,]
[,1] [,2] [,3] [,4]

[1,] 0.75 -0.25 -0.25 -0.25
[2,] -0.25 0.75 -0.25 -0.25
[3,] -0.25 -0.25 0.75 -0.25
[4,] -0.25 -0.25 -0.25 0.75

By premultiplying the configuration by the sub-Helmert matrix, one removes lo-
cation considering the contrasts of the data. This is one step for obtaining Kendall
coordinates [27] – Kendall coordinates are similar to Bookstein coordinates but lo-
cation, rotation and scaling are not computed the same way. In removing location
using the sub-Helmert matrix, we obtain a configuration known as the Helmertized
configuration (Mh), a terminology that we find in several publications (e.g., [27]).
This configuration has (p × k) - k coordinates. The helmertm function returns the

4.2 Superimposition Methods 151

Helmertized configuration of a raw configuration matrix.

Function 4.13. helmertm

Argument:
M: Configuration matrix.

Value:
Helmertized configuration matrix.

Required function: hermert.

1 helmertm<-function(M)
2 {helmert(nrow(M))[-1,]%*%M}

Filtering Size

We can also remove size information by scaling all configurations so that they all
have a similar size (according to the definition of size we adopt). Removing size is
done by dividing coordinates by the size of the object. Scaling the centered configu-
ration and the Helmertized configuration, respectively, give the preshape (Z) and the
centered preshape (Zc). One can plot centered preshapes but they define a space that
loses k + 1 dimensions by comparison with the raw data (configurations occupying
a space of p × k dimensions). Preshape configurations are nearly of full rank (They
have kp − k coordinates and only one dimension is lost during scaling).

The preshape space is the space that represents all possible preshapes for config-
urations of p landmarks and k coordinates. This terminology was first introduced by
Kendall [54]. If we scale all configurations to unit size, the preshape space can be
considered as a hypersphere of radius 1 in (p−1)×k dimensions. Rotation nuisance
is still not filtered in this space.

Removing Orientation

By comparison to the preshape space, the shape space is the set of of all possible
shapes for given number of landmarks and coordinates. Shapes are invariant to ro-
tation in the shape space, in addition to being invariant to scale and translation (as
in the preshape space). Since there are less dimensions in the shape and preshape
spaces than there are geometric coordinates, these spaces are non Euclidean. In the
preshape space all possibilities for rotations of a given shape are organized along
an orbit called a fiber [54, 27]. A fiber in the preshape space corresponds thus to
a shape in the shape space. Finding the rotation parameters to superimpose M1 on
M2 is equivalent to finding the shortest distance between both fibers in the preshape
space.

If we allow M2 to adjust its size in order to decrease interlandmark differences
with M1, then Z2 will move onto the radius of the hypersphere until the distance with
Z2 to be minimized. The best match is achieved when the full Procrustes distance is
found. I followed [27] to illustrate the purpose (Fig. 4.5).

152 4 Modern Morphometrics Based on Configurations of Landmarks

dP

Z1

Z2

dF

ρ

Fig. 4.5. A schematic illustration of the preshape space with the preshape Z1 and Z2 on their
fibers. The chordal distance dP between both fibers is the partial Procrustes distance. ρ is the
smallest angle between Z1 and Z2 over rotation of Z1 and Z2. The shortest distance between
Z1 and the radius of Z2 is the full Procrutes distance dF

Kendall coordinates are invariant to location, orientation and scaling. One com-
putes Kendall coordinates (fide [27]) using complex algebra and Helmertized con-
figurations. For 2D data, the x and y-dimensions of the Helmertized configuration
can be passed to the real and imaginary part of complex numbers. Kendall coordi-
nates Mk are produced by dividing the complex coordinates of Mh by the first com-
plex coordinate. They are thus independent of size, rotation and location. Besides,
Kendall coordinates are interesting for understanding the geometry of shape spaces
(see Section 4.2.4). We return them with the kendall2d function.

Function 4.14. kendall2d

Argument:
M: Configuration matrix.

Value:
Matrix of Kendall coordinates.

Required functions: herlmertm, helmert.

1 kendall2d<-function(M)
2 {Mh<-helmertm(M)
3 mhc<-complex(nrow(Mh),Mh[,1], Mh[,2])
4 (mhc/mhc[1])[-1]}

For 2D configurations, one can also use this complex transformation on Book-
stein coordinates. Then, one can ignore the coordinates of the baseline, because they

4.2 Superimposition Methods 153

are invariant from configuration to configuration. It is easy to pass from complex
Bookstein coordinates Mb to complex Kendall coordinates Mk or from Kendall co-
ordinates to Bookstein coordinates applying the following equations:

Mk =
√

2H1Mb ,

H1 being the lower right (p − 2) × (p − 2) partition matrix of the Helmert matrix.
and

Mb = (H′
1H1)−1H′

1Mk/
√

2 .

The second possibility is appraising the Γ rotation matrix directly from centered
configurations or from centered preshapes by matrix operations. For achieving this,
one must remember that the full Procrustes distance dF between M1 and M2 is a
measure of shape difference between these configurations, and must satisfy the fol-
lowing equation:

dF = min ‖Z2c − β1Z1cΓ‖ ,

where Z2c and Z1c are the centered configurations of M1 and M2 scaled to unit
centroid size. β1, Γ being scaling and rotation parameters. Alternatively one can
write

dF = min ‖X2 − βX1Γ‖ ,

where X2 and X1 are the centered configurations of M1 and M2. β, Gamma being
scaling and rotation parameters.

Note that even though one works on centered and scaled configurations, there
is still a scale parameter; although configurations have been scaled to identical size,
one can adjust the size of one of the configurations to optimize the minimizing of
interlandmark distances. We have

Γ = UV′ ,

where U and V are matrices of singular vectors coming from the singular-value
decomposition of the product of the transpose of X2 by X1. This is written

X2′X1 = V∆U′ .

The trace of ∆ (sum of λk elements) contains information for computing the
scaling parameter for fitting the X1 configuration onto X2. One can obtain the full
Procrustes distance using the relation

dF =

√
√
√
√

(

1 − (
k∑

i=1

λi)2
)

.

The parameter β for best fit is computed as

β =
trace(X2′X1Γ)
trace(X1′X1)

.

154 4 Modern Morphometrics Based on Configurations of Landmarks

Note in this equation that the centroid size of M1 is the square root of the sum of the
k eigenvalues of X1′X1.

The full Procrustes distance between M1 and M2 is given by

dF =
√

trace
(

(X2 − βX1Γ)′(X2 − βX1Γ)
)

.

When one considers orientation, one must specify whether or not one considers
reflection. The possible reflection can be taken into account by paying attention on
the sign of the determinant of X2′X1. The singular-value decomposition considers
both orientation and reflection. When there is a reflection to improve the fit, the
determinant is negative. One can remove this possible reflection by checking the
sign of the determinant, and by inverting the sign of the last column of V. In this
case, the smallest value λk is set as negative ⇐⇒ det(X2′X1) < 0.

One can perform the same operations on the centered configurations scaled to
unit centroid size (centered preshapes) rather than to work on centered configura-
tions. In this case, one computes β1.

We write the fPsup function to perform the full Procrustes superimposition of
M1 onto M2. For convenience, configurations are scaled to centroid size in the com-
putation.

Function 4.15. fPsup

Arguments:
M1: Configuration matrix to be superimposed onto the centered preshape of M2.
M2: Reference configuration matrix.

Values:
Mp1: Superimposed centered preshape of M1 onto the centered preshape of M2.
Mp2: Centered preshape of M2.
rotation: Rotation matrix.
scale: Scale parameter.
DF: Full Procrustes distance between M1 and M2.

Required functions: centsiz, trans1.

1 fPsup<-function(M1, M2)
2 {k<-ncol(M1)
3 Z1<-trans1(centsiz(M1)[[2]])
4 Z2<-trans1(centsiz(M2)[[2]])
5 sv<-svd(t(Z2)%*%Z1)
6 U<-sv$v; V<-sv$u; Delt<-sv$d
7 sig<-sign(det(t(Z2)%*%Z1))
8 Delt[k]<-sig*abs(Delt[k]) ; V[,k]<-sig * V[,k]
9 Gam<-U%*%t(V)

10 beta<-sum(Delt)
11 list(Mp1=beta*Z1%*%Gam,Mp2=Z2,rotation=Gam,scale=beta,
12 DF=sqrt(1-beta^2))}

4.2 Superimposition Methods 155

Remember that the full Procrustes distance is also equal to the square root of
the sum of the squared distances between homologous coordinates of superimposed
configurations (previously scaled to unit size). To check this relationship, we first
write the ild2 function that calculates the p interlandmark distances between two
configurations.

Function 4.16. ild2

Arguments:
M1: First configuration matrix of k dimensions and p landmarks.
M2: Second configuration matrix of k dimensions and p landmarks.

Value:
Vector of interlandmark distances between configurations.

1 ild2<-function(M1, M2){sqrt(apply((M1-M2)^2, 1, sum))}

>test<-fPsup(gorf.dat[,,1], gorf.dat[,,2])
>test$DF
[1] 0.0643504
>sqrt(sum(ild2(test$Mp1, test$Mp2)^2))
[1] 0.0643504

One can match the two translated and scaled shapes without optimizing the scal-
ing transformation. In this case, both configurations are kept to unit centroid size,
and the superimposition is called a partial Procrustes superimposition. The optimal
rotation is the same, whether or not scaling is included in the minimization. The
partial Procrustes distance dP is equal to the square root of the sum of the squared
distances between homologous coordinates of the superimposed configurations [27].
However, one ignores the revaluation of the parameter β once centered preshape
configurations are rotated onto each other. The partial Procrustes distance dP cor-
responds to the smallest distance between Z1 and Z2 on the preshape hypersphere .
We program the partial Procrustes superimposition between two configurations un-
der the name pPsup.

Function 4.17. pPsup

Arguments:
M1: Configuration matrix to be superimposed onto the centered preshape of M2.
M2: Reference configuration matrix.

Values:
Mp1: Superimposed centered preshape of M1 onto the centered preshape of M2.
Mp2: Centered preshape of M2.
rotation: Rotation matrix
DP: Partial Procrustes distance between M1 and M2 configurations.
rho: Trigonometric Procrustes distance.

Required functions: centsiz, trans1.

156 4 Modern Morphometrics Based on Configurations of Landmarks

1 pPsup<-function(M1,M2)
2 {k<-ncol(M1)
3 Z1<-trans1(centsiz(M1)[[2]])
4 Z2<-trans1(centsiz(M2)[[2]])
5 sv<-svd(t(Z2)%*%Z1)
6 U<-sv$v; V<-sv$u; Delt<-sv$d
7 sig<-sign(det(t(Z1)%*%Z2))
8 Delt[k]<-sig*abs(Delt[k]) ; V[,k]<-sig * V[,k]
9 Gam<-U%*%t(V)

10 beta<-sum(Delt)
11 list(Mp1=Z1%*%phi,Mp2=Z2, rotation=Gam,
12 DP=sqrt(sum(ild2(Z1%*%phi, Z2)^2)),rho=acos(beta))}

Since one can include or not include scaling in the superimposition procedure,
it is necessary to define a measure of shape difference not concerned with the scal-
ing option. This measure is the trigonometric Procrustes distance ρ. It is the small-
est curvilinear length between preshapes on the hypersphere or the angle between
superimposed configurations and the origin of the hypersphere. ρ is defined as the
arccosine of the sum of λi:

ρ = arccos
k∑

i=1

λi .

As illustrated in Fig. 4.5, there are trigonometric relationships between the Pro-
crustes, the full Procrustes and the partial Procrustes distances:

dP =
sin ρ

cos (ρ/2)
= 2 sin (ρ/2) ; dF = sin ρ .

When the differences between shapes are small, full Procrustes distances, partial
Procrustes distances and trigonometric Procrustes distances are nearly similar.

Procrustes Superimposition for More than Two Configurations

I have presented two kinds of Procrustes superimposition for matching two objects:
respectively, the full ordinary Procrustes analysis and the partial Procrustes analy-
sis. Writing functions for superimposing more than two shapes is less trivial since
we have to find a general procedure for superimposing several configurations. For
this goal, one must define an objective reference for the superimposition. The ba-
sic idea is to define a mean shape as a reference for allowing some assessment of
the variability of the shape sample. The mean shape must be a parameter of cen-
tral tendency of the shape distribution. The generalized Procrustes analysis (GPA)
is a method that searches the average shape whose sum of pairwise squared coordi-
nates with other rotated configurations is minimized. Several algorithms have been
described for finding the best overall fit [39, 107]. These algorithms iteratively rotate
configurations with a trial average shape. The average shape is re-estimated from

4.2 Superimposition Methods 157

the superimposed coordinates, and the operation is iterated until the algorithm con-
verges. The superimposition can consider a posterior scaling between configurations
and the mean shape (full GPA) for improving the fit, or it can keep all configurations
to unit size (partial GPA). In any case, the mean shape is estimated from the whole
set of configurations, and is constrained to unit size.

We first develop a general function called (mshape) that computes an averaged
shape from an A array object of p, k and n dimensions.

Function 4.18. mshape

Argument:
A: Array containing configuration matrices.

Value:
Averaged configuration matrix.

1 mshape<-function(A){
2 apply(A, c(1,2), mean)}

The full general Procrustes superimposition looks at minimizing the sum of
squared norms of pairwise differences between all shapes in the sample such that

Q = min(
1
n

n∑

i=1

n∑

j=1+i

‖(βiMiΓi + 1pαi) − (βjMjΓj + 1pαj)‖2) ,

where β, Γ and α are respectively the scalar for scale, the rotation matrix and the
translation vector of k values. The algorithm for computing the full generalized Pro-
crustes analysis involves three steps:

1. Compute centered preshapes removing location effects (translation) and scaling
all objects to unit centroid size.

2. Rotate and scale the centered preshape configuration (Zic) onto the average con-
figuration appraised from all other centered preshape configurations (rotated and
not yet rotated).

3. Iterate step 2 until the quantity Q cannot be reduced anymore.

We write the fgpa function that performs the full GPA.

Function 4.19. fgpa

Argument:
A: Array containing configuration matrices.

Values:
rotated: Array of superimposed configurations.
iterationnumber: Number of iterations.
Q: Convergence criterion.
interproc.dist: Minimal sum of squared norms of pairwise differences between

all shapes in the superimposed sample.

158 4 Modern Morphometrics Based on Configurations of Landmarks

mshape: Mean shape configuration.
cent.size: Vector of centroid sizes.

Required functions: trans1, centsiz, mshape, fPsup.

1 fgpa<-function(A){

Extract information about the size of the array.

2 p<-dim(A)[1]; k<-dim(A)[2]; n<-dim(A)[3]

Create an empty array for storing scaled and rotated configurations, and an initial zero vector
for storing centroid size.

3 temp2<-temp1<-array(NA, dim=c(p,k,n))
4 Siz<-numeric(n)

Translate and scale configurations to unit size.

5 for(i in 1:n)
6 {Acs<-centsiz(A[,,i])
7 Siz[i]<-Acs[[1]]
8 temp1[,,i]<-trans1(Acs[[2]])}

Define the quantity Qm that must be minimized. Here Qm is the sum of Procrustes distances
between configurations.

9 Qm1<-dist(t(matrix(temp1,k*p,n)))
10 Q<-sum(Qm1); iter<-0

Loop until differences between shapes do not decrease anymore.

11 while (abs(Q)>0.00001)
12 {for (i in 1:n){

Define the mean shape (M) ignoring the configuration that is going to be rotated.

13 M<-mshape(temp1[,,-i])

Perform a full Procrustes superimposition between the mean shape and the ith configuration.

14 temp2[,,i]<-fPsup(temp1[,,i],M)[[1]]}
15 Qm2<-dist(t(matrix(temp2,k*p,n)))
16 Q<-sum(Qm1)-sum(Qm2)
17 Qm1<-Qm2
18 iter=iter+1
19 temp1<-temp2}
20

21 list(rotated=temp2,iterationnumber=iter,Q=Q,
22 interproc.dist=Qm2,mshape=centsiz(mshape(
23 temp2))[[2]],cent.size=Siz)}

4.2 Superimposition Methods 159

Notice that the mean of rotated configurations has a relatively smaller size than
the mean shape used as a reference (the mean shape has unit size); however, it has
the same shape. This is because the Procrustes adjustment considers both size and
rotation for minimizing interlandmark distances.

>centsiz(fgpa(gorf.dat)$mshape)[[1]]
[1] 1
>centsiz(mshape(fgpa(gorf.dat)$rotated))[[1]]
[1] 0.9980163

Gower [39] and Rohlf and Slice [107] give a solution for ensuring that the sum of
centroid sizes for all configurations reaches the number of configurations. Here the
scale parameters βi are rescaled at every iteration so that

∑n
i trace(Mip�Mip′

�) =
n, with Mip� being the ith rotated and centered configuration during one iteration
process. The Rohlf and Slice [107] algorithm involves eight steps:

1. Compute centered preshape configurations for removing translation effects and
scaling all objects to unit centroid size.

2. Use the first configuration (Z1c) as the first reference, and rotate and scale the
preshape configurations (Zic) onto this reference.

3. Compute the consensus of the superimposed configurations.
4. Compute the residual sum of squares.
5. Set the individual scale factor βi to 1.
6. Rotate each of the Mp� superimposed configurations with their new Y consensus

using the scale factor previously calculated, and rescale each newly obtained
configuration by β�/β. The scale factors are computed as

β�

β
=

√

trace(Mip�Y′
�)

trace(MipMip′
�) × trace(Y�Y′

�)
.

7. Compute a new consensus, new scale factors and a new sum of squares.
8. Reiterate steps 6 and 7 until the difference between the sums of squares are not

changing above a given tolerance level.

The fgpa2 function performs all eight steps.

Function 4.20. fgpa2

Argument:
A: Array containing configuration matrices.

Values:
rotated: Array of superimposed configurations.
iterationnumber: Number of iterations.
Q: Convergence criterion.
intereuclidean.dist: Minimal sum of squared norms of pairwise differences

between all shapes in the superimposed sample.
mshape: Mean shape configuration.
cent.size: Vector of centroid sizes.

160 4 Modern Morphometrics Based on Configurations of Landmarks

Required functions: trans1, centsiz, mshape, fPsup.

1 fgpa2<-function(A)

Start as for the fgpa function.
Extract information about the size of the array.

2 {p<-dim(A)[1]; k<-dim(A)[2]; n<-dim(A)[3]
3 temp2<-temp1<-array(NA, dim=c(p,k,n))
4 Siz<-numeric(n)

Step 1: Translate and scale to unit size.

5 for (i in 1:n)
6 {Acs<-centsiz(A[,,i])
7 Siz[i]<-Acs[[1]]
8 temp1[,,i]<-trans1(Acs[[2]])}

Initialize and set the type of objects that are going to be used for the iteration.

9 iter<-0; sf<-NA

Step 2: Use the first configuration as reference for the first superimposition.

10 M<-temp1[,,1]
11 for (i in 1:n)
12 {temp1[,,i]<-fPsup(temp1[,,i],M)[[1]]}

Step 3: Define a new consensus.

13 M<-mshape(temp1)

Step 4: Calculate the square root of the sum of paired residual squares differences.

14 Qm1<-dist(t(matrix(temp1,k*p,n)))
15 Q<-sum(Qm1); iter<-0

Step 5: Set the scaling factor to 1.

16 sc<-rep(1,n)

Start the loop.

17 while (abs(Q)>0.00001){

Step 6: Rotate and scale the configuration to the current consensus.

18 for (i in 1:n){
19 Z1<-temp1[,,i]
20 sv<-svd(t(M)%*%Z1)
21 U<-sv$v; V<-sv$u; Delt<-sv$d
22 sig<-sign(det(t(Z1)%*%M))
23 Delt[k]<-sig*abs(Delt[k])
24 V[,k]<-sig*V[,k]

4.2 Superimposition Methods 161

25 phi<-U%*%t(V)
26 beta<-sum(Delt)
27 temp1[,,i]<-X<-sc[i]*Z1%*%phi}

Step 6: Define a new consensus.

28 M<-mshape(temp1)

Step 6: Compute the rescaling factor and rescale superimposed configurations.

29 for (i in 1:n)
30 {sf[i]<-sqrt(sum(diag(temp1[,,i]%*%t(M)))
31 /(sum(diag(M%*%t(M)))*sum(diag(temp1[,,i]
32 %*%t(temp1[,,i])))))
33 temp2[,,i]<-sf[i]*temp1[,,i]}

Step 7: Compute a new consensus, new scale factors, and the difference between the square
roots of sum of paired squared differences.

34 M<-mshape(temp2)
35 sc<-sf*sc
36 Qm2<-dist(t(matrix(temp2,k*p,n)))

Step 8: Until Q is not below the tolerance, reiterate steps 6 and 7.

37 Q<-sum(Qm1)-sum(Qm2)
38 Qm1<-Qm2
39 iter=iter+1
40 temp1<-temp2}
41 list(rotated=temp2,iterationnumber=iter,Q=Q,
42 intereuclidean.dist=Qm2, mshape=
43 centsiz(mshape(temp2))[[2]], cent.size=Siz)}

The procGPA function of the shapes package nearly performs the same tasks,
except it is optimized to run more rapidly. It also uses complex algebra for 2D
data. One obtains the rotated configurations by selecting the procGPA (object)
$rotated element. Although different algorithms are used, results in terms of
variation and mean shape are very close each other.

The plotshapes function of the shapes package can display the plot of ro-
tated configurations (see Fig. 4.6).

>plotshapes(procGPA(gorf.dat)$rotated,
joinline=c(1,6,7,8,2,3,4,5,1))

We can adopt a more customized code with the common functions of R and our
own functions. This confers some more graphical possibilities (see Fig. 4.7). Seg-
ments linking landmarks are drawn with the lines function and a logical indexing
(in our examples, indices are stored in the vector joinline). These links gives an
idea of the morphology of the objects.

162 4 Modern Morphometrics Based on Configurations of Landmarks

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Fig. 4.6. Full Procrustes superimposition of the configurations corresponding to the skulls of
female gorilla of the gorf.dat dataset. We have produced the plot with the plotshapes
function of the paishapes package

>layout(matrix(c(1,2),1,2))
>par(mar=c(0.5,0.5,0.5,0.5))
>rot<-procGPA(gorf.dat)$rotated
>ms<-procGPA(gorf.dat)$mshape
>plot(rot[,1,],rot[,2,],axes=F,asp=1,
+ cex=0.6,xlab="",ylab="")
>plot(rot[,1,],rot[,2,],axes=F,asp=1,
+ cex=1,xlab="",ylab="")
>joinline<-c(1,6:8,2:5,1)
>for (i in 1:30)
+ {lines(rot[joinline,,i],col="grey")}
>points(rot[,1,],rot[,2,],cex=0.7)
>lines(ms[joinline,],col="black")

Partial generalized Procrustes superimposition follows the same methodology,
except that it does not rescale the size of centered preshape configurations for opti-
mizing the superimposition fit [107]. The pgpa function is very close to those we
have written before, and should result in theory in the definition of a similar mean
shape.

4.2 Superimposition Methods 163

Fig. 4.7. Full Procrustes superimposition of the configurations corresponding to the skulls
of female gorilla of the gorf.dat dataset. The graph is produced with the usual functions
of R. Left: scatterplot of the superimposed coordinates; right: scatterplot with links between
landmarks of the mean shape configuration

Function 4.21. pgpa

Argument:
A: Array containing configuration matrices.

Values:
rotated: Array of superimposed configurations.
it.number: Number of iterations.
Q: Convergence criterion.
intereucl.dist: Minimal sum of squared norms of pairwise differences between

all shapes in the superimposed sample.
mshape: Mean shape configuration.
cent.size: Vector of centroid sizes.

Required functions: trans1, centsiz, mshape, pPsup.

1 pgpa<-function(A)

Extract the number of landmarks, coordinate dimensions, and number of configurations con-
tained in the array.

2 {p<-dim(A)[1];k<-dim(A)[2];n<-dim(A)[3]

Create an empty array for storing scaled and rotated configurations.

3 temp2<-temp1<-array(NA, dim=c(p,k,n)); Siz<-numeric(n)

Translate every configuration by aligning their centroid with the origin, and scale them to unit
size.

4 for (i in 1:n)
5 {Acs<-centsiz(A[,,i])
6 Siz[i]<-Acs[[1]]
7 temp1[,,i]<-trans1(Acs[[2]])}

164 4 Modern Morphometrics Based on Configurations of Landmarks

Define the quantity Qm that should be minimized.

8 Qm1<-dist(t(matrix(temp1,k*p,n)))
9 Q<-sum(Qm1); iter<-0

Loop until differences between shape coordinates do not decrease anymore.

10 while (abs(Q)>0.00001)
11 {for(i in 1:n){

Define the mean shape ignoring the configuration that is going to be rotated.

12 M<-mshape(temp1[,,-i])

Perform a partial Procrustes superimposition between the mean shape and each configuration.

13 temp2[,,i]<-pPsup(temp1[,,i],M)[[1]]}
14 Qm2<-dist(t(matrix(temp2,k*p,n)))
15 Q<-sum(Qm1)-sum(Qm2)
16 Qm1<-Qm2
17 iter=iter+1
18 temp1<-temp2}
19 list("rotated"=temp2,"it.number"=iter,"Q"=Q,"intereucl.dist"=
20 Qm2,"mshape"=centsiz(mshape(temp2))[[2]],"cent.size"=Siz)}

Fig. 4.8. Plot of the partial generalized Procrustes superimposition of the configurations cor-
responding to the skulls of female gorilla of the gorf.dat dataset, with the plot.gpa
function of the Rmorph package. The full gray link lines correspond to the mean shape

The gpa function of the Rmorph package returns the same results and is op-
timized to run more rapidly. When shape variation is small, full Procrustes GPA
and partial Procrustes GPA return very similar fits. The plots of superimposed con-
figurations are nearly identical. Depending on arguments, the plot.gpa function
provides different kinds of graph using an argument of the gpa class. It works in
a similar way as the plot.opa function with an argument of the opa class. De-
fault options display a scatterplot of superimposed configurations together with the

4.2 Superimposition Methods 165

mean shape (Fig. 4.8). It can draw 99% confidence ellipses for each landmark for
2D data. One can use the ellipse function for other tasks. Below is a practical
example using the Rmorph package. Before starting the superimposition, we rotate
configurations along their major axes, checking for eventual reflection. This step is
not necessary, but it is convenient for graphical purposes. To align the configurations
along their first principal axes, I write a small function called aligne.

Function 4.22. aligne

Argument:
A: Array containing configuration matrices.

Value:
Array of configurations aligned on their first principal axis.

Required functions: angle2d, angle3.

1 aligne<-function(A)
2 {B<-A
3 n<-dim(A)[3]; k<-dim(A)[2]
4 for (i in 1:n)
5 {sv<-svd(var(A[,,i]))
6 M<-A[,,i]%*%sv$u
7 v1<-A[2,,i]-A[1,,i]; v2<-A[3,,i]-A[1,,i]
8 V1<-M[2,]-M[1,]; V2<-M[3,]-M[1,]
9

10 if (k ==2)
11 {if (round(angle2d(v1,v2),3)!=
12 round(angle2d(V1,V2),3))
13 {M[,1]=-M[,1]}}
14 if (k ==3)
15 {if (round(angle3(v1,v2),3)!=
16 round(angle2d(V1,V2),3))
17 {M[,1]=-M[,1]}}
18 B[,,i]<-M}
19 B}

After aligning configuration on their first principal axes, we re-superimpose con-
figurations with the gpa function.

>GORF<-aligne(gorf.dat)
>ji<-gpa(GORF, links=c(1, 6:8, 2:5,1))
>plot.gpa(ji, what="res")
--
Rmorph(gpa): partial Procrustes superimposition

threshold= 1e-04
tangent space projection= orthogonal
reflection= TRUE
data dimensions: Npoints = 8

dim = 2

166 4 Modern Morphometrics Based on Configurations of Landmarks

Nobj = 30
iterations Convergence (delta)
1 0.05734024
2 2.477402e-06
done
elapsed time= 0.16 seconds
--

To compare two samples of configurations, it is necessary to compute a GPA in-
volving individuals of both samples and calculating an average shape from the whole
set of configurations. In the following example, I gather two datasets to perform a sin-
gle partial Procrustes GPA. Then, I plot the superimposed configurations belonging
to the different groups on a single graph that can be used for a preliminary analysis
(see Fig. 4.9).

Concatenate the gorf.dat and gorm.dat datasets into the gor array to perform a unique
Procrustes superimposition.

>gor<-array(c(gorf.dat, gorm.dat), dim=c(8,2,59))
>go<-pgpa(aligne(gor))
>fe<-go$rotated[,,1:30]
>ma<-go$rotated[,,31:59]
>plot(fe[,1,],fe[,2,],asp=1,xlab="",ylab="",
+ cex=0.8,axes=F,pch=20,col="grey65")
>points(ma[,1,], ma[,2,],pch=4,cex=0.8)
>for (i in 1:8)
+ {lines(ELLI(ma[i,1,],ma[i,2,]))}
>for (i in 1:8)
+ {lines(ELLI(fe[i,1,],fe[i,2,]),lwd=2,col="grey65")}
>FE<-mshape(fe)
>MA<-mshape(ma)

joinline are indices that permit us to draw lines between desired landmarks. The line can
be interrupted using NA instead of an index.

>joinline<-c(1,6:8,2:5,1)
>lines(FE[joinline,],col="grey65",lwd=2)
>lines(MA[joinline,])

One can adapt the algorithms and previous functions to compute a weighted av-
erage. This can be useful later for statistical issues (see Problems of this chapter).

4.2.4 The Kendall Shape Space and the Tangent Euclidean Shape Space

We can better understand the geometry of shape space by learning from the sim-
plest case for triangles. For triangles in the plane, there are six coordinates for a
configuration, which means that raw data is organized in a six-dimensional space.
After computing the preshape coordinates (removal of the scale and the 2 transla-

tion parameters), the preshape space corresponds to the surface of a hypershpere of
k(p− 1) dimensions and of unit size radius. The shape space corresponds to a space

4.2 Superimposition Methods 167

Fig. 4.9. Partial generalized Procrustes superimposition of the configurations corresponding to
the gorilla skulls of the datasets gorf.dat and gorm.dat. 95% confidence ellipses for the
variation of each landmark according to sex. Females correspond to gray dots, gray consensus
links and 95% ellipses, while males correspond to black-color and thin links and ellipses

of k × p − k − 1 − k(k − 1)/2 dimensions as demonstrated by Kendall [54] (in the
case of triangles, this corresponds to a spherical surface). However, this surface is
not a plane, and for triangle configurations, the space corresponds to the surface of a
sphere of radius r = 1/2 [53, 27]. The mapping of Kendall coordinates for triangles
onto the sphere is given by

x =
1 − r2

2(1 + r2)
; y =

Mk.1

1 + r2
; z =

Mk.2

1 + r2
.

One can calculate Kendall spherical coordinates (θ and φ) using the equations:

x =
1
2

sin θ cos φ ; y =
1
2

sin θ sinφ ; z =
1
2

cos θ .

For shapes with more landmarks, the geometry of the shape space is more com-
plicated and no longer corresponds to the surface of a sphere but to a more complex
curved surface with more than three dimensions (namely a manifold). More prac-
tically, Rohlf [98] shows that after a GPA, aligned specimens on the reference (the
mean shape) can be represented on the surface of a hemisphere of radius 1 with the
pole defined as the mean shape. For shapes more complex than triangles, this corre-
sponds to a hyperhemishpere of radius 1 but with more dimensions. Rohlf [98] calls
it the hemisphere of aligned preshapes on the reference (see Fig. 4.10).

Although shape spaces defined by superimposition methods have less dimensions
than raw data or nonredundant measurements, they are nonEuclidean and correspond
to a curved surface. Nobody will recommend applying traditional statistics directly
in this space because traditional statistics relies on the Euclidean metric, which is
not the same as the Procrustes one. To perform usual statistical methods, one must

168 4 Modern Morphometrics Based on Configurations of Landmarks

Tangent space

ρ

O

Mp

Mk

Mo Mst

2ρ

A
lig

n
ed

 p
re

sh
ap

es
 to

 th
e re

ference

Ke
nd

al
l s

h
ap

e
sp

ac
e

Fig. 4.10. Illustration of a section of the tangent shape, Kendall shape, and aligned preshape
space for the triangle case. O corresponds to the mean reference shape, while Mk corresponds
of Kendall position of a shape in the sphere. Mo and Ms are, respectively, the orthogonal and
stereographic projections of the shape of M onto the tangent shape space

first project the surface of the hyperhemisphere onto a "flat" tangent space where
the Euclidean metrics allows us to use Euclidean statistics. The data are projected
on a tangent shape space (also called Kendall tangent space or Kent tangent space).
The contact between spaces is chosen as the mean shape. Working on variation in
the tangent space is a rather perilous estimation since the projection can introduce
distortion for the largest distances. However, provided that variation is small, one can
assume that the portion of the shape hyperhemisphere and tangent space are nearly
flat and nearly confused.

The projection onto a Euclidean space can be orthogonal or stereographic (see
Fig. 4.10). Note that both projections will introduce biases for shapes being very
different from the mean shape: the orthogonal projection minimizes large differences
while stereographic projection accentuates them.

The stereographic projection is produced by adjusting the size scale factor for the
configuration to be projected onto the tangent space. To perform this projection, we
use simple trigonometric relationships and divide the coordinates of the aligned con-
figurations by the cosine of the Procrustes distance ρ between shapes and the mean
shape. The stp function performs a stereographic projection of a configuration set,
the mean shape being the pole.

Function 4.23. stp

Argument:
A: Array containing superimposed configuration matrices.

Value:
Array of projected configurations onto the euclidean shape space.

Required function: mshape.

4.2 Superimposition Methods 169

1 stp<-function(A)
2 {p<-dim(A)[1];k<-dim(A)[2];n<-dim(A)[3]
3 Yn<-mshape(A)
4 B<-array(NA, dim=c(p,k,n))
5 for (i in 1:n)
6 {rho<-2*asin((sqrt(sum((A[,,i]-Yn)^2)))/2)
7 B[,,i]<-A[,,i]/(cos(rho))}
8 return(B)}

One performs the orthogonal projection using the coordinates of aligned con-
figurations and those of the mean shape. Rohlf [98] gives the following equation
to compute the projected configurations organized in a X∗ matrix of n rows × kp
columns:

X∗ = X(Ikp − x′mxm) ,

X being the n rows × kp columns of aligned centered preshapes on the reference,
xm being the vectorized form of the mean shape of unit centroid size, and Ikp being
a kp × kp identity matrix. The orp function performs an orthogonal projection on
a configuration dataset of the array class with p × k × n dimensions.

Function 4.24. orp

Argument:
A: Array containing superimposed configuration matrices.

Value:
Array of projected configurations onto the euclidean shape space.

Required function: mshape.

1 orp<-function(A)
2 {p<-dim(A)[1];k<-dim(A)[2];n<-dim(A)[3]
3 Y1<-as.vector(centsiz(mshape(A))[[2]])
4 oo<-as.matrix(rep(1,n))%*%Y1
5 I<-diag(1,k*p)
6 mat<-matrix(NA, n, k*p)
7 for (i in 1:n){mat[i,]<-as.vector(A[,,i])}
8 Xp<-mat%*%(I-(Y1%*%t(Y1)))
9 Xp1<-Xp+oo

10 array(t(Xp1), dim=c(p, k, n))}

Checking whether these operations have introduced important biases corresponds
to appraising whether variation is small. We can estimate them using the correlations
between Euclidean distances in the tangent shape space with pair-wise Procrustes
distance in the shape space. If variation is small, one can apply Euclidean statistics
onto the tangent space coordinates. Euclidean distances in the tangent shape space
correspond to the square root of the sum of the squared differences between the coor-
dinates of projected aligned configurations. Intershape distances are redundant, and

170 4 Modern Morphometrics Based on Configurations of Landmarks

using a p-value for the correlation coefficient is nonsense. Instead of this, we can
directly use the correlation coefficient; if it is very close to 1, we can be confident
that variation is small enough. Since distances are redundant, and the distance matri-
ces are symmetric, we compute the squared coefficient of correlation for the upper
half triangle of the matrices only. Here is an example with the corresponding figure
(Fig. 4.11).

Perform a full GPA on a dataset (here gorf.dat).

>go<-fgpa(gorf.dat)
>n<-dim(gorf.dat)[3]

Extract Procrustes distances between configurations.

>proc<-go$interproc.dist

Calculate Euclidean distances.

>go<-fgpa(gorf.dat)
>n<-dim(gorf.dat)[3]
>proc<-go$interproc.dist
>tango<-orp(go$rotated)
>tang<-matrix(NA, n, n)
>for (i in 1:n)
+ {for (j in i:n){
+ tang[i,j]<-sqrt(sum(ild2(tango[,,i],
+ tango[,,j])^2))}}
>proc.dist<-asin(proc)
>euc.dist<-as.dist(t(tang))
>plot(euc.dist, proc.dist,xlab=Euc.dist,
+ ylab=expression(rho))
>abline(0,1, col="grey50")
>(cor(proc.dist, euc.dist))^2
[1] 0.9999968

Here Procrustes and Euclidean distances are very well correlated, indicating that variation is
small.

Rohlf ([98, 99, 101]) and Slice [113] have shown that the generalized Procrustes
superimposition was one of the less unbiased approaches among the newly developed
morphometric methods to estimate variation in the shape space (however, see [93]
for a different point of view).

4.2.5 Resistant-fit Superimposition

Other optimization criteria have been developed for superimposing the coordinates
of configurations on each other, and some have interesting advantages. Indeed, since
the optimization criterion in ordinary and general Procrustes analysis is to reduce in-
terlandmark distances between configurations, this averages and allocates the change
in shape to all landmarks rather than to really influential landmarks. Siegel and
Benson [110] have noticed that the least-squares method resulted in a lack of fit

4.2 Superimposition Methods 171

0.04 0.06 0.08 0.10 0.12

0.
04

0.
06

0.
08

0.
10

0.
12

Euc.dist

ρ

Fig. 4.11. Relationship between the Procrustes distances of the shape space and the Euclidean
distances in the tangent shape space in the gorf.dat dataset

between configurations. If two configurations differ only in the position of a sin-
gle landmark, the ordinary Procrustes method will allocate difference in shape to all
landmarks rather than localizing the landmark that has changed in position. Siegel
and Benson [110] thus developed a superimposition procedure based on robust re-
gression using repeated medians. In the literature, these methods are referred to as
resistant-fit methods. Rohlf and Slice [107] published algorithms for ordinary and
generalized resistant-fit methods for 2D data.

Ordinary Resistant-Fit

For 2D data, the aim of the procedure is to fit an M1 configuration onto an M2
configuration by minimizing the number of mismatching landmarks between config-
urations. As with the least-squares procedure we start using the equation:

M1� = 1pα′ + βM1Γ ,

where α is a vector of translation of k elements, β is a scaling factor, and Γ is a k×k
rotation matrix.

The procedure uses four steps:

1. Perform a first estimate of the superimposition of M1 and M2 using the full
ordinary procedure. This approximation facilitates the estimation of the rotation
parameter [107], and yields the M1p and M2p configuration matrices on which
the resistant-fit parameters will be estimated.

2. Appraise the scale factor by resistant-fit. The scale factor corresponds to the re-
peated median of the ratios of corresponding interlandmark distances. The dist
function can compute the interlandmark distances in the configuration, and one
can coerce it into a matrix object with the code as.matrix(dist(M)).

172 4 Modern Morphometrics Based on Configurations of Landmarks

The medsize function computes the repeated median size of a configuration;
it uses the median function.

Function 4.25. medsize
Argument:

M: Configuration matrix.
Value:

Repeated median size of the configuration.

1 medsize<-function(M)
2 {mat<-as.matrix(dist(M))
3 median(apply(mat, 2, median, na.rm=TRUE))}

3. Estimate the rotation matrix. The rotation angle is appraised in a similar way,
and the rotation matrix Γ is computed from the angle φ:

Γ =
(

cos φ sinφ
− sin φ cos φ

)

.

To obtain φ, all angles defined by homologous vectors in both configurations are
computed, and the median angle-value is estimated. Finding the median value
for an angle is problematic since angles are circular data with a period of 2π.
The problem is nearly solved if configurations have been first superimposed ac-
cording to the ordinary Procrustes superimposition. Indeed, one can expect that
most adjustments of rotation will be close to 0. Siegel and Benson [110] suggest
using values of φ ranging between -π and π. For 2D data, we can take advantage
of vectors written in their complex form as the combination of arguments and
modulus. One must define a function for finding the arguments between all simi-
lar complex vectors of both configurations. The argallvec function computes
the angles between homologous vectors of both configurations.

Function 4.26. argallvec
Arguments:

X1: First configuration matrix.
X2: Second configuration matrix.

Value:
p × p matrix of angles between homologous vectors of both configurations.

1 argallvec<-function(X1, X2)
2 {p<-dim(X1)[1]
3 m<-m<-matrix(NA, p, p)
4 for (i in 1:p){ for (j in 1:p){
5 m[i,j]<-Arg(complex(1,X2[i,1],X2[i,2])
6 -complex(1,X2[j,1],X2[j,2]))-
7 Arg(complex(1,X1[i,1],X1[i,2])
8 -complex(1,X1[j,1],X1[j,2])) }}
9 ((m+pi)%%(2*pi))-pi}

4.2 Superimposition Methods 173

4. Perform the final translation. One appraises the tanslation vector (α) using the
median of the differences in landmark position between the X2 and X1 matrices
for each dimension.
The oPsup function performs an orthogonal resistant-fit between two configu-
ration matrices.

Function 4.27. oPsup
Arguments:

M1: Configuration matrix to be superimposed onto the centered preshape of M2.
M2: Reference configuration matrix.

Values:
Mo1: Superimposed centered preshape of M1 onto Mo2.
Mo2: Centered preshape of M2.

Required functions: argallvec,fPsup, centsiz, trans1.

1 oPsup<-function(M1, M2)
2 {p<-dim(M1)[1]; k<-dim(M1)[2]

Step 1.

3 ols<-fPsup(M1, M2)
4 X1<-ols[[1]]; X2<-ols[[2]]

Step 2.

5 M<-as.matrix(dist(X2))/as.matrix(dist(X1))
6 beta<-median(apply(M, 2, median, na.rm=TRUE))

Step 3.

7 ARG<-argallvec(X1,X2)
8 phi<-median(apply(ARG, 2,median, na.rm=TRUE))
9 Gam<-matrix(c(cos(phi),-sin(phi),sin(phi),cos(phi)),2,2)

Step 4.

10 alpha<-X2-beta*X1%*%Gam
11 alpha<-matrix(apply(alpha,2,median), p, k, byrow=T)
12 list("Mo1"=beta*X1%*%Gam + alpha,"Mo2"=X2)}

We apply this method with an outlier introduced in one of the two configurations.
The resulting superimposition is compared with the ordinary Procrustes superimpo-
sition in Fig. 4.12.

>layout(matrix(c(1,2),1,2))
>par(mar=c(1,1,1,1))
>M1<-gorf.dat[,,1]; M2<-gorf.dat[,,2]
>M1[1,2]<-250
>lsq<-fPsup(M1, M2)
>resf<-oPsup(M1, M2)

174 4 Modern Morphometrics Based on Configurations of Landmarks

Fig. 4.12. Difference of behavior between the resistant-fit and the full-Procrustes-fit super-
impositions when one outlier is present in one of the configurations. Left: ordinary-full-
Procrustes superimposition; right: resistant-fit superimposition

Plot the ordinary-full-Procrustes superimposition.

>plot(lsq[[1]], asp=1,axes=F, xlab="",ylab="")
>points(lsq[[2]], pch=3)
>joinline<-c(1,6:8,2:5,1)
>lines(lsq[[1]][joinline,])
>lines(lsq[[2]][joinline,], lty=3)

Plot the resistant-fit superimposition.

>plot(resf[[1]], asp=1,axes=F, xlab="",ylab="")
>points(resf[[2]], pch=3)
>lines(resf[[1]][joinline,])
>lines(resf[[2]][joinline,], lty=3)

For 3D data, we use the same approach, taking into account the third coordinate.
A difficulty remains for calculating the rotation matrix (Γ), which does not depends
on a single but on several angles. Siegel and Pinkerton [111] and Slice [112] have
provided the formulae to compute Γ that depends on angles φ, ω, and θ. These an-
gles, respectively, perform rotations around the x, y, and z-axes. We have

Γ=

(
cos θ cos ω + sin θ sin φ sin ω cos θ sin φ sin ω − sin θ cos ω cos φ sin ω

sin θ cos φ cos θ cos φ − sin φ
sin θ sin φ cos ω − cos θ sin ω sin θ sin ω + cos θ sin φ cos ω cos φ cos ω

)

.

One must first estimate a list of vectors to compute from the M1 data matrix and
the M2 reference matrix in order to obtain Γ. The rotation matrix is based on all sets

4.2 Superimposition Methods 175

of triplets for landmarks i, j and k. Let M1i, M1j , M1k, M2i, M2j , M2k be the
vectors containing the coordinates of the landmarks of the data and reference matrix
for each dimension. Then, these vectors are used to determine sets of orthogonal
vectors M1ij , M1ijk, M1ijk�, M2ij , M2ijk, M2ijk� as follows:

M1ij =
M1j − M1i

‖M1j − M1i‖
; M2ij =

M2j − M2i

‖M2j − M2i‖
,

M1ijk =
(M1k − M1i) − [(M1k − M1i).M1ij]M1ij

‖(M1k − M1i) − [(M1k − M1i).M1ij]M1ij‖
,

M2ijk =
(M2k − M2i) − [(M2k − M2i).M2ij]M2ij

‖(M2k − M2i) − [(M2k − M2i).M2ij]M2ij‖
,

and
M1ijk� = M1ij × M1ijk ; M2ijk� = M1ij × M1ijk .

The sets of orthonormal vectors are stored in Y1 and Y2 matrices for each config-
uration. To rotate a triplet of landmarks onto the other, one calculates Γ as follows:

Γ = Y1′Y2 .

One must appraise a median matrix from all possible triplets of points. The
not-so-obvious solution is to transform all Γijk rotation matrices into Sijk skew-
symmetric matrices (see [112]). Indeed, element-wise repeated medians of skew-
symmetric matrices yield a skew-symmetric matrix (noted S), which in turn is
associated with a unique orthogonal rotation matrix (Γ) by the relationships

Sijk = (Γijk + Ik)−1(Γijk − Ik) ,

Ik being a k × k identity matrix;

S = medianp
i (medianp�=i

j (medianp�=i,j
k (Sijk))) ;

Γ = (Ik + S)(Ik − S)−1 .

We write the corresponding rrot function for achieving the rotation of the M2
configuration onto M1 following a resistant-fit approach:

Function 4.28. rrot

Arguments:
M1: Configuration matrix to be aligned onto M2.
M2: Reference configuration matrix.

Values:
ref: Configuration rotated onto the reference.
targ: Reference configuration.
Gamma: Rotation matrix.

176 4 Modern Morphometrics Based on Configurations of Landmarks

1 rrot<-function(M1, M2)
2 {p<-dim(M1)[1]; k<-dim(M1)[2]
3 P<-1:p
4 I<-diag(1,3)
5 A<-array(NA, dim=c(p,p,p,3,3))
6 for (i in P){
7 for (j in P[-i]){
8 for (k in P[-c(i,j)]){
9 M1i<-matrix(M1[i,])

10 M1j<-matrix(M1[j,])
11 M1k<-matrix(M1[k,])
12 M2i<-matrix(M2[i,])
13 M2j<-matrix(M2[j,])
14 M2k<-matrix(M2[k,])
15 M1ij<-(M1j-M1i)/sqrt(sum((M1j-M1i)^2))
16 M2ij<-(M2j-M2i)/sqrt(sum((M2j-M2i)^2))
17 M1ijk<-((M1k-M1i)-as.numeric(t(M1k-M1i)
18 %*%M1ij)*M1ij)/ sqrt(sum(((M1k-M1i)-
19 as.numeric(t(M1k-M1i)%*%M1ij)*M1ij)^2))
20 M2ijk<-((M2k-M2i)-as.numeric(t(M2k-M2i)
21 %*%M2ij)*M2ij)/ sqrt(sum(((M2k-M2i)-
22 as.numeric(t(M2k-M2i)%*%M2ij)*M2ij)^2))
23 M1s<-matrix(c(M1ij[2]*M1ijk[3]-M1ij[3]*M1ijk[2],
24 M1ij[3]*M1ijk[1]-M1ij[1]*M1ijk[3],M1ij[1]*
25 M1ijk[2]-M1ij[2]*M1ijk[1]))
26 M2s<-matrix(c(M2ij[2]*M2ijk[3]-M2ij[3]*M2ijk[2],
27 M2ij[3]*M2ijk[1]-M2ij[1]*M2ijk[3],M2ij[1]*
28 M2ijk[2]-M2ij[2]*M2ijk[1]))
29 X<-cbind(M1ij, M1ijk, M1s)
30 Y<-cbind(M2ij, M2ijk, M2s)
31 H<-t(X)%*%Y
32 A[i,j,k,,]<-S<-solve(H+I)%*%(H-I)}}}
33 S1<-apply(apply(apply(A,c(1,2,4,5),median,na.rm=T),
34 c(1,3,4),median,na.rm=T),2:3,median,na.rm=T)
35 H<-(I+S1)%*%solve(I-S1)
36 list("ref"=M2, "targ"=M1%*%t(H), "Gamma"=H)}

Once done, the orthogonal resistant-fit procedure is similar to the one for 2D
data. The r3sup function performs a 3D resistant-fit for two configurations.

Function 4.29. r3sup

Arguments:
M1: 3D configuration matrix to be superimposed onto the centered preshape of M2.
M2: 3D reference configuration matrix.

Values:
Mo1: Superimposed centered preshape of M1 onto Mo2.
Mo2: Centered preshape of M2.

4.2 Superimposition Methods 177

Required functions: fPsup, centsiz, trans1.

1 r3sup<-function(M1, M2)
2 {p<-dim(M1)[1]; k<-dim(M1)[2]
3 ols<-fPsup(M1, M2)
4 X1<-ols[[1]]; X2<-ols[[2]]
5 B<-as.matrix(dist(X2))/as.matrix(dist(X1))
6 M<-B; M<-t(M)
7 M[row(B)<col(B)]<-B[row(B)<col(B)]
8 M<-as.matrix(dist(X2))/as.matrix(dist(X1))
9 beta<-median(apply(M, 2, median, na.rm=TRUE))

10 Gam<-rrot(X1,X2)[[3]]
11 alpha<-X2-beta*X1%*%Gam
12 alpha<-matrix(apply(alpha,2,median),p,k, byrow=T)
13 list("Mo1"=beta*X1%*%Gam + alpha,"Mo2"=X2)}

Note that the procedure is consuming more time than the ordinary Procrustes full
superimposition.

Generalized Resistant-Fit

Generalizing the above procedures for more than two shapes is not usual, since little
or no statistical background about resistant-fit methods is available from the litera-
ture. This is inherent to several properties of the method and its philosophy:

• Unlike procedures minimizing the Procrustes distances, parameters are estimated
using procedures that are based on a biased estimator of central tendency (the
median), which makes it unclear whether one can interpret results statistically.

• If there are fewer points that closely fit between configurations, there can be
ambiguity in the best fitting: indeed, several regions can fit, but which one to
choose unambiguously?

• Resistant-fit methods are more time consuming than Procrustes methods.
• There is no symmetry by fitting M1 onto M2 and M2 onto M1 as for partial Pro-

crustes superimpostion, and thus no similar distances between objects depending
on the reference configuration.

However, the resistant approach has interesting properties for some datasets. At least
they provide a different way o displaying and examining shape differences. Some
datasets can display only one or a few landmarks that are known to exhibit large
variation around the general shape of the configurations. Unlike least-squares dis-
tance optimization methods, resistant-fit approaches perform superimpositions that
are not sensitive to the change of position of a single or few points. Analyzing vari-
ation of points around a landmark scatterplot produced by resistant-fit methods can
allow us to understand and to localize shape difference with a different point of view
that can be closer to biological reality. Rohlf and Slice [107] and Slice [112] pub-
lished algorithms for fitting more than two shapes. They proceed in several steps as
explained below:

178 4 Modern Morphometrics Based on Configurations of Landmarks

1. First fit all objects using a generalized Procrustes superimposition.
2. Scale all configurations to have unit median size.
3. Compute a consensus that corresponds to the element-wise medians of all con-

figurations and scale this consensus to unit median size.
4. Superimpose all configurations onto the consensus following the ordinary

resistant-fit
5. Compute a new consensus estimate and measure the goodness-of-fit (a value that

should be minimized). If the result is above a given level of tolerance, go back
to step 3. Rohlf and Slice [107] suggest using the median difference between
successive consensuses of two iterations, something I have adopted here.

The corresponding function for 2D data should use the previous functions we
have programmed, but it should shortcut the ordinary resistant-fit by removing the
former Procrustes alignment. We write grf2 to compute a generalized resistant-fit
for 2D configurations.

Function 4.30. grf2

Argument:
A: Array containing 2D configuration matrices.

Values:
rotated: Array of superimposed configurations.
iteration: Number of iterations
limit: Convergence criterion
medshape: Median shape configuration.

Required functions:pgpa,trans1,centsiz,mshape,pPsup,medsize,argallvec.

1 grf2<-function(A)
2 {p<-dim(A)[1]; k<-dim(A)[2]; n<-dim(A)[3]

Step 1.

3 A<-pgpa(A)$rotated
4 D<-B<-array(NA, dim=c(p,k,n))

Step 2.

5 for (i in 1:n){
6 B[,,i]<-A[,,i]/medsize(A[,,i])}

Step 3.

7 Y<-apply(B, 1:2, median)
8 Y<-Y/medsize(Y)
9 A0<-10

10 iter<-1

Step 4.

11 while(A0>0.0005){

4.2 Superimposition Methods 179

Ordinary resistant-fit shortcut.

12 for (i in 1:n){
13 M<-as.matrix(dist(Y))/as.matrix(dist(B[,,i]))
14 beta<-median(apply(M, 2, median, na.rm=TRUE))
15 ARG<-argallvec(B[,,i],Y)
16 phi<-median(apply(ARG, 2,median, na.rm=TRUE))
17 Gam<-matrix(c(cos(phi),-sin(phi),
18 sin(phi),cos(phi)),2,2)
19 alpha<-Y-beta*B[,,i]%*%Gam
20 D[,,i]<-beta*B[,,i]%*%Gam+matrix(apply(
21 alpha,2,median),p,k,byrow=T)}
22 Yb<-apply(D, 1:2, median)

Step 5.

23 A0<-median(sqrt(apply((Yb-Y)^2,1,sum)))
24 Y<-Yb<-Yb/medsize(Yb)
25 B<-D
26 iter<-iter+1}
27 list("rotated"=D,"limit"=A0,"iteration"=iter,"medshape"=Yb)}

The corresponding function for 3D data is very similar except for estimating the
rotation. The grf3 function performs a generalized resistant-fit for a set of 3D con-
figurations.

Function 4.31. grf3

Argument:
A: Array containing 3D configuration matrices.

Values:
rotated: Array of superimposed configurations.
iteration: Number of iterations
limit: Convergence criterion
medshape: Median shape configuration.

Required functions: pgpa, trans1, centsiz, mshape, pPsup, medsize, rrot.

1 grf3<-function(A)
2 {p<-dim(A)[1]; k<-dim(A)[2]; n<-dim(A)[3]

Step 1.

3 A<-pgpa(A)$rotated
4 D<-B<-array(NA, dim=c(p,k,n))

Step 2.

5 for (i in 1:n){
6 B[,,i]<-A[,,i]/medsize(A[,,i])}

180 4 Modern Morphometrics Based on Configurations of Landmarks

Step 3.

7 Y<-apply(B, 1:2, median)
8 Y<-Y/medsize(Y)
9 A0<-10

10 iter<-1

Step 4.

11 while(A0>0.005){

Ordinary resistant-fit shortcut.

12 for (i in 1:n){
13 M<-as.matrix(dist(Y))/as.matrix(dist(B[,,i]))
14 beta<-median(apply(M, 2, median, na.rm=TRUE))
15 Gam<-rrot(B[,,i],Y)[[3]]
16 alpha<-Y-beta*B[,,i]%*%Gam
17 D[,,i]<-beta*B[,,i]%*%Gam + matrix(apply(
18 alpha,2,median),p,k,byrow=T)}
19 Yb<-apply(D, 1:2, median)

Step 5.

20 A0<-median(sqrt(apply((Yb-Y)^2,1,sum)))
21 Y<-Yb<-Yb/medsize(Yb)
22 B<-D
23 iter<-iter+1}
24 list("rotated"=D,"limit"=A0,"iteration"=iter,"medshape"=Yb)}

The tolerance can be adjusted in the function and entered through one supple-
mentary argument; I respectively set it at 0.0005 and 0.005 for 2D and 3D data. Slice
[112] suggests limiting the number of iterations since there is no guarantee that the
algorithm will return convergent results.

As demonstrated in Fig. 4.13, the generalized resistant-fit procedure can be more
efficient than Procrustes superimposition for finding landmarks that bear more varia-
tion than others. This is mainly a matter of distribution of variation between land-
marks. However, as stated before, statistical development around the resistant-fit
procedure is nearly absent. Here is the code for producing Fig. 4.13.

>gls<-pgpa(gorm.dat)
>glsr<-gls$rotated
>grf<-grf2(gorm.dat)
>grfr<-grf$rotated
>layout(matrix(c(1,2),1,2))
>plot(glsr[,1,],glsr[,2,],pch=20,col="grey65",
+ asp=1,axes=F,xlab="", ylab="",main="GPA")
>points(gls$mshape,pch=3,cex=2,lwd=2)
>plot(grfr[,1,],grfr[,2,],pch=20, col="grey65",
+ asp=1,axes=F,xlab="", ylab="",main="GRF")
>points(grf$medshape,pch=3,cex=2,lwd=2)

4.3 Thin-Plate Splines 181

GPA GRF

Fig. 4.13. Difference of behavior between generalized resistant and generalized Procrustes-
fits. Generalized resistant-fit superimposition can be useful for investigating landmarks that
affect the variation in shape (especially here with the landmarks at the apex of the config-
uration). Left: generalized partial Procrustes superimposition; right: generalized resistant-fit
superimposition. Mean and median shapes correspond to crosses

You can find additional development around resistant-fit methods in [28] and
references therein.

4.3 Thin-Plate Splines

It is easy to display differences between a couple of shapes with a field of arrows that
goes from a reference shape to a target shape. The arrows function plots arrows and
can help with this task as shown in the code example below. If shape change is too
small, one can also amplify shape differences (see Fig. 4.14). Note, however, that
when these vectors result from least-squares Procrustes superimposition, one cannot
interpret them individually.

In the following example, shape differences are displayed between averaged
sagittal skull sections for female and male gorillas.

Concatenate the gorf.dat and gorm.dat datasets; perform a partial GPA; store rotated
configurations in the fe and ma objects.

>gor<-array(c(gorf.dat, gorm.dat), dim=c(8,2,59))
>go<-pgpa(aligne(gor))
>fe<-go$rotated[,,1:30]
>ma<-go$rotated[,,31:59]

Compute and plot mean shapes for females and males.

>FE<-mshape(fe)
>MA<-mshape(ma)

182 4 Modern Morphometrics Based on Configurations of Landmarks

>layout(matrix(c(1,2),1,2))
>par(mar=c(1,1,1,1))
>plot(FE, asp=1, xlab="", ylab="", axes=F)
>joinline<-c(1,6:8,2:5,1)
>lines(FE[joinline,],col="grey50",lwd=2)
>lines(MA[joinline,],lty=3)

Draw arrows between corresponding landmarks of the mean shapes for males and females.

>arrows(FE[,1],FE[,2],MA[,1],MA[,2],
+ length=0.1,lwd=2)
>title("No amplification")

Amplify shape differences and arrows.

>mag<-3
>MA1<-MA+(MA-FE)*3
>plot(FE, asp=1, xlab="", ylab="", axes=F)
>lines(FE[joinline,], col="grey50", lwd=2)
>lines(MA[joinline,],lty=3)
>arrows(FE[,1],FE[,2],MA1[,1],MA1[,2],
+ length=0.1,lwd=2)
>title("Three-times amplification")

No amplification Three−times amplification

Fig. 4.14. Scatter of vectors depicting shape differences between superimposed skulls of mean
female gorilla (reference) and mean male gorilla (target). On the right, vectors have been
amplified 3 times

Rather than displaying only a field of vectors, it may be convenient to understand
shape change in a more global way. For this task, one needs to interpolate how and
which changes have affected the whole shape. Thin-plate splines were imported into
the field of morphometrics by Bookstein at the end of the last century [10]. They
mathematically express the deformation grids of D’Arcy Thompson [117] whose aim
was to describe shape change with a few functions applied to mapping one specimen
onto another. D’arcy Thompson grids were done by hand using an approximative and
subjective way. The idea of deformation grids and thin-plate splines is that individual
landmarks are not only to be affected by shape change, but that one can interpolate

4.3 Thin-Plate Splines 183

change in other regions of the shape being considered. Each landmark becomes a
local indication of shape change, and one uses the whole set of landmarks for finding
global and local shape change.

We can distinguish two types of shape change if we map an orthogonal grid onto
the shape under consideration. The first will deform one object into the other leaving
parallel lines of the grids parallel. In other words, they will transform squares of
the reference grid into rectangles (compaction or dilatation) or into parallelograms
(tilting) in the target grid.

Deformation of one triangle to another in two dimensions involves uniform trans-
formations only. However, the situation changes when there are two more points than
there are dimensions. Indeed, shape change does not correspond only to the effect of
affine transformations, but to the combination of affine and nonaffine transformation.
Uniform change does not take into account more local shape changes or possibilities
of curvation (torsion) of the cartesian systems.

In order to find a mathematical solution for interpolating shape change in the
whole cartesian system mapped onto a shape, Bookstein [9] imported mathematics
that are used in continuum mechanics and applied them to the bending of a thin metal
plate subject to physical constraints. The reader interested in the mathematical theory
around thin-plate splines will find more information in [10]. I will present only how
to estimate these pairs of thin-plate splines in the context of morphometrics.

For 2D data, thin-plate splines rely on the function U (r) = r2 log r2 and the
M configuration of p landmarks in two dimensions. From these, we define the three
matrices: P, Q and L as follows,

P =

⎛

⎜
⎜
⎝

0 U(r12) . . . U(r1p)
U(r21) 0 . . . U(r2p)

.
U(rp1) U(rp2) . . . 0

⎞

⎟
⎟
⎠

,

where rij is the distance between landmarks Mi and Mj .

Q =

⎛

⎜
⎜
⎝

1 M11 M12

1 M21 M22

1
1 Mp1 Mp2

⎞

⎟
⎟
⎠

,

and

L =
(

P Q
Q′ 0

)

.

Then let N be the second configuration, and Vx = (Nx 0 0 0) be a column vector;
we use L−1Vx = (w1 w2 . . . wp a1 ax ay) for defining the vector, W1. = (w1 w2 . . .
wp). The fx(x, y) function defines the transformed x-coordinate of a point Z of
(x, y) coordinates everywhere in the plane, so that

fx(x, y) = a1 + axx + ayy +
p

∑

i=1

U(‖MiZ‖) ,

184 4 Modern Morphometrics Based on Configurations of Landmarks

where ‖MiZ‖ is the distance between a point Z of (x, y) coordinates in the plane
and the Mi landmark. The same thing is repeated for the second dimension with Vy

= (Ny 0 0 0), W2., fy(x, y).
The terms of the f functions can be grouped in two components: the first is an

expression of the a coefficients that are the affine components and represent the be-
havior of f at infinity, and the second group is a sum of U(r) functions. Furthermore,
the quantity If = WPW′ is proportional to the bending energy used for the defor-
mation (= 8π × the bending energy). The f functions minimize this quantity.

The bending energy matrix (Be) corresponds to the k×k upper left submatrix of
L−1. The decomposition of this matrix shows that three eigenvalues are equal to zero
in two dimensions. The p−3 remaining non-zero eigenvectors are called the principal
warp eigenvectors, while the eigenvalues are called the bending energies. Notice that
we do not need the second target configuration to estimate these parameters.

The tps2d function written below returns the position of interpolated coordi-
nates. The arguments of this function are the coordinates of points that are going
to be interpolated in the target, the reference configuration matrix (matr), and the
target configuration (matt). For convenience, the original coordinates to be mapped
are written in a two-column matrix.

Function 4.32. tps2d

Arguments:
M: Original coordinates to be mapped by TPS.
matr: Reference configuration matrix.
matt: Target configuration matrix.

Value:
Interpolated coordinates arranged in a matrix object.

1 tps2d<-function(M, matr, matt)
2 {p<-dim(matr)[1]; q<-dim(M)[1]; n1<-p+3

Compute P, Q and L.

3 P<-matrix(NA, p, p)
4 for (i in 1:p)
5 {for (j in 1:p){
6 r2<-sum((matr[i,]-matr[j,])^2)
7 P[i,j]<- r2*log(r2)}}
8 P[which(is.na(P))]<-0
9 Q<-cbind(1, matr)

10 L<-rbind(cbind(P,Q), cbind(t(Q),matrix(0,3,3)))

Define the fx and fy functions.

11 m2<-rbind(matt, matrix(0, 3, 2))
12 coefx<-solve(L)%*%m2[,1]
13 coefy<-solve(L)%*%m2[,2]
14 fx<-function(matr, M, coef)

4.3 Thin-Plate Splines 185

15 {Xn<-numeric(q)
16 for (i in 1:q)
17 {Z<-apply((matr-matrix(M[i,],
18 p, 2, byrow=T))^2, 1, sum)
19 Xn[i]<-coef[p+1]+coef[p+2]*M[i,1]+coef[p+3]*
20 M[i,2]+sum(coef[1:p]*(Z*log(Z)))}
21 Xn}

Calculate the interpolated coordinates.

22 matg<-matrix(NA, q, 2)
23 matg[,1]<-fx(matr, M, coefx)
24 matg[,2]<-fx(matr, M, coefy)
25 matg}

One can use this function for several purposes:

1. Interpolating the position of points of the target configuration that have been
digitized only on the reference configuration (for instance, to estimate missing
landmarks).

2. Interpolating change in other parts of the shape than at the position of the land-
mark coordinates.

3. Constructing deformation grids.

Deformation grids are formalizations of D’arcy Thompson’s idea. Once we have
written the interpolating function, we can easily produce deformation grids with R
programming. Here I provide a small function called tps, for which one must en-
ter the number n of columns cells in its third argument. The grid should cover the
target completely. For this purpose, we need to determine the minimal and maximal
coordinates in order to appraise the range of the configuration on the x and y axes.
For the graphical display to be slightly larger than the configuration, we enlarge the
range of the graphic display by adding one fifth of the range of the target configu-
ration on the left and right sides. To facilitate interpretation, the reference grid has
square cells. Therefore, we adjust the number of row cells using the same interspace
as raw columns. We write tps for producing grids of deformation according to our
needs.

Function 4.33. tps

Arguments:
matr: Reference configuration matrix.
matt: Target configuration matrix.
n: Number of displayed column cells.

Value:
Deformation grid plot obtained by TPS interpolation.

Required function: tps2d.

1 tps<-function(matr, matt, n){

186 4 Modern Morphometrics Based on Configurations of Landmarks

Define the range of the graph to estimate the size of the grid.

2 xm<-min(matt[,1])
3 ym<-min(matt[,2])
4 xM<-max(matt[,1])
5 yM<-max(matt[,2])
6 rX<-xM-xm; rY<-yM-ym

Calculate the coordinates of the intersections between the lines of the grid.

7 a<-seq(xm-1/5*rX, xM+1/5*rX, length=n)
8 b<-seq(ym-1/5*rX, yM+1/5*rX,
9 by=(xM-xm)*7/(5*(n-1)))

10 m<-round(0.5+(n-1)*(2/5*rX+ yM-ym)/
11 (2/5*rX+ xM-xm))
12 M<-as.matrix(expand.grid(a,b))
13 ngrid<-tps2d(M,matr,matt)

Plot the lines of the transformed grid.

14 plot(ngrid, cex=0.2,asp=1,axes=F,xlab="",ylab="")
15 for (i in 1:m){lines(ngrid[(1:n)+(i-1)*n,])}
16 for (i in 1:n){lines(ngrid[(1:m)*n-i+1,])}}

We compute the deformation grid between the mean configurations for the gorilla
skulls belonging to females and males as:

> tps(FE, MA, 20)
> lines(FE[joinline,],col="grey50",lwd=2)
> lines(MA[joinline,],lty=3,lwd=2)

Alternatively to our function, the tpsgrid function of the shapes package
displays deformation grids between the reference and the target configurations; users
are invited to specify arguments concerning the width and location of the plot.

Note that deformation grids and TPS can map a form onto another, and they are
independent of the scale factor.

We can amplify shape change in the target to magnify the deformation. This is
the strategy that I used in the following example to produce the grids in Fig. 4.16.

>layout(matrix(c(1,2),1,2))
>mag1<-2; mag2<-4
>MA1<-MA+(MA-FE)*mag1
>tps(FE, MA1, 20)
>title("Two-times amplified deformation")
>MA2<-MA+(MA-FE)*mag2
>tps(FE, MA2, 20)
>title("Four-times amplified deformation")

Rather than displaying deformation grids, we can produce a field of vectors cov-
ering the whole shape and depicting shape change. The sp package offers a variety

4.3 Thin-Plate Splines 187

Fig. 4.15. Deformation grids produced on the skull configurations of the mean female gorilla
(reference) and the mean male gorilla (target). The left (maxillary region) part is enlarged
while the neurocranial part is smaller in the males in comparison to the females

Two−times amplified deformation Four−times amplified deformation

Fig. 4.16. Same grids as in Fig. 4.16 but with various amplification scalars

of functions for spatial data, and the spsample function can sample regularly or
randomly spaced points on lines or polygons. This is convenient for exhaustively
covering the shape surface. One can interpolate shape change everywhere in the con-
sidered shape displaying a vector field between the reference and the target. The
plot (Fig. 4.17) and the following scripts offer some other possibilities for displaying
deformation between two shapes.

>par(mar=c(1,1,1,1))
>plot(FE, asp=1,xlab="",ylab="",axes=F,pch=20,col="grey")
>lines(FE[joinline,],lwd=2,col="grey50")
>lines(MA[joinline,],lty=3,lwd=2)

188 4 Modern Morphometrics Based on Configurations of Landmarks

We sample 200 points within the reference shape polygon. The spsample function accepts
objects of a class defined in the sp package. For creating a spatial polygon object, we use the
Polygon function.

>library(sp)
>sFE<-spsample(Polygon(FE[joinline,]),200,type="regular")

After defining TPS transformation, we draw arrows between the points of the interpolated
target and the points sampled on the reference. The coordinates of the latter are found in the
@coords slot of the object returned by spsample.

>sR<-sFE@coords
>sT<-tps2d(sR,FE,MA)
>for (i in 1:dim(sR)[1])
+ {arrows(sR[i,1],sR[i,2],sT[i,1],sT[i,2],length=0.05)}

Fig. 4.17. Graphical display of TPS by way of a field of vectors. This field corresponds to
deformations associated with differences between female and male gorilla skulls

We can also display the regions of the sagittal view of the skulls that show more
deformation than others with a contour plot or an image plot. For this purpose, the
z argument, passed in the image or contour functions, represents the amount of
change at any given location – it is then is equivalent to the norm of the deformation
vectors (Fig. 4.18).

>par(mar=c(1,1,1,1))
>layout(matrix(c(1,2),1,2))
>sFE1<-spsample(Polygon(FE[joinline,]),10000,type="regular")
>sR1<-sFE1@coords
>sT1<-tps2d(sR1,FE,MA)
>def<-sqrt(apply((sT1-sR1)^2,1,sum))
>xl<-length(unique(sR1[,1]))
>yl<-length(unique(sR1[,2]))
>im<-matrix(NA,xl,yl)
>xind<-(1:xl)[as.factor(rank(sR1[,1]))]

4.4 Form and Euclidean Distance Matrix Analysis 189

>yind<-(1:yl)[as.factor(rank(sR1[,2]))]
>n<-length(xind)
>for (i in 1:n){im[xind[i], yind[i]]<-def[i]}
>plot(FE, asp=1, xlab="", ylab="", axes=F)
>lines(FE[joinline,])
>contour(sort(unique(sR1[,1])),sort(unique(sR1[,2])),im,
+ ,axes=F,frame=F,add=T)

Finally, we can superimpose the shape surface with vectors of deformations with
an image plot (Fig. 4.18). We notice that deformation between both morphologies
is nonuniform in Fig. 4.18.

Fig. 4.18. Graphical display of TPS by the way of contour and image plot. Regions that
show strong deformation are dark. These plots describe deformation associated with differ-
ences between averaged sagittal skull sections of female and male gorillas

>image(sort(unique(sR1[,1])),sort(unique(sR1[,2])),im,
+ col=gray((32:0)/32)[1:26],asp=T,axes=F,frame=F)
>sFE<-spsample(Polygon(FE[joinline,]),100, type="regular")
>sR<-sFE@coords
>sT<-tps2d(sR,FE,MA)
>for (i in 1:dim(sR)[1])
+ {arrows(sR[i,1],sR[i,2],sT[i,1],sT[i,2],length=0.04)}

You can find some other developments around TPS concepts in Dryden and
Mardia [27]. These authors suggest modifying P by introducing a smoothing pa-
rameter γ (it should be post-multiplied by the identity matrix of the same size as P).
Bookstein [14] and Gunz et al. [42] provide further developments and future direc-
tions with TPS and splines (among which are presented several 3D applications).

4.4 Form and Euclidean Distance Matrix Analysis

Statistics must be adapted for coordinates of superimposed configurations because
they are not independent data; the superimposition step introduces biases that theo-
retically prevent traditional statistics from being applied to them. In particular, when

190 4 Modern Morphometrics Based on Configurations of Landmarks

generalized superimposition aligns a series of shapes onto a reference, it introduces
covariation between coordinates of superimposed configurations. Because of this,
coordinates of superimposed configurations cannot be regarded as independent vari-
ables [62, 122]. Alternative methods were developed during the 1990s. Euclidean
distance matrix analysis [59, 63, 92] is a coordinate-free approach relying on the set
of all possible interlandmark distances that has been developed for avoiding prob-
lems with the superimposition method.

The EDMA approach works for form configurations and is invariant of translation
and rotation. Moreover, several statistical applications have been developed around
this approach, such as estimating the average form and the variance-covariance from
a set of individuals, to allow further hypotheses to be tested [64, 60, 61] (position
of influential landmarks, difference between sets of forms).

For any M configuration of p landmarks in k dimensions, there is an orthogonal a
p× p matrix of interlandmark distances that one call the form matrix (FM). One can
rapidly calculate this interlandmark distance matrix using the dist function (see
Section 4.2.3). EDMA performs operations on the Euclidean matrix or on the vec-
torized upper or lower triangle of that matrix. Below is the code of the FM function
that computes the full matrix of distances FM, and the code of the fm function that
returns the vectorized form fm of the upper diagonal entry of p(p − 1)/2 elements.

Functions 4.34. FM and fm

Argument:
M: Configuration matrix.

Value:
Full matrix of interlandmark distances in matrix form (for the FM function).
Upper diagonal entry of the full matrix of interlandmark distances in vector form (for

the fm function).

1 FM<-function(M){as.matrix(dist(M))}
2 fm<-function(M){mat<-FM(M); mat[col(mat)<row(mat)]}

Thus, any object with p landmarks in k dimensions is represented by a point
in a p(p − 1)/2 dimensional Euclidean space. This space is called the form space.
Not all sets of distances define forms because forms are constrained: the most trivial
constraint is, for any kind of shape, no interlandmark distance can be greater than the
sum of the others. The form space is thus a small part of the Euclidean space, and its
geometry is constrained by limitations imposed by possible shapes. The observations
are dependent in some extent in this limited space.

Two identical forms must have the same values for each element of the matrix,
and correspond to the same point in the form space. If forms differ by their size
only, the two points lie on a ray that passes through the origin. The form difference
matrix (FDM) between the M1 and M2 configurations, corresponds to the pair-wise
division of the elements of the matrices:

FDMM1/M2 = FM1/FM2 .

4.4 Form and Euclidean Distance Matrix Analysis 191

Two forms M1 and M2 have the same shape if the multiplication of FM1 with
a unique positive scalar φ equals FM2. Alternatively, it means that all elements of
FDM are equal.

To examine which landmarks may have some influence on shape difference be-
tween configurations, Lele and Richtsmeier [64] suggest sorting the vector returned
by the division of fm(M1) by fm(M2) and screening the landmarks that belong to
distances that appear at the extreme of the ranked vector. One can achieve this with
the order and rank functions, and by returning the name or the index of rows and
columns of the matrix as in the following example.

>gorf.dat[1,2,1]
[1] 193

Introduce a Pinocchio effect in modifying the y-value of the first landmark of the first config-
uration.

>gorf.dat[1,2,1]<-250
>Ra1<-(rank(FM(gorf.dat[,,1])/FM(gorf.dat[,,2])
+ ,na.last="keep")+0.5)/2
>Ra1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] NaN 24 23 25 27 28 26 22
[2,] 24 NaN 6 7 16 17 14 21
[3,] 23 6 NaN 15 8 11 5 13
[4,] 25 7 15 NaN 4 10 2 3
[5,] 27 16 8 4 NaN 19 18 12
[6,] 28 17 11 10 19 NaN 20 9
[7,] 26 14 5 2 18 20 NaN 1
[8,] 22 21 13 3 12 9 1 NaN
>p<-dim(gorf.dat[,,1])[1]; Name<-NA
>for(i in 1:(p-1))
+ {Name[(sum(((p-1):1)[1:i])-p+i+1):(sum(((p-1):1)
+ [1:i]))]<-paste(i,(i+1):p,sep="-")}
>Ra2<-order(rank(fm(gorf.dat[,,1])/
+ fm(gorf.dat[,,2]),na.last=NA))
>Name[Ra2]
[1] "7-8" "4-7" "4-8" "4-5" "3-7" "2-3" "2-4" "3-5" "6-8"
[10] "4-6" "3-6" "5-8" "3-8" "2-7" "3-4" "2-5" "2-6" "5-7"
[19] "5-6" "6-7" "2-8" "1-8" "1-3" "1-2" "1-4" "1-7" "1-5"
[28] "1-6"

Landmarks 1, 4 and 8 lie at the extreme of the distribution and influence difference
in shape between configurations examined here.

Alternatively, one can remove the rank of median value from the vector differ-
ence, and keep the absolute values of the results. In ordering the distribution of the
transformed distance ratios, distances including landmarks that have been altered
will appear at the end of the vector and distances that have been less altered by shape
change will appear first in the vector.

192 4 Modern Morphometrics Based on Configurations of Landmarks

>fdm<-fm(gorf.dat[,,1])/fm(gorf.dat[,,2])
>Ra<-abs(fdm-median(fdm))
>Ra3<-order(rank(Ra, na.last=NA))
>Name[Ra3]
[1] "2-7" "3-4" "3-8" "5-8" "3-6" "2-5" "2-6" "5-7" "5-6"
[10] "4-6" "6-8" "3-5" "2-4" "6-7" "2-3" "3-7" "4-5" "4-8"
[19] "4-7" "7-8" "2-8" "1-8" "1-3" "1-2" "1-4" "1-7" "1-5"
[28] "1-6"

A last solution consists of calculating the sum of divergences to the median value
for each landmark, considering the whole FDM matrix. Landmarks of greatest in-
fluence will have the higher scores.

>FDM<-FM(gorf.dat[,,1])/FM(gorf.dat[,,2])
>rownames(FDM1)<-1:8
>FDM1<-abs(FDM-median(FDM, na.rm=T))
>round(apply(FDM1,2,sum,na.rm=T),2)

1 2 3 4 5 6 7 8
4.93 0.61 0.44 0.65 0.82 2.82 0.92 0.71

As underlined by Cole [22] and Lele and Richtsmeier [64], the researcher should
fully review and inspect the FDM. For a better visualization, Cole and Richtsmeier
[22] have proposed graphically analyzing the scatter of ratios between interlandmark
distances in the vertical axis and corresponding landmarks on the horizontal axis.
The distribution of ratios involving each landmark provides information on their in-
fluence. Influential landmarks are characterized by a large range of related ratios, or
by a skewed distribution of these ratios. I propose using landmark numbers as labels
for the scatterplot; it makes interpretation easier (see Fig. 4.19).

>j<-cbind(rep(1:8,8), as.numeric(FDM))
>plot(j[-which(is.na(FDM)),],ylim=c(0,max(FDM,na.rm=T)),
+ cex=0,xlab="Landmark",ylab="Form difference",font.lab=2)
>text(j[-which(is.na(FDM)),],label=gl(8,7),cex=0.7)
>abline(h=median(FDM,na.rm=T),lty=3)

For statistical purposes, we have to define an average matrix form and variance-
covariance for a set of several configurations. For a set of n individual configurations
(Ai→n), the mean of the squared Euclidean distances must be computed between
landmarks for each pair of landmarks as follows:

eLN =
1
n

n∑

i=1

‖LN‖2 .

Then, one defines S2
LN as the sample variance for the squared distance between

landmarks L and N:

S2
LN =

1
n

n∑

i=1

(‖LN‖2 − eLN)2 .

Likewise, for 2D objects one defines the quantity ω2
LN as

4.4 Form and Euclidean Distance Matrix Analysis 193

1 2 3 4 5 6 7 8

0
1

2
3

Landmark

F
o

rm
 d

if
fe

re
n

ce

1 1 1

1

1

1

12

2 2 2 2 2
23

3 3 3 3 3 3

4

4 4 4 4 4 4

5

5 5 5 5 5 5

6

6 6 6 6 6 6

7

7 7 7
7 7

7

8 8
8 8 8 8 8

Fig. 4.19. A version of the graphical method for detecting influential landmarks using the
EDMA approach. Only landmark 1 seems to really influence the difference between both con-
figurations (this was expected since we have introduced an important change in this landmark
for the generalized resistant-fit procedure)

ω2
LN = (e2

LN − S2
LN)

1
4 .

For 3D objects, one calculates this quantity using the formula:

ω2
LN = (e2

LN − 3
2
S2

LN)
1
4 .

The average form matrix ω under its vector form corresponds to the series of ω for
each interlandmark distance. The mEDMA function calculates this average from a set
of configurations.

Function 4.35. mEDMA

Argument:
A: p× k× n array containing configuration matrices.

Value:
p× p average form matrix.

Required function: fm.

1 mEDMA<-function(A)
2 {n<-dim(A)[3];p<-dim(A)[1]; k<-dim(A)[2]
3 E<-matrix(NA,n,p*(p-1)/2)

194 4 Modern Morphometrics Based on Configurations of Landmarks

Define a matrix of n rows of Euclidean interlandmark distances in their vectorized form (fm).

4 for (i in 1:n){E[i,]<-(fm(A[,,i]))^2}

Calculate each mean squared Euclidean distance.

5 Em<-apply(E,2,mean)

Compute the sample variance of each squared interlandmark distance.

6 S<-(apply(t((t(E)-Em)^2),2,sum))/n

Compute omega = ω for 2D or 3D data.

7 if (k==2){omega<-(Em^2-S)^0.25}
8 if (k==3){omega<-(Em^2-1.5*S)^0.25}
9 Om<-diag(0,p)

10 Om[row(Om)>col(Om)]<-omega; Om<-t(Om)
11 Om[row(Om)>col(Om)]<-omega
12 Om}

In general, the algorithm works well, but, in certain cases, problems may occur
when the variance of the linear distances is larger than their mean. For instance, this
occurred with the shortest distance concerning the first landmarks of the modified
female gorilla dataset (gorf.dat with the introduction of the outlier).

>M<-mEDMA(gorf.dat)
>round(M[row(M)>col(M)],1)
[1] 225.7 196.7 162.1 93.4 NaN 102.8 182.5 62.4 84.2
[10] 139.7 204.0 142.3 69.8 34.8 103.0 177.6 139.2 101.0
[19] 68.4 143.6 113.4 97.2 76.2 77.0 116.7 81.1 159.8
[28] 84.2

So far, this situation is rare for biological data (i.e., landmarks are well defined
and not too close to each other in the configuration).

Lele [60] supplied the following algorithm to calculate the average form in terms
of a p × k and p × p matrix. It relies on the squared average Euclidean distance
ω2 defined above. This is not less than an application of multidimensional scaling
to the average form matrix. In order to compute the multidimensional scaling, one
must first calculate the centered inner-product matrix of the mean form (called B).
It is calculated by pre and post-multiplying the ω matrix by a H matrix and by
premultiplying by −0.5 as follows:

B = −1
2
HωH ,

where H, the centering matrix, is a p × p matrix with diagonal elements equal to
1 − 1/p and off diagonal elements equal to −1/k.

Then the matrix is decomposed to appraise the λ1, . . . , λp eigenvalues and
the u1, . . . , up eigenvectors. For 2D data one respectively calculates the x and y-
coordinates by multiplying the square root of the first two eigenvalues by their corre-
sponding eigenvectors. For 3D objects, one obtains the z-coordinates by multiplying

4.4 Form and Euclidean Distance Matrix Analysis 195

the third eigenvector by the square root of the third eigenvalue. The new estimate
of the mean Euclidean form M is calculated from the new configuration of x, y and
eventually z-coordinates. It should be very close to the former estimator except it
can be reflected (remember that reflections do not affect the average Euclidean form
matrix).

For convenience, we write a MDS function to perform a multidimensional scaling
on a matrix of Euclidean interlandmark distances. Remember that multidimensional
scaling is concerned with constructing a configuration of p points and of k dimen-
sions from a Euclidean distance matrix. The cmdscale function performs this task
as well.

Function 4.36. MDS

Arguments:
mat: p × p matrix of Euclidean interlandmark distances.
k: Number of desired dimensions.

Value:
Configuration matrix of p × k dimensions.

1 MDS<-function(mat, k)
2 {p<-dim(mat)[1]
3 C1<-diag(p)-1/p*matrix(1,p,p)
4 B<- -0.5*C1%*%mat^2%*%C1
5 eC<-eigen(B)
6 eve<-eC$vectors
7 eva<-eC$values
8 MD<-matrix(NA, p, k)
9 for (i in 1:k)

10 {MD[,i]<-sqrt(eva[i])*eve[,i]}
11 MD}

Then we use this function to estimate the mean form matrix. The whole compu-
tation is programmed in the mEDMA2 function. cimEDMA2 calculates the estimate
of the mean form matrix in configuration matrix and in Euclidean interlandmark dis-
tance matrix format.

Function 4.37. mEDMA2

Argument:
A: p× k× n array of configuration matrices.

Values:
M: p × k mean form matrix.
FM: Mean form matrix (matrix of interlandmark Euclidean distances).

Required functions: mEDMA, fm, MDS.

1 mEDMA2<-function(A)
2 {k<-dim(A)[2]

196 4 Modern Morphometrics Based on Configurations of Landmarks

3 Eu<-mEDMA(A)
4 M<-MDS(Eu,k)
5 list("M"=M, "FM"=FM(M))}

One can calculate the estimate of the variance-covariance matrix for a set of
forms following the formula of Lele [60]. First, the configurations are centered on
the origin, and the centered inner-product matrix (Bsi) is computed for each centered
observation (Mi) following the equation:

Bsi = BsiBsi′ .

One obtains the variance-covariance matrix Vk as

Vk =
1
k

[

1
n

n∑

i=1

Bsi − ωω′

]

,

where ω is formerly centered for each dimension.
Alternatively, one estimates Vk as:

Vk =
1
k

[

1
n

n∑

i=1

Bsi − MM′
]

.

I used the second formula for writing the vEDMA function. This function com-
putes the variance-covariance matrix from a set of configurations.

Function 4.38. vEDMA

Argument:
A: p× k× n array of configuration matrices.

Value:
Variance-covariance form matrix

Required functions: mEDMA2, mEDMA, fm, MDS.

1 vEDMA<-function(A)
2 {p<-dim(A)[1]
3 k<-dim(A)[2]; n<-dim(A)[3]
4 Bs<-array(NA, dim=c(p,p,n))
5 for (i in 1:n){
6 Cc<-apply(A[,,i],2,mean)
7 Ac<-t(t(A[,,i])-Cc)
8 Bs[,,i]<-Ac%*%t(Ac)}
9 B<-apply(Bs, 1:2,mean)

10 M<-mEDMA2(A)$M
11 Ek<-(B-M%*%t(M))/k
12 Ek}

4.4 Form and Euclidean Distance Matrix Analysis 197

The variance-covariance matrix of EDMA usually has a rank equal to p − 1.
However, diagonal elements may be negative when the variance of particular land-
marks is very small, or when there are large covariances among some landmarks.
Cole [21] suggests remedying this problem by defining the “positive semi-definite
matrix that is most similar to the estimate” of possible negative elements in the di-
agonal of Vk. In this respect, negative eigenvalues are set to 0, and the matrix is
re-estimated. To perform this calculation, I excluded the three last eigenvalues in the
following example:

>vcvgm<-vEDMA(gorm.dat)
>p<-dim(gorm.dat)[1]
>ei<-eigen(vcvgm)
>round(ei$vectors%*%diag(c(ei$values[1:(p-3)],
+ rep(0,3)))%*%t(ei$vectors),1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 45.7 -12.2 -15.6 -16.0 -0.7 36.0 -10.2 -27.0
[2,] -12.2 21.7 4.2 5.5 -3.6 -14.3 -4.2 2.9
...

Rao [87] and Mardia et al. [72] have presented methods that, like the Euclid-
ean matrix analysis, work on interlandmark distances, except that they work on
their logarithm. This allows a shape log-distance matrix to be defined from a form
log-distance matrix as demonstrated below. Consider G(M) as being the form log-
distance matrix. The G�(M) shape log-distance matrix is calculated using the
equation

G�(M) = G(M) − g1 ,

1 being a square matrix of p 1, and g is the average of the log interlandmark distances.
The average G(û) of n form log interlandmark distances matrices (G(M)i) is

obtained as follows:

G(û) =
1
n

n∑

i=1

G(M)i .

One can appraise the mean reflection size and shape by exponentiating and using
multidimensional scaling as for the Euclidean distance matrix analysis approach.
Likewise, the shape average is calculated by exponentiating G(û).

Rao [87] introduced two-sample tests procedures for mean shape and mean size.
In working on the vectorized matrix di of (p×(p−1))/2 log interlandmark distances,
the sample mean d̂ and the sample variance-covariance S are defined as:

d̂ =
1
n

n∑

i=1

di; S =
1

n − 1
(d1d

t
1 + . . . + dnd′n − nd̂d̂t) .

In R, we compute these means and variance-covariance using the log of our fm
function applied to configuration matrices.

198 4 Modern Morphometrics Based on Configurations of Landmarks

4.5 Angle-based Approaches for the Study of Shape Variation

Methods working on the matrices of all possible distances have the advantage of
being invariant to rotation and translation. However, the shape space is not as simple
as the Euclidean space described by 0.5 × p × p − 1 dimensions. Indeed, the shape
space occupies only a part of this Euclidean space, and its geometry is not a simple
cartesian space. This intuitive idea is corroborated by the fact that the space used
for Euclidean distance matrix analysis has many more dimensions than there are
dimensions in the shape space defined from coordinates of landmarks.

Rao [88] has introduced a methodology based on angles that has the advantages
of both describing objects based on the principle of invariance and objects that could
have the same number of dimensions as the shape space for 2D objects. This method
is based on a triangulation of landmarks in the whole configuration. The sum of the
three angles of the triangle is constrained to π radians; thus, only two angles are
necessary for describing a triangle. Since the number of triangles for describing a
configuration in two dimensions is equal to p − 2, a minimum of 2p − 4 angles can
permit the description a 2D shape. Yet, there is a problem since there is no unique
way to triangulate a configuration of landmarks; moreover, angles are circular data
on which Euclidean statistics are not necessarily amenable. All the same, statistics
have been developed for compositional and circular data, and some packages on R
perform related statistical analyses applied to angles (CircStats, compositions).
Here we will only write functions to compute the angles from the configuration and
from a triangulation. Reconstructing configurations from angles is more difficult;
indeed, problems can appear for reconstructing the shapes if some landmarks flip
their position among configurations or if others are collinear. Unfortunately, more
research in the statistics of angular data applied to shape analysis is needed.

Several options are possible with R to define a triangulation for a given configu-
ration.

• We can first specify it by the matrix of p− 2× 3 triangle vertices that are chosen
as triangulation for the configuration. Rows correspond to triangles and columns
to vertices.

• One can use all possible triangles in the configuration. For this goal, one writes
the alltri function.

Function 4.39. alltri
Argument:

p: Number of landmarks.
Value:

Matrix of triangle vertex combinations.

1 alltri<-function(p)
2 {t1<-expand.grid(1:p,1:p,1:p)
3 t2<-t1[t1[,1]<t1[,2],]
4 t3<-t2[t2[,2]<t2[,3],]
5 t3}

4.5 Angle-based Approaches for the Study of Shape Variation 199

• We can also extract triangles produced from a Delaunay triangulation with the
geometry package and the delaunayn function. If it returns a convenient set
of triangles, the Delaunay triangulation usually generates more triangles than the
minimum number of triangles necessary for describing a shape. We can eliminate
rows that are not necessary. We display the Delaunay triangulation (see Fig. 4.20)
by transforming the data in an object of tri class with the tri.mesh function
and using the generic plot graphical function.

We can display the triangulation using a loop and the polygon function.

>gorm<-gorm.dat[,,4]
>plot(gorm, asp=1)
>library(geometry)
>tri<-delaunayn(gorm)
>n<-dim(tri)[1]
>for (i in 1:n){polygon(gorm[tri[i,],])}

After having defined the triangulation matrix, we calculate the angles at vertices
for each triangle. We use complex algebra to calculate these angles in a function that
we call anglerao.

Function 4.40. anglerao

Arguments:
M: Configuration matrix.
triang: Triangulation matrix (giving the vertices position).

Value:
Angle matrix depicting the configuration.

1 anglerao<-function(M, triang)
2 {n<-dim(triang)[1]
3 triangl<-triang
4 for (i in 1:n){
5 t1<-triang[i,]
6 AB<-complex(real=M[t1[2],1]-M[t1[1],1],
7 imag=M[t1[2],2]-M[t1[1],2])
8 BC<-complex(real=M[t1[3],1]-M[t1[2],1],
9 imag=M[t1[3],2]-M[t1[2],2])

10 AC<-complex(real=M[t1[3],1]-M[t1[1],1],
11 imag=M[t1[3],2]-M[t1[1],2])
12 BAC<-Arg(complex(argument=-Arg(AB)+Arg(AC)))
13 CBA<-Arg(complex(argument=-Arg(BC)+Arg(-AB)))
14 ACB<-Arg(complex(argument=-Arg(-AC)+Arg(-BC)))
15 triangl[i,]<-c(BAC,CBA,ACB)}
16 triangl}

Computing the mean is a problem with angles close to 180 ◦. If one considers that
no landmarks flip in a distribution of shape, one avoids the problem by considering

200 4 Modern Morphometrics Based on Configurations of Landmarks

the two smallest angles of each triangle for statistical inference as in the meanrao
function programmed below. One can also use circular statistics and the inverse tan-
gent. The meanrao function calculates the mean shape matrix from a configuration
set and a triangulation matrix; in addition, it returns a matrix of 1 and 0 indicating,
respectively, the largest angle and the two smallest angles for each triangle.

Function 4.41. meanrao

Arguments:
A: Array of configuration matrices.
matt: Triangulation matrix.

Values:
mean: Mean shape angular matrix.
maxangle: Matrix indicating the position of the maximum angle for each triangle.

Required function: anglerao.

1 meanrao<-function(A,triang)
2 {n<-dim(A)[3];p<-dim(A)[1];nt<-dim(triang)[1]
3 A1<-array(NA, dim=c(nt, 3, n))
4 A2<-matrix(NA, nt, 3)
5 A3<-matrix(0, nt, 3)

Compute angles for all configurations.

6 for(i in 1:n)
7 {A1[,,i]<-anglerao(A[,,i], triang)}

Select each triangle from the configurations.

8 for(j in 1:nt)
9 {Aj<-A1[j,,]

Compute the mean angles from the whole set of configurations.

10 mAj<-apply(Aj,1,mean)
11 MAj<-c(max(abs(Aj[1,])),max(abs(Aj[2,])),
12 max(abs(Aj[3,])))

Find the angle of the triangle closest to 180 ◦.

13 MAji<-which(MAj==max(MAj))
14 A3[j,MAji]<-1

Redefine the mean for the values that are closest to 180 ◦.

15 mAj[MAji]<-(pi-sum(abs(mAj[-MAji])))*
16 sign(sum(mAj[-MAji]))
17 A2[j,]<-mAj}
18 list(mean=A2, maxangle=A3)}

4.5 Angle-based Approaches for the Study of Shape Variation 201

To compute the sample variance-covariance, we use only the smallest two an-
gles (because π and −π angles are equal). For interpreting this sample variance-
covariance, the function should return the vertices of largest angles as in the previous
function. These are stripped from the final variance-covariance. The vcvrao func-
tion computes the shape variance-covariance from a set of configurations.

Function 4.42. vcvrao

Arguments:
A: Array of configuration matrices.
matt: Triangulation matrix.

Values:
VCV: Angular variance covariance matrix.
maxangle: Matrix indicating the position of the maximum angle for each triangle.
strip: Indices of removed angles.

Required functions: meanrao, anglerao.

1 vcvrao<-function(A,triang)
2 {n<-dim(A)[3];nt<-dim(triang)[1]
3 Aa<-t(matrix(A, nt*3,n))
4 VCV<-var(Aa)
5 maxangle<-meanrao(A,triang)$maxangle
6 strip<-which(maxangle==1)
7 VCV<-VCV[-strip, -strip]
8 list(VCV=VCV,maxangle=maxangle, strip=strip)}

−50 0 50 100 150

−
50

0
50

10
0

15
0

20
0

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0 1

2

3

4

5

6

7

8

[t]

Fig. 4.20. Left: Delaunay triangulation for identifying a triangulation from the configuration
of the sagittal section of the gorilla skull. The mean shape of the skull for the male gorilla
dataset (gorm.dat) estimated from angles of the triangles of the configuration

It is useful to reconstruct the configuration from the angle matrix and the tri-
angulation to visualize results or to make inferences in terms of shape difference.

202 4 Modern Morphometrics Based on Configurations of Landmarks

We write the raoinv function for this goal. The total number of landmark positions
is equal to the number of triangles of the minimal triangulation matrix +2. We set
the first pair of landmarks in the triangulation to coordinates (0, 0) and (0, 1), and
then the function calculates the coordinate of the third vertex using complex num-
bers. The next vertex belongs to the triangle that has at least two vertices in common
with the first triangle of the triangulation. The program progresses until the number
of landmarks is not equal to the number of vertices in the triangulation. Note that we
have to take into account angle directions. To accomplish this, we check and correct
the values of angles with conditional expressions.

Function 4.43. raoinv

Arguments:
T: Matrix of angles.
triang: Triangulation matrix.

Value:
Configuration matrix.

1 raoinv<-function(T, triang)
2 {nt<-dim(triang)[1]
3 M<-NA
4 triang1<-triang
5 M1<-M[triang[1,1]]<-0+0i
6 M2<-M[triang[1,2]]<-1+0i

Calculate the coordinates of the third vertex of the first triangle.

7 M[triang[1,3]]<-complex(modulus=sin(T[1,2])*
8 Mod(M2-M1)/sin(T[1,3]),argument=
9 T[1,1]+Arg(M2-M1))+M[triang[1,1]]

10 itriang<-triang1[1,]
11 triang1<-triang1[-1,]
12 T1<-T[-1,]
13 i<-1

Until the number of vertices is not equal to the number of landmarks, calculate the coordinates
of the next vertex, by checking the common base shared by formerly estimated triangles.

14 while (length(itriang)<length(unique(as.vector(triang))))
15 {while (length(which(itriang%in%triang1[i,]==TRUE))<2)
16 {i<-i+1}
17 iP<-which(itriang%in%triang1[i,]==TRUE)
18 P<-itriang[iP]
19 iN<-which(triang1[i,]%in%itriang==FALSE)
20 N<-triang1[i,iN]
21 P1<-P[1]; iP1<-which(triang1[i,]==P1)
22 P2<-P[2]; iP2<-which(triang1[i,]==P2)
23 if (iP1==1 & iP2==3)
24 {P3<-P1; P1<-P2; P2<-P3; iP1<-3; iP2<-1}

4.5 Angle-based Approaches for the Study of Shape Variation 203

25 if (iP1==2 & iP2==1)
26 {P3<-P1; P1<-P2; P2<-P3; iP1<-1; iP2<-2}
27 if (iP1==3 & iP2==2)
28 {P3<-P1; P1<-P2; P2<-P3; iP1<-2; iP2<-3}
29 M1<-M[P1]
30 M2<-M[P2]
31 M[N]<-complex(modulus=sin(T1[i,iP2])*
32 Mod(M2-M1)/sin(T1[i,iN]),argument=
33 T1[i,iP1]+Arg(M2-M1))+M[P1]
34 T1<-T1[-i,]
35 itriang<-unique(c(itriang, triang1[i,]))
36 triang1<-triang1[-i,]
37 i<-1}
38 cbind(Re(M), Im(M))}

We can plot the mean shape of the sample, no matter whether the triangulation
matrix is longer than the minimal one (see 4.20).

>msh<-meanrao(gorm.dat, tri)$mean
>plot(raoinv(msh, tri),asp=1)
>text(raoinv(ju, tri),labels=1:8, cex=0.7)

Methods based on angles are not commonly used. You can read [98] for com-
ments concerning the geometry of the shape spaces described with those approaches.
Actually, the choice of the triangulation affects the geometry of the shape space; re-
sults may differ depending on the triangulation that has been chosen. This tool, if
more developed in the future, could provide exact estimates of dispersion and central
tendency parameters.

Problems

4.1. Reconstructing configuration with the truss network strategy
Write a function that reconstructs locations of landmarks, after having defined an ob-
ject of the truss class. The function must also receive a second argument for including
the prototype.

4.2. Centroid size of a vectorized set of coordinates
Write a short function that returns the centroid size of a configuration written in its
vectorized form.

4.3. Baseline size of a vectorized set of coordinates
Write a short function that returns the baseline size of a configuration written in its
vectorized form.

4.4. Bookstein and Kendall coordinates
Check the relationships between Bookstein and Kendall coordinates calculated using
the first configuration of the gorf.dat dataset of shapes.

204 4 Modern Morphometrics Based on Configurations of Landmarks

4.5. Full and partial Procrustes superimposition
Write a comprehensive and unique function that computes both full and partial Pro-
crustes superimpositions; add logical arguments for selecting among the types of
superimpositions.

4.6. Weighted superimposition
Write a function that performs a weighted GPA for several groups of configurations.
Each group may have unequal size, and the function should correct unbalance by
assigning equal weigh to each group.

4.7. Resistant-fit superimposition
Write a unique function that can perform resistant-fit superimposition between two
configuration matrices for either 2D or 3D data.

4.8. 3D TPS
Develop the function for 3D thin-plate splines. To achieve this, keep in mind that the
interpolating function is no longer U(r) = r2log(r2) but U(r)= ‖r‖. Do not forget
to include the third dimension.

4.9. Estimating the mean shape
Compute the mean shape and scale it by the mean size using Procrustes methods,
and compare it with the average form calculated with EDMA methods. Use the FDM
approach for localizing eventual form difference.

4.10. EDMA and variance-covariance
Write a small function that estimates the variance-covariance matrix of a set of con-
figurations. The function should consider the presence of negative eigenvalues and
proceed by sorting eigenvalues for finding the first negative and initialize it and the
following to 0.

4.11. Triangulation and mean shape
Compute the mean shape with triangulation and Procrustes methods and compare
them using the interlandmark distances FDM. Repeat the operation with different
triangulations. Compare your results with the ones obtained by Procrustes methods.
Which method seems to return the more reliable estimate?

4.12. Procrustes test
Write a function to perform a Procrustes test (similarity of configurations in k dimen-
sions). The test should authorize reflection for minimizing the Procrustes distance.
See Section 3.4.4 for complementary information.

5

Statistical Analysis of Outlines

Rather than working on configurations of homologous landmarks, several morpho-
metric methods have been applied to the study of outline data. Usually, morphometric
methods applied to outline data are processed in four steps.

1. Sample landmarks along the outline. Users digitize a sample of points on the
outlines according to what they think to be relevant or important. Those can be
equally spaced points (for example, according to the curvilinear abscissa), or
more densely digitized points when rapid changes in the curvature are observed.
This sample yields a set of pseudolandmarks. Some methods need the number of
pseudolandmarks to be the same among configurations if the goal is to analyze
the variation within a set of outlines.

2. Align the configurations of pseudolandmarks. Basically, these alignments are
based on superimposition methods (baseline alignment, Procrustes superimposi-
tion). The superimposition can use landmarks on the structure (on the outline or
not) or peculiar geometric features of interest (e.g., major axis of the best-fitting
ellipse on the outline) for removing rotation, size and position nuisances.

3. Fit a function for describing the outline as completely as possible. There is ac-
tually no homology between the landmarks sampled along the outline. In ad-
dition, although the sampling of pseudolandmarks can correspond very closely
to the outline, the large number of coordinates and the redundancy within this
data do not allow direct analysis. Prior to the analysis, the raw measurements
(pseudolandmark coordinates) are compacted by fitting a function that describes
parameters of the outline. It is not directly the relative positions of landmarks
of the outline but the outline parameters themselves that yield the shape infor-
mation. These parameters are appraised from the coefficients of the function ad-
justed to the sampled points. These coefficients are usually decreasing in order.
According to their order, they correspond to more and more local shape fea-
tures. Users helped by some protocol can choose to drop high-order coefficients
to focus on fewer but more relevant parameters traducing shape variation.

4. Analyze the coefficients with multivariate statistics.

206 5 Statistical Analysis of Outlines

5.1 Open Outlines

Open outlines on a structure are delimited by a starting and an ending point. If one
can arrange simple open curves after superimposition or rotation in order to express
the y-coordinate as an injection of the x-coordinate, one can consider them to be
simple open outlines. If for a given x, two or more y-coordinates correspond in two
dimensions, one will speak about complex open outlines.

5.1.1 Polynomial Curves

One can exactly fit a polynomial equation of the form y = b0 + b1x + b2x
2 + . . . +

bp−1x
p−1 on a simple collection of p points on open outlines. In practice, because

of redundancy in the data, dropping high-order coefficients should not significantly
reduce the goodness-of-fit.

Let us consider the simple example in [108] with observations of coordinates x =
1, 2, 4, 7, 9, 12 and y = 1, 5, 7, 8, 11, 12. We will use the booksteinM function for
aligning the outline (necessary if one wants to compare several similar outlines). We
use the poly function of the stats package for specifying a polynomial regression
in the formula (Fig. 5.1).

Align the starting and ending points of the curve onto the coordinates (-0.5,0); (0.5,0).

>M<-cbind(c(1,2,4,7,9,12), c(1,5,7,8,11,12))
>M1<-as.data.frame(booksteinM(M, 1,6))
>colnames(M1)<-c("x","y")
>plot(M1,asp=1,xlab="x",ylab="y")

Fit a polynomial regression to the data.

>fm1 <- lm(y ~ poly(x, 5, raw=T), data = M1)

Draw the fitted curve.

>d<-seq(-0.5, 0.5, length=200)
>lines(d, predict(fm1, data.frame(x=d)))

Return coefficients.

>coe<-coef{fm1}
>names(coe)<-c("Intercept","x^1","x^2","x^3","x^4","x^5")
>round(coe3)
Intercept x^1 x^2 x^3 x^4 x^5

0.088 -0.559 0.425 7.349 -3.101 -20.447

Since there are six points on the outline, the polynomial function passing through every point
will be of degree five. The degree is specified as an argument of the poly function. Note the
use of predict for estimating the curve fitted on the outline.

Decreasing the number of parameters by removing the higher-order coefficients
will progressively smooth the curve. One can estimate the differences between the
coordinates of sample points and estimated points. For this purpose, one can define
a threshold according to measurement error.

5.1 Open Outlines 207

−0.4 −0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2
0.

4

x

y

−0.4 −0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2
0.

4

x

y

Fig. 5.1. Fitting curves to an open outline, the graph on the left corresponds to a polynomial
regression, while the graph on the right corresponds to a natural cubic spline

5.1.2 Splines

Simple Cubic Splines

Technical information about estimating natural cubic spline parameters is supplied
in [107]. If p points are collected, the cubic spline estimate fits a series of cubic
polynomials to the data. The values of the second derivates of the interpolating poly-
nomial functions correspond to the parameters of the curve. There are p− 2 variable
parameters. One must resample fewer points on the curve to reduce the number of pa-
rameters, and then one must check whether the fit is still the same. The splinefun
function of the stats package performs cubic spline interpolation on a given set of
data points. Here I give an example of fit:

>fo<-splinefun(M1[,1], M1[,2], method="natural")
>ls(envir = environment(fo))
[1] "ties" "ux" "z"
>splinecoef <- get("z", envir = environment(fo))
>splinecoef
$method
[1] 2

$n
[1] 6

$x
[1] -0.50000 -0.27272 -0.09090 0.09090 0.31818 0.50000

$y
[1] 0.00000 0.13636 0.13636 0.04545 0.09090 0.00000

$b
[1] 0.72095 0.35808 -0.42588 -0.15453 -0.04721 -0.72639

208 5 Statistical Analysis of Outlines

$c
[1] 0.0000 -1.5966 -2.7152 4.2076 -3.7354 0.0000

$d
[1] -2.3416 -2.0508 12.6920 -11.6499 6.8483 0.0000
>plot(M1,asp=1, xlab="x",ylab="y")
>lines(spline(M1[,1], M1[,2], method="natural"))

Obtain the parameters of the curve.

>round(fo(M1[,1], deriv=2),4)
[1] 0.0000 -3.1932 -5.4305 8.4154 -7.4709 0.0000

Parametric Splines

One can express x and y-coordinates (or even z-coordinates) as parametric functions
of the cumulative chordal distance for each point of the contour. This strategy pro-
duces more parameters but is useful for fitting complex open outlines (in which for
a given x-value, several y-values can correspond), and even closed contour: the first
point being the last one.

We first write a small cumchord function that calculates the cumulative chordal
distance.

Function 5.1. cumchord

Argument:
M: Matrix of point coordinates.

Value:
Cumulative chordal distance vector.

1 cumchord<-function(M)
2 {cumsum(sqrt(apply((M-rbind(M[1,],
3 M[-(dim(M)[1]),]))^2,1,sum)))}

According to the number of dimensions, there are two or three cubic splines
fitting between the cumulative chordal distance and each of the coordinates. Thus
2× p− 2 coefficients contain shape information necessary for depicting the outline.

>M<-cbind(c(1,2,4,8,4,1,-3,-10),
+ c(1,5,7,-8,-11,-4,-3,-10))
>M1<-as.data.frame(booksteinM(M, 1,8))
>plot(M1,asp=1, xlab="x", ylab="y")
>z<-cumchord(M1)

Return coefficients.

>fo1<-splinefun(z,M1[,1],method="natural")
>fo2<-splinefun(z,M1[,2],method="natural")
>round(fo1(z, deriv=2),3)

5.1 Open Outlines 209

[1] 0.0000 0.0052 -0.0059 0.0048 -0.0037 0.0000
>round(fo2(z, deriv=2),4)
[1] 0.0000 -0.0102 -0.0199 0.0300 -0.0263 0.0000

Draw the interpolated curve.

>lines(spline(z,M1[,1],method="natural",n=100)$y,
+ spline(z,M1[,2],method="natural",n=100)$y)

−1.0 −0.5 0.0 0.5

0.
0

0.
2

0.
4

0.
6

x

y

Fig. 5.2. Fitting curves with parametric splines

Actually one can replace the cumulative chordal distance by the curvilinear ab-
scissa of unit regular step. However, this may have impacts on the values of co-
efficients and on the way shape variation is estimated; this mainly depends on the
sampling procedure applied by users.

5.1.3 Bezier Polynomials

There are other ways to fit a curve to an open outline, such as Bezier polynomials.
A Bezier polynomial of degree q is a function that passes to a sequence of q+1 points.
The parameters of the function correspond to locations of points corresponding to
vertices of a polygon around the observed points sampled on the curve. The first
and last vertices are the same as the starting and ending points. One decomposes the
matrix of sampled coordinates of points following the equation:

M = JB ,

where M corresponds to the location of sampled points (the configuration), J to the
q × q + 1 matrix of Bezier coefficients, and B to the matrix of coordinates for the
Bezier vertices. One finds the coordinates of the Bezier vertices so that

210 5 Statistical Analysis of Outlines

B = (J′J)−1J′M .

One computes the J matrix of coefficients for solving the former equation as

Jiq =
q!

(j − 1)!(q − j + 1)!
tj−1
i (1 − ti)q−j+1 ,

where d is the distance between two sampled points, and ti is the standardized
chordal distance from the first data point to the ith points so that t1 = 0 and tq+1 = 1.

We write a bezier function for extracting coefficients and Bezier vertices from
a set of coordinates sampled on an outline. The function returns vertices and coeffi-
cients of order n−1. We set n by default to be equal to the number of sampled points.

Function 5.2. bezier

Arguments:
M: Matrix of point coordinates.
n: Number of estimated Bezier vertices minus one.

Values:
J: Matrix of Bezier coefficients.
B: Coordinates of Bezier vertices.

Required function: cumchord.

1 bezier<-function(M,n = dim(M)[1])
2 {p<-dim(M)[1]
3 if (n != p) {n<-n+1}
4 M1<-M/cumchord(M)[p]
5 t1<-1-cumchord(M1)
6 J<-matrix(NA, p, p)
7 for (i in 1:p){
8 for (j in 1:p){J[i, j]<-(factorial(p-1)/(factorial(j-1)*
9 factorial(p-j)))*(((1-t1[i])^(j-1))*t1[i]^(p-j))}}

10 B<-ginv(t(J[,1:n])%*%J[,1:n])%*%(t(J[,1:n]))%*%M
11 M<-J[,1:n]%*%B
12 list(J=J, B=ginv(t(J[,1:n])%*%J[,1:n])%*%(t(J[,1:n]))%*%M)}

For drawing the curve, we compute the coordinates according to the Bezier poly-
nomial given by the B(t) function, so that

B(t) =
n∑

i=0

Bibi,n(t) ,

t ∈ [0, 1] and bi,n(t) being the basis Bernstein polynomials calculated as

bi,n(t) =
(

n

i

)

ti(1 − t)n−i, i = 0, . . . n ,

with
(
n
i

)

as the binomial coefficient.

5.1 Open Outlines 211

These formulae are necessary for writing the beziercurve function that will
return the p coordinates of equally spaced points on the Bezier curve estimated from
the Bezier vertices B.

Function 5.3. beziercurve

Arguments:
B: Matrix of Bezier vertex coordinates.
p: Number of points to be sampled on the curve.

Value:
Two-column matrix of interpolated coordinates.

1 beziercurve<-function(B,p)
2 {X<-Y<-numeric(p)
3 n<-dim(B)[1]-1
4 t1<-seq(0,1,length=p)
5 coef<-choose(n, k=0:n)
6 b1<-0:n; b2<-n:0
7 for (j in 1:p)
8 {vectx<-vecty<-NA
9 for (i in 1:(n+1))

10 {vectx[i]<-B[i,1]*coef[i]*t1[j]^b1[i]*
11 (1-t1[j])^b2[i]
12 vecty[i]<-B[i,2]*coef[i]*t1[j]^b1[i]*
13 (1-t1[j])^b2[i]}
14 X[j]<-sum(vectx)
15 Y[j]<-sum(vecty)}
16 cbind(X, Y)}

Fitting Bezier polynomial curve has the advantage of being a good estimator for
the curve even if one removes high order coefficients (i.e., considering only the first
columns of J. One can estimate whether the fit is still reliable by removing one or
more columns of J, and re-estimating the B matrix).

We try our functions for a collection of sampled landmarks M, and we draw the
estimated curve (Fig. 5.3).

>M<-cbind(c(1,2,4,7,9,12), c(1,5,7,8,11,12))
>plot(M, pch=3, xlab="X",ylab="Y",ylim=c(0,13),asp=1)
>lines(beziercurve(bezier(M)$B,50))

In superimposing curves according to starting and ending landmarks, the vertices
coordinates become the parameters of the curve. One can use them later as shape
variables for statistical analyses.

212 5 Statistical Analysis of Outlines

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12

X

Y

Fig. 5.3. Fitting curves with Bezier polynomials. The sampled points are drawn as crosses

5.2 Fourier Analysis

Closed outlines are more common in morphometric studies, and numerous studies
have used Fourier series decomposition (by using the discrete Fourier transform) for
fitting a periodic function to sampled pseudolandmarks along the outline. Fourier
transforms use the Fourier series for decomposing and analyzing periodic signals (or
functions) into a weighted sum of simpler sinusoidal component functions. The name
Fourier is given in honor to Jean Baptiste Joseph Fourier, a French mathematician
born in Burgundy during the 18th Century.

The general expression of the Fourier expansion for a periodic function f(t) with
t ∈ R and of period T , is defined as

f(t) =
1
2
a0 +

∞∑

n=1

[an cos(ωnt) + bn sin(ωnt)] ,

where
ωn = n

2π

T

is the nth harmonic of the function (in radians),
and where

an =
2
T

∫ t2

t1

f(t) cos(ωnt) dt

are the even Fourier coefficients,
and

bn =
2
T

∫ t2

t1

f(t) sin(ωnt) dt

are the odd Fourier coefficients.
One can write f(t) under its exponential form

5.2 Fourier Analysis 213

f(t) =
+∞∑

n=−∞
cneiωnt ,

with

cn =
1
T

∫ t2

t1

f(t)e−iωnt dt .

For outlines, one cannot directly apply Fourier transforms since they are defined
as a function of x and y-coordinates in two dimensions. There are at least two possi-
bilities: The first is to express the outline as a function of one transformed variable.
“Polar transform or Fourier analysis of equally spaced radii” and “Fourier analysis
of the tangent angle to the outline” correspond to the first options. The third option
is to separately decompose x an y-coordinates and to express them as functions of
the curvilinear abscissa (elliptic Fourier decomposition).

5.2.1 Fourier Analysis Applied to Radii Variation of Closed Outlines

For illustrating the method, I will focus on a specific example that consists of the
outline of the honeybee forewing. We first need to construct the outline. We ob-
tain it from the the picture “wing.jpg” (see Fig. 5.4). For digitizing coordinates
of pixels on the outline, we need the Conte function that was programmed in
Section 2.2.4. The image is a gray-scale image and can be interpreted as a simple
imagematrix object. For insuring that full rows and columns of white pixels bor-
der the imagematrix, we append one row of white pixels around the binarized
image. We select the starting point at the wing insertion with the body.

>layout(matrix(c(1,2),1,2))
>library(rimage)
>wing<-read.jpeg("/home/juju/morph/wing.jpg")
>wing<-cbind(1, wing, 1)
>wing<-rbind(1,wing, 1)
>wing1<-wing<-imagematrix(wing, type="grey")
>wing1[which(wing1<0.95)]<-0
>plot(wing)

Digitize the first landmark of the outline.

>cont<-Conte(round(unlist(locator(1)),0),wing1)
>lines(cont$X, cont$Y,lwd=2)

We could smooth the outline to reduce noise introduced by the digitizing process.
However, since we use landmarks spaced at equally spaced radii, this is not neces-
sary. For extracting equally spaced radii, we need the regularradius function
programmed in Chapter 2. In addition, we scale the data to retrieve raw coordinates,
using the ruler on the bottom of the image. We can click on the two extreme gradua-
tions with locator to estimate the number of the pixels contained on 5 mm.

214 5 Statistical Analysis of Outlines

>scalecoord<-locator(2, type="p",pch=4,lwd=2)
>scalepixsize<-sqrt(diff(scalecoord$x)^2+
+ diff(scalecoord$y)^2)
>X<-cont$X*5/scalepixsize
>Y<-cont$Y*5/scalepixsize
>Xc <- mean(X)
>Yc <- mean(Y)
>wingr<-regularradius(X, Y, 64)
>plot(wingr$coord[,1], wingr$coord[,2],pch=16,
+ asp=1,xlab="X",ylab="Y")
>for (i in 1:64)
+ {segments(0,0,wingr$coord[,1],
+ wingr$coord[,2])}

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

X

Y

Fig. 5.4. Data acquisition for Fourier analysis of equally spaced radii. The two crosses on the
left graph correspond to the landmarks digitized to obtain a scale on the millimeter paper, and
to standardize coordinates by size

One can express the radius r as a periodic function of the angle θ. The relation-
ship corresponds to the equation of the curve defined by the harmonics 0 to k:

r(θ) =
1
2
a0 +

k∑

n=1

[ak cos(ωkθ) + bk sin(ωkθ)] .

There cannot be more harmonics than half the number (p) of sampled points since
there are two parameters for one harmonic and since the original data is univariate.
One appraises the coefficients following the equations:

an =
2
p

p
∑

n=1

ri cos nθi ,

bn =
2
p

p
∑

n=1

ri sin nθi ,

5.2 Fourier Analysis 215

ao =
√

2
p

p
∑

n=1

ri .

We write the fourier1 function that calculates the Fourier coefficients from the
original data. Here we develop it for the coordinates of the intersection between the
equally spaced radii and the outline. The other argument is the number of harmonics
that one wants to calculate. Using complex numbers facilitates the programming.

Function 5.4. fourier1

Arguments:
M: Matrix of sampled points.
n: Number of harmonics.

Values:
ao: ao harmonic coefficient.
an: Vector of a1→n harmonic coefficients.
bn: Vector of b1→n harmonic coefficients.

1 fourier1<-function(M, n)
2 {p<-dim(M)[1]
3 an<-numeric(n)
4 bn<-numeric(n)
5 Z<-complex(real=M[,1],imaginary=M[,2])
6 r<-Mod(Z)
7 angle<-Arg(Z)
8 ao<- 2* sum(r)/p
9 for (i in 1:n){

10 an[i]<-(2/p)*sum(r * cos(i*angle))
11 bn[i]<-(2/p)*sum(r * sin(i*angle))}
12 list(ao=ao, an=an, bn=bn)}

Using the function and entering correct arguments is straightforward:

>fourier1(wingr$coord, 12)
...

One can reconstruct the outline based on the k first given harmonics. The first
harmonics are usually sufficient to describe the outline without wasting much of the
information. For this task, we write the ifourier1 function for reconstructing the
outline from harmonics. We want to sample the estimated position of n points for
drawing the outline from k harmonics functions.

216 5 Statistical Analysis of Outlines

Function 5.5. ifourier1

Arguments:
ao: ao harmonic coefficient.
an: Vector of a1→n harmonic coefficients.
bn: Vector of b1→n harmonic coefficients.
n: Number of interpolated points on the outline.
k: Number of harmonics.

Values:
angle: Radius angle to the reference.
r: Vector of interpolated radii.
X: Vector of x-interpolated coordinates.
Y: Vector of y-interpolated coordinates.

1 ifourier1<-function(ao, an, bn, n, k)
2 {theta<-seq(0,2*pi, length=n+1)[-(n+1)]
3 harm <- matrix (NA, k, n)
4 for (i in 1:k)
5 {harm[i,]<-an[i]*cos(i*theta)+ bn[i]*sin(i*theta)}
6 r<-(ao/2) + apply(harm, 2, sum)
7 Z<-complex(modulus=r, argument=theta)
8 list(angle = theta, r = r, X = Re(Z), Y = Im(Z))}

We apply the functions to our wing example.

>par(mar=c(2,2,2,2))
>f1<-fourier1(wingr$coord, 32)
>layout(matrix((1:9),3,3))
>for (i in 1:9)
+ {if1<-ifourier1(f1$ao, f1$an, f1$bn, 64, i)
+ plot(if1$X, if1$Y, asp=1, type="l", frame=F,
+ main=paste("Harmonics 0 to",i))}

We notice in Fig. 5.5 that the wing outline reconstruction is nearly correct at the
seventh harmonic. Because of the constriction in the middle of the wing, the Fourier
decomposition generates harmonics of a higher order than the order necessary to
reliably describe the wing. One can decide to drop high order harmonics and to keep
the first ones only, if the middle region of the wing is not considered as important for
the study. Note that the starting point does not correspond to the one that we have
first digitized.

The method reduces the number of parameters pretty well, and one can apply it
to simple outlines. It will be more efficient on globular objects, where sample biases
are lowest.

One must be careful when comparing several outlines: the angle of the starting
radius must be the same among outlines. In this respect, the starting point should be
a landmark. It is possible to rotate outlines so that the shapes are aligned on their first
radius. To compare outlines, one must also always digitize the outline in the same
direction (clockwise or counter clockwise). If one wants to compare left with right

5.2 Fourier Analysis 217

−1.0 0.0 0.5 1.0 1.5 2.0

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Harmonics 0 to 1

−2 −1 0 1 2

−
2

−
1

0
1

2

Harmonics 0 to 2

−2 −1 0 1 2

−
2

−
1

0
1

2

Harmonics 0 to 3

−2 −1 0 1 2 3

−
2

−
1

0
1

2

Harmonics 0 to 4

−2 −1 0 1 2 3

−
2

−
1

0
1

2

Harmonics 0 to 5

−2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Harmonics 0 to 6

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Harmonics 0 to 7

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Harmonics 0 to 8

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Harmonics 0 to 9

Fig. 5.5. Reconstruction of outlines by Fourier analysis applied to equally spaced radii

objects, one can digitize left and right outlines, respectively, clockwise and counter
clockwise, and multiply one of the coordinate dimension times by −1 for a given
side. If the digitization procedure always goes in the same direction, the raw indices
of one side have to be reversed.

There can be analytical problems with equally spaced radii Fourier analysis: In-
deed, the data itself can be flawed since the sampling strategy gathers more informa-
tion in some parts of the outline and much less elsewhere. In addition, one cannot
apply the method when a given radius twice intercepts the outline (it can arise when
the outline presents pronounced convexities or concavities).

5.2.2 Fourier Analysis applied to the Tangent Angle

Zahn and Roskies [125] were the first to find a solution for applying Fourier analysis
to outlines with important concavities that one cannot analyze with the method de-
scribed above. Their method consists of describing the cumulative change in angle of
a tangent vector to the outline (φ(t)) as a function of the cumulative chordal distance
t along the curve. For simplicity, the perimeter of the outline is first scaled to 2π.
Then, one can express φ(t) as:

218 5 Statistical Analysis of Outlines

φ(t) = θ(t) − θ(0) − t ,

where t is the distance along the perimeter, θ(t) is the angle of the tangent vector at
the distance t, and θ(0) is the angle of the tangent vector for the starting point. θ(0) is
removed for standardizing the data: this allows different individuals to be compared.

One can estimate the Fourier coefficients by multiple regression or by direct
least-squares approximation.

an =
2
p

p
∑

n=1

φ(t) cos nθi ,

bn =
2
p

p
∑

n=1

φ(t) cos nθi ,

and

ao =
2
p

p
∑

n=1

φ(t) .

One can estimate the angle of the tangent as the complex argument of the
vector defined by two successive sampled points. This is useful for writing the
corresponding function directly from the coordinates of equally spaced points along
the outline. The fourier2 function uses this strategy and returns the perimeter as
well, computed as the sum of norms of the succession of unitary vectors making up
the outline.

Function 5.6. fourier2

Arguments:
M: Matrix of sampled points on the outline.
n: Number of harmonics.

Values:
ao: ao harmonic coefficient.
an: Vector of a1→n harmonic coefficients.
bn: Vector of b1→n harmonic coefficients.
phi: Vector of variation of the tangent angle.
t: Vector of distance along the perimeter, expressed in radians.
perimeter: Perimeter of the outline.
thetao: First tangent angle.

1 fourier2<-function(M,n)
2 {p<-dim(M)[1]
3 an<-numeric(n)
4 bn<-numeric(n)
5 tangvect<-M-rbind(M[p,],M[-p,])
6 perim<-sum(sqrt(apply((tangvect)^2, 1, sum)))
7 v0<-(M[1,]-M[p,])
8 tet1<-Arg(complex(real=tangvect[,1],
9 imaginary = tangvect [,2]))

5.2 Fourier Analysis 219

10 tet0<-tet1[1]
11 t1<-(seq(0, 2*pi, length= (p+1)))[1:p]
12 phi<-(tet1-tet0-t1)%%(2*pi)
13 ao<- 2* sum(phi)/p
14 for (i in 1:n){
15 an[i]<- (2/p) * sum(phi * cos (i*t1))
16 bn[i]<- (2/p) * sum(phi * sin (i*t1))}
17 list(ao=ao, an=an, bn=bn, phi=phi, t=t1,
18 perimeter=perim, thetao=tet0)}

We program the reverse function to estimate φ and the corresponding coordinates
from a given number of harmonic coefficients as in the ifourier2 function.

Function 5.7. ifourier2

Arguments:
ao: ao harmonic coefficient.
an: Vector of a1→n harmonic coefficients.
bn: Vector of b1→n harmonic coefficients.
n: Number of interpolated points on the outline.
k: Number of harmonics.
thetao: First tangent angle.

Values:
angle: Position on the perimeter (in radians).
phi: Vector of interpolated change of the tangent angle.
X: Vector of x-interpolated coordinates.
Y: Vector of y-interpolated coordinates.

1 ifourier2<-function(ao,an,bn,n,k, thetao=0)
2 {theta<-seq(0,2*pi, length=n+1)[-(n+1)]
3 harm <- matrix (NA, k, n)
4 for (i in 1:k)
5 {harm[i,]<-an[i]*cos(i*theta)+bn[i]*sin(i*theta)}
6 phi<-(ao/2) + apply(harm, 2, sum)
7 vect<-matrix(NA,2,n)
8 Z<-complex(modulus=(2*pi)/n,argument=phi+theta+thetao)
9 Z1<-cumsum(Z)

10 list(angle=theta, phi=phi, X=Re(Z1), Y=Im(Z1))}

We are ready to apply this Fourier transformation to the outline of the honeybee
forewing. Practically, the first step is to sample equally spaced landmarks on the
outline. Prior to estimating these equally spaced landmarks, we smooth the outline
to avoid imperfection due to automatic digitization. We have to determine the number
i of smoothing iterations. Haines and Crampton [43] recommend having ntot/p <
√

i/2 where ntot is the total number of pixels of the outline, and p is the number of
points to be equally sampled on the outline.

220 5 Statistical Analysis of Outlines

>numb<-2*(length(X)/ 64)^2
>M<-smoothout(cbind(X,Y), numb+1)

The next step consists of selecting equally spaced points on the outline, which is made easy
with the seq function.

>X64<-(M[,1][seq(1, length(X), length=65)])[-1]
>Y64<-(M[,2][seq(1, length(X), length=65)])[-1]

Finally, we use the function programmed above.

>f2<-fourier2(cbind(X64, Y64),32)
>if2<-ifourier2(f2$ao,f2$an,f2$bn,64,20,thetao=f2$thetao)
>layout(matrix(c(1,2),1,2))
>plot(if2$X, if2$Y, type="l", asp=1, xlab="X",
+ ylab="Y",main="harmonics 0 to 20")

0.0 0.5 1.0 1.5 2.0 2.5

−
1.

0
−

0.
5

0.
0

0.
5

Harmonics 0 to 20

X

Y

0 1 2 3 4 5 6

0
2

4
6

Variation of tangent angle

Curvilinear abscissa

T
an

ge
nt

 a
ng

le

Fig. 5.6. Outline reconstruction from Fourier analysis applied to the tangent angle as a function
of the perimeter: the graph on the left shows the reconstruction of the outline, while the graph
on the right shows the fit of the signal by the Fourier series (black line) on the actual variation
of the tangent angle (thick gray line)

The reconstruction of the outline is not always nice because estimating tangent
angles can result in aberrant shapes (see Fig. 5.6). An alternative option consists
of analyzing differences in reconstruction of variations of φ(t) according to t, the
curvilinear abscissa (Fig. 5.6).

>plot(f2$t, f2$phi, type="l", lwd=2, col="grey70",
+ xlab="Curvilinear abscissa", ylab = "Tangent angle",
+ main="Variation of tangent angle")
>lines(if2$angle, if2$phi)

5.2 Fourier Analysis 221

5.2.3 Elliptic Fourier Analysis

The elliptic Fourier analysis is another Fourier approach for fitting curves to com-
plex closed outlines. Giardina and Kull [37] and Kuhl and Giardina [58] developed
an algorithm for fitting Fourier series on x and y-coordinates as functions of the
curvilinear abscissa. Crampton [23], and Rohlf and Archie [102] have provided a list
of the advantages of the elliptic Fourier method over other Fourier applications to
closed outlines: no need of equally spaced points, possible application to complex
outlines, Fourier coefficients can be made independent of outline position, and can
be normalized for size.

Let T be the perimeter of the outline, and this perimeter becomes the period of
the signal. One sets ω = 2π/T to be the pulse. Then, the curvilinear abscissa, t
varies from 0 to T . One can express x(t) and y(t) as:

x(t) =
a0

2
+

+∞∑

n=1

an cos nωt + bn sinnωt ,

with

an =
2
T

∫ T

0

x(t) cos(nωt)dt ,

and

bn =
2
T

∫ T

0

x(t) sin(nωt)dt ;

similarly,

y(t) =
c0

2
+

+∞∑

n=1

cn cos nωt + dn sin nωt ,

with

cn =
2
T

∫ T

0

y(t) cos(nωt)dt ,

and

dn =
2
T

∫ T

0

y(t) sin(nωt)dt .

The outline contains a k finite number of points. One can therefore calculate
discrete estimators for every coefficient of the nth harmonics:

an =
T

2π2n2

k∑

p=1

∆xp

∆tp

(

cos
2πntp

T
− cos

2πntp−1

T

)

,

with
∆x1 = x1 − xk ;

and

222 5 Statistical Analysis of Outlines

bn =
T

2π2n2

k∑

p=1

∆xp

∆tp

(

sin
2πntp

T
− sin

2πntp−1

T

)

.

cn and dn are calculated similarly.
ao and co corresponds to the estimates of the coordinates of the centroid of the

configuration. They are estimated by

ao =
2
T

p
∑

i=1

xi

and

co =
2
T

p
∑

i=1

yi .

This methods inflates the number of coefficients by harmonic, but it may be
expected that fewer harmonics are necessary to reliably describe the outline com-
pared to the former methods. The parametric form makes transposition of Fourier
analysis easy for 3D data: one simply needs to add z(t). We transpose the formu-
lae in a third function called efourier, that computes the Fourier coefficients
a0, an, bn, c0, cn, dn from the M matrix of x, and y-coordinates of the sampled
points. n the number of desired harmonics needed for reconstructing the outline is
equal to half the number of sampled points. This number is set by default in the func-
tion that extracts harmonics from coordinates sampled on a given outline.

Function 5.8. efourier

Arguments:
M: Matrix of sampled points.
n: Number of harmonics.

Values:
ao: ao harmonic coefficient.
co: co harmonic coefficient.
an: Vector of a1→n harmonic coefficients.
bn: Vector of b1→n harmonic coefficients.
cn: Vector of c1→n harmonic coefficients.
dn: Vector of d1→n harmonic coefficients.

1 efourier<-function(M, n=dim(M)[1]/2)
2 {p<-dim(M)[1]
3 Dx<-M[,1]-M[c(p,(1:p-1)),1]
4 Dy<-M[,2]-M[c(p,(1:p-1)),2]
5 Dt<-sqrt(Dx^2+Dy^2)
6 t1<-cumsum(Dt)
7 t1m1<-c(0, t1[-p])
8 T<-sum(Dt)
9 an<-bn<-cn<-dn<-numeric(n)

10 for (i in 1:n){

5.2 Fourier Analysis 223

11 an[i]<- (T/(2*pi^2*i^2))*sum((Dx/Dt)*
12 (cos(2*i*pi*t1/T)-cos(2*pi*i*t1m1/T)))
13 bn[i]<- (T/(2*pi^2*i^2))*sum((Dx/Dt)*
14 (sin(2*i*pi*t1/T)-sin(2*pi*i*t1m1/T)))
15 cn[i]<- (T/(2*pi^2*i^2))*sum((Dy/Dt)*
16 (cos(2*i*pi*t1/T)-cos(2*pi*i*t1m1/T)))
17 dn[i]<- (T/(2*pi^2*i^2))*sum((Dy/Dt)*
18 (sin(2*i*pi*t1/T)-sin(2*pi*i*t1m1/T)))}
19 ao<-2*sum(M[,1]*Dt/T)
20 co<-2*sum(M[,2]*Dt/T)
21 list(ao=ao,co=co,an=an,bn=bn,cn=cn,dn=dn)}

For reconstructing outlines from a given set of harmonics, we write the reverse
iefourier function. It estimates a curve from k harmonics, with n sampled points
(passed as arguments). ao and co determine the position of the configuration; we set
their default value to 0 for convenience.

Function 5.9. iefourier

Arguments:
an: Vector of a1→n harmonic coefficients.
bn: Vector of b1→n harmonic coefficients.
cn: Vector of c1→n harmonic coefficients.
dn: Vector of d1→n harmonic coefficients.
k: Number of harmonics.
n: Number of interpolated points on the outline.
ao: ao harmonic coefficient.
co: co harmonic coefficient.

Values:
x: Vector of x-interpolated coordinates.
y: Vector of y-interpolated coordinates.

1 iefourier<-function(an,bn,cn,dn,k,n,ao=0,co=0)
2 {theta<-seq(0,2*pi, length=n+1)[-(n+1)]
3 harmx <- matrix (NA, k, n)
4 harmy <- matrix (NA, k, n)
5 for (i in 1:k){
6 harmx[i,]<-an[i]*cos(i*theta)+bn[i]*sin(i*theta)
7 harmy[i,]<-cn[i]*cos(i*theta)+dn[i]*sin(i*theta)}
8 x<-(ao/2) + apply(harmx, 2, sum)
9 y<-(co/2) + apply(harmy, 2, sum)

10 list(x=x, y=y)}

One usually fewer less harmonics than half the number of original sampled points
to fit a given outline with some reliability. One can appraise the goodness-of-fit us-
ing the sum of squared distances between the original data and reconstructed outline.
Examining reconstructed outlines with the addition of successive contributing har-
monics allows qualitative visualizations (Fig. 5.7).

224 5 Statistical Analysis of Outlines

We reconstruct the outlines on the honeybee wing outline.

>layout(matrix((1:9),3,3))
>par(mar=c(2,2,2,2))
>ef1<-efourier(M)
>for (i in 1:9)
+ {ief1<-iefourier(ef1$an,ef1$bn,ef1$cn,
+ ef1$dn,i,64,ef1$ao,ef1$co)
>plot(M,type="l",asp=1,frame=F,
+ main=paste("Harmonics 0 to",i),col="grey")
>polygon(M,col="grey",border=NA)
>lines(ief1$x,ief1$y,type="l")}

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Harmonics 0 to 1

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Harmonics 0 to 2

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Harmonics 0 to 3

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Harmonics 0 to 4

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Harmonics 0 to 5

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Harmonics 0 to 6

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Harmonics 0 to 7

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Harmonics 0 to 8

1 2 3 4 5 6 7

−
1

0
1

2
3

4

Harmonics 0 to 9

Fig. 5.7. Outline reconstruction from elliptic Fourier analysis applied to the outline coordinates
of the honeybee wing. The original outline corresponds to the gray shape while reconstructed
wings are thin black outlines: as early as the sixth harmonic, the outline is nearly perfectly
reconstructed

For any harmonic, the x(t) and y(t) curves define an outline in the plane. Har-
monics of higher order correspond to smaller ellipses, and actually the outline is

5.2 Fourier Analysis 225

approximated by the displacement of a point traveling around a series of superim-
posed ellipses (see [23, 58] for illustrations). The first harmonic defines an ellipse
that best fits the outlines. One can use the parameters of the first harmonic to “nor-
malize” the data so that they can be invariant to size, rotation, and starting position
of the outline trace. This approach is referred to in the literature as the normalized
elliptic Fourier [102]. It calculates a new set of Fourier coefficients An, Bn, Cn, Dn

that one can use for further multivariate analyses.
One obtains the set of normalized coefficients following the equations
(

An Bn

Cn Dn

)

=
1

scale

(

cos ψ sinψ
− sin ψ cos ψ

)

.

(

an bn

cn dn

)

.

(

cos nθ − sin nθ
sinnθ cos nθ

)

,

One estimates the scale as the magnitude of the semi-major axis of the ellipse defined
by the first harmonic. The second right term corresponds to the orientation of the first
ellipse (ψ being the rotation angle), the third to the original harmonic coefficients,
and the last to the rotation of the starting point to the end of the ellipse (with a
rotation angle of θ). Ferson et al. [31] supplied the following formulae to compute
these parameters:

ψ = 0.5 arctan
2(a1b1 + c1d1)

a2
1 + c2

1 − b2
1 − d2

1

mod π ;

scale =
√

a∗2 + c∗2 ;

with a∗2 = a1 cos ψ + b1 sinψ and c∗2 = c1 cos ψ + d1 sin ψ ; and

θ = arctan(c∗/a∗) .

For writing the corresponding function, we write the code NEF. NEF calls the
function we have written for computing ordinary elliptic Fourier coefficients. NEF
can eventually perform the normalization of the starting point. This is passed through
the third argument called start. We set the default value to be FALSE, meaning
that the position of the starting point is not preserved according to the normaliza-
tion. In other words, setting start = FALSE means that one does not consider
the starting point as homologous.

226 5 Statistical Analysis of Outlines

Function 5.10. NEF

Arguments:
M: Matrix of sampled points.
n: Number of harmonics.
start: Logical value telling whether the position of the starting point has to be pre-

served or not.
Values:

A: Vector of A1→n harmonic coefficients.
B: Vector of B1→n harmonic coefficients.
C: Vector of C1→n harmonic coefficients.
D: Vector of D1→n harmonic coefficients.
size: Magnitude of the semi-major axis of the first fitting ellipse.
theta: θ angle between the starting point and the semi-major axis of the first fitting

ellipse.
psi: Orientation of the first fitting ellipse.
ao: ao harmonic coefficient.
co: co harmonic coefficient.

Required function: efourier.

1 NEF<-function(M, n=dim(M)[1]/2,start=F)
2 {ef<-efourier(M,n)
3 A1<-ef$an[1]; B1<-ef$bn[1]
4 C1<-ef$cn[1]; D1<-ef$dn[1]
5 theta<-0.5*atan(2*(A1*B1+C1*D1)/
6 (A1^2+C1^2-B1^2-D1^2))
7 Aa<-A1*cos(theta)+B1*sin(theta)
8 Cc<-C1*cos(theta)+D1*sin(theta)
9 scale<-sqrt(Aa^2+Cc^2)

10 psi<-atan(Cc/Aa)%%pi
11 size<-(1/scale)
12 rotation<-matrix(c(cos(psi),-sin(psi),
13 sin(psi),cos(psi)),2,2)
14 A<-B<-C<-D<-numeric(n)
15 if (start){theta<-0}
16 for (i in 1:n){
17 mat<-size*rotation%*%matrix(c(
18 ef$an[i],ef$cn[i],ef$bn[i],ef$dn[i]),2,2)
19 %*%matrix(c(cos(i*theta),sin(i*theta),
20 -sin(i*theta),cos(i*theta)),2,2)
21 A[i]<-mat[1,1]
22 B[i]<-mat[1,2]
23 C[i]<-mat[2,1]
24 D[i]<-mat[2,2]}
25 list(A=A,B=B,C=C,D=D,size=scale,theta=theta,
26 psi=psi,ao=ef$ao,co=ef$co)}

These standardizations are useful because they allow comparisons between out-
lines to be achieved and the outline shape variation to be analyzed. One can apply

5.2 Fourier Analysis 227

traditional multivariate statistics to normalized elliptic Fourier coefficients. The first
harmonic has three constant coefficients A1 = 1, B1 = C1 = 0. The remaining term
D1 is associated with the harmonic excentricity (which corresponds more or less to
the overall width-on-length ratio of the object). This first harmonic often contains a
large part of the variation; however, the orientation of the object under the camera
objective can largely influence this variation. One can inspect the percent of error
that D1 records to decide whether it should be conserved for further analyses. One
can also include it in the analysis by normalizing all coefficients.

Crampton [23] discusses practical details of whether normalization should be
performed with elliptical Fourier analysis. We should remember that coefficients are
dependent on several factors:

1. Outline orientation
2. Position of the starting point
3. Outline size

Whether it is necessary to normalize for the starting point, outline orientation, and
size should be decided prior to performing further analysis involving sets of Fourier
coefficients representing several observations. The other remark is that the normal-
ized elliptical Fourier provides only a single way to perform standardization. Rather
than superimposing ellipses according to the first harmonics, one could choose, for
example, to align configuration according to another method. Alternative options are
available, if, in addition to the outline, one could have digitized some landmarks on
the object. If these landmarks are available, one can perform a Procrustes alignment
of outlines based on landmarks for normalizing the data. Once one has estimated
rotation and scale parameters, one can use these new parameters to replace ψ and
scale in the former equation. Friess et al. [32] and Baylac et al. [6] have used a sim-
ilar approach, superimposing outlines according to a set of defined landmarks for
examining cranial shape variation in human populations.

The elliptic Fourier analysis is particularly efficient for reducing the number of
variables of the original dataset (coordinates of sampled points along the outline). In
our example, we know that the first six harmonics gathered nearly all the information
necessary for reconstructing the outline of the honeybee wing. In addition, standard-
ization for size and orientation makes three coefficients constant, so that there are
only 4k − 3 variables remaining for describing outline parameters (in the case of
the honeybee wing this is summarized by 21 variables instead of the 2 × 64 original
coordinates.

One evaluates the number of harmonics that one should retain according to dif-
ferent methods. The first way is qualitative: It consists of visualizing contour recon-
structions produced by increasing the number of harmonics involved and comparing
these reconstructions with the original one. This inspection usually shows that high-
order harmonics record high frequency variation that one can assimilate in most cases
to “noise variation.” Crampton [23] proposes examining the average deviation from
the original outline (that one reconstructs using n/2 harmonics) as a function of
the number of harmonics used to reconstruct the outline. One can evaluate maximal
deviation or 95% confidence interval from a sample of outlines (see Fig. 5.8). For

228 5 Statistical Analysis of Outlines

a single outline, we can examine deviation between the reconstructed and original
outlines as below:

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

number of harmonics

de
vi

at
io

n
fr

om
 o

rig
in

al
 o

ut
lin

e

Fig. 5.8. Error resulting from outline reconstruction as a function of the number of harmonics
involved. Averaged variation corresponds to the curve, while maximum deviations are sym-
bolized by crosses

>ef<-efourier(M)
>n<-dim(M)[1]
>ief<-iefourier(efan,efbn,efcn,efdn,
+ 32,64,efao,efco)
>M1<-cbind(iefx, iefy)
>averagedev<-maxdev<-numeric(32)
>for (i in 1:32)
+ {ief<-iefourier(efan,efbn,efcn,efdn,
+ i,64,efao,efco)
+ deviation<-sqrt(apply((M1-cbind(ief$x,
+ ief$y))^2,1,sum))
+ averagedev[i]<-mean(deviation)
+ maxdev[i]<-max(deviation)}
>plot(1:32, maxdev, pch=4, ylab=
+ "deviation from original outline",
+ xlab="number of harmonics")
>segments(1:32,maxdev, 1:32, averagedev)
>lines(1:32, averagedev)

We can also estimate the number of necessary harmonics after examining the
spectrum of harmonic Fourier power. The power is proportional to the harmonic

5.3 Eigenshape Analysis and Other Methods 229

amplitude and can be considered as a measure of shape information. As the rank of
harmonic increases, the power decreases and adds less and less information. We can
evaluate the number of harmonics that we must select, so their cumulative power
gathers 99% of the total cumulative power. The power of a given harmonic is calcu-
lated as

Powern =
A2

n + B2
n + C2

n + D2
n

2
.

We can observe the evolution of cumulative total power in our outline:

>ef1<-efourier(M)
>Power<-(ef1an^2+ef1bn^2+ef1cn^2+ef1dn^2)/2
>(cumsum(Power)/sum(Power))[1:6]
[1] 0.979027 0.987326 0.998174 0.998619 0.999406 0.999561

Most of the shape "information" is contained in the first harmonic. This is not sur-
prising because this is the harmonic that best fits the outline, and the size of ellipses
decreases as for explaining successive residual variation. However, one may think
that the first ellipse does not contain relevant shape information, especially when
differences one wants to investigate concern complex outlines. One can decide to
remove the first harmonic for this computation.

>(cumsum(Power[-1])/sum(Power[-1]))[1:6]
[1] 0.395706 0.912975 0.934166 0.971708 0.979085 0.992371

In keeping the second to seventh harmonics, more than 99% of the information is
remaining.

When working on a set of outlines, the strategy of harmonic selection must be
adapted to the need of the analysis. Indeed, high rank-harmonics can contain infor-
mation that may allow groups to be distinguished. In addition to our approaches,
one can examine digitization error or shape variance explained as a criterion for har-
monics number selection. For instance, Renaud et al. [90] coupled an analysis of
cumulative power together with an estimation of measurement error (computed as
the averaged coefficient of harmonic amplitude based on a sample of digitized out-
lines replicated a certain number of times). They showed that measurement error
increased with harmonic order. Reducing the number of harmonics is thus a use-
ful way not only to limit the number of variables but also to remove some part of
measurement error.

5.3 Eigenshape Analysis and Other Methods

Other approaches for analyzing outlines have been proposed. If one superimposes
several outlines according to an optimization procedure, one can directly use the
superimposed coordinates in statistical analyses. This has sometimes received the
name analysis of coordinates. One can then analyze shape variation using multi-
variate methods applied to superimposed coordinates as in the case of Procrustes
superimposition. Whether one should consider it to be appropriate depends on the

230 5 Statistical Analysis of Outlines

data structure and the purpose of the study. In addition, one must keep in mind that
superimposed landmark (and especially pseudolandmark) coordinates are not inde-
pendent observations, because the superimposition process removes degrees of free-
dom in the overall variation. Moreover, the sampling procedure for pseudolandmarks
usually decreases further the number of shape space dimensions. The ranks of vari-
ation inferred from this kind of data are usually smaller than traditional Procrustes
analysis. Bookstein [13] introduced a method for allowing pseudolandmarks to slip
on curves (semi- or sliding landmark approach). It can be interesting to optimize the
fit; some further 3D developments are provided in Gunz et al. [42].

Lohman [65] proposed a method for analyzing shape variation of the outlines
of biological objects. Initially applied to microfossils, the method can be applied to
other shape samples. Lohman and Schweitzer [66] gave an extensive description of
the method. The main philosophy is to measure variation between shape functions.
Shape functions as defined by the authors correspond to the Zahn and Roskies func-
tion of tangent angle change on equally spaced points sampled on the outline.

φ∗(t) = φ(t) − t ;

φ(t) corresponds to the direction of the tangent to the outline, and t corresponds to
the position of a point moving around the outline scaled so that t ranges from 0 to 2π.

This representation is invariant to size or translation in the plane. To achieve nor-
malization, one must find a way to rotate outlines according to a standard orientation.
If one can define a starting point, one can use the first tangent angle for standardiza-
tion, as was done in the second Fourier method presented in Section 5.2.2:

φ∗(t) = φ(t) − φ(0) − t .

The previous section describes how to compute φ∗(t) from coordinate data.
One can decide to orient outlines according to another procedure (for example,

a Procrustes superimposition, or by aligning outlines on the major axis of the best
fitting ellipse defined by elliptic Fourier analysis).

One can omit variation in angularity (see [66, 95]), in standardizing the function
to have a zero mean and a variance of 1. However, this can be undesirable since
different shapes can become indistinguishable.

Given n objects with p sampled points, one can assemble the reoriented φ∗(t)
functions in a Z matrix of n rows and p columns. These functions are transformed
for Z∗ that are centered original data (column means equal zero). The “covariation”
or “correlation” Rz matrix is obtained by matrix multiplication: Z∗′

Z∗. The resulting
matrix is not exactly the variance-covariance or correlation matrix but it is propor-
tional at the approximation of the number of degrees of freedom. This matrix is later
decomposed according to a singular-value decomposition (the svd function of R
performs this easily) so that

Rz = VDV′ .

The elements V weighted by D0.5 are interpreted as the loadings of the objects
onto the empirical shape function.

5.3 Eigenshape Analysis and Other Methods 231

One calculates the scores U as

U = Z∗VD−0.5 .

Finally, one obtains
Z∗ = US0.5V′ .

The shape functions (Z) are therefore decomposed into a set of empirical or-
thogonal shape functions, U; each column of it being an eigenshape function (or
a normalized eigenvector), itself associated with the ith column of VD0.5 corre-
sponding to the weights or projections of the object on the function. The eigenshape
functions successively account for the maximum of variation represented by the orig-
inal shape functions. One can consider the first eigenshape function as the mean of
the shape original functions plus proportional variation in angle changes (angularity
when working on the variance-covariance matrix). Other eigenshape functions de-
scribe additional differences among the shape functions along orthogonal directions.

One can appraise variation in the shape space by projecting the data onto U. One
can consider each original object as a weighted linear combination of the eigenshape
functions. One can reduce the shape space dimensions to the first eigenshape func-
tions. We need a function to extract U, V and VD0.5. This function works on the
matrix of standardized shape functions Z, and we call it eigenshape.

Function 5.11. eigenshape

Argument:
Z: Matrix of standardized shape functions.

Values:
eigenshape: Eigenshape functions.
weigths: Eigenshape scores.
eigenvalues: Eigenvalues.

1 eigenshape<-function(Z)
2 {n<-dim(Z)[1]
3 Zz<-scale(Z, scale=F)
4 R<-t(Zz)%*%Zz
5 V<-svd(R)$u
6 S<-svd(R)$d
7 U<-Zz%*%V%*%(diag(1/sqrt(S)))
8 weight<-diag(sqrt(S))%*%t(V)
9 list(eigenshape=U, weights=weight[1:n,], eigenvalues=S)}

Rohlf [95] studied the relationship among eigenshape analysis, Fourier analysis
and analysis of coordinates. If one retains all Fourier harmonics and eigenvectors,
one can consider that both approaches are equivalent.

Applications to the study of outline variation are presented in the following
chapter.

232 5 Statistical Analysis of Outlines

Problems

5.1. Three dimensional curve fitting
Write a function for fitting 3D curves. Several strategies are possible (parametric
cubic splines, elliptic Fourier analysis.)

5.2. variation in digit3.dat
Using open curve fitting and Procrustes analysis, perform a principal component
analysis of the digit3.dat dataset of the shapes package. Are observations or-
dinated in the same way using both methods?

5.3. Fourier analysis of equally spaced radii
Write a function that calculates the Fourier coefficients with arguments being the
norm of equally spaced radii.

5.4. Estimating Fourier coefficients by multiple regression
Write a function using a regression model to estimate the Fourier coefficients esti-
mated from cumulative change of the tangent angle.

5.5. Elliptic Fourier normalization
Write a function that standardizes classic Fourier coefficients to be independent for
size and write one that rotates the first ellipse but that does not shift the starting point.

6

Statistical Analysis of Shape using Modern
Morphometrics

While one can analyze morphometrics based on linear measurements with multi-
variate statistics and interpreted as any other set of independent variables, mod-
ern morphometrics has the advantage of describing and appraising shape variation
among configurations. Since configurations themselves are multivariate sets of vari-
ables (i.e., coordinates, outline parameters, etc.), one analyzes their variation using
multivariate techniques. However, since landmarks and pseudolandmarks are depen-
dent on each other, one cannot directly apply these techniques to raw coordinates.
One must transform these raw coordinates into shape variables or shape parameters
for statistical issues (superimposed coordinates, Bookstein coordinates, Fourier coef-
ficients, etc.). Most modern morphometrics offer ways to visualize shape change and
variation in a qualitative way as depicted by transformation of configurations along
shape variation components. These components can be either static – for a naive de-
scription of the shape space – or explicative – interpretation of shape variation. In
addition, various tests are available for checking hypotheses. In biological sciences,
where morphometrics is more commonly used, one can interpret the variation with
regards to biological mechanisms or processes, taking into account the complexity
of phenotype organization.

6.1 Explorative Analyses of the Shape Space

One can explore the shape space, without posing adhoc hypotheses, by analyzing
principal components of variation. These components are estimated by principal
component analyzes or related techniques. These techniques decompose shape vari-
ation into several components, decreasing in importance in terms of explained varia-
tion. Other techniques, which have been particularly developed to analyze Procrustes
data, allow the shape variation to be decomposed in other distinct components: affine
and nonaffine components or local and more general components of variation. We
know that we can map thin-plate splines to configurations for interpreting morpho-
logical transformation in terms of deformation grids. Concepts behind deformation

234 6 Statistical Analysis of Shape using Modern Morphometrics

grids have made statistical shape analysis progress very rapidly during the last decade
of the 20th Century and have been synthesized in two important publications [10, 27].

6.1.1 Landmark Data

The simplest way to describe variation and covariation within the configuration set
is to perform a PCA of the superimposed coordinates of landmarks of the config-
urations. This analysis is possible on coordinates that have been projected onto the
tangent space, as we have seen in Section 4.2.4.

A biplot with the variable contribution is not easy to interpret, especially, when
the number of landmarks is important and when each landmark is 2D or 3D. How-
ever, since all deviations from centered data are expressed in the same metrics, it
is possible to qualitatively visualize the shape change associated with a given prin-
cipal component. Since principal components are independent, we can display the
variation in configurations on a given axis by using the mean shape on which we
add or substract the loadings of the corresponding unitary, eigen or singular, vec-
tor multiplied by a given score. Examining extreme shapes reconstructed along each
principal component allows us to qualitatively visualize the signification of compo-
nent in terms of extreme shape variation. Adding link segments between selected
landmarks is helpful for understanding shape changes. Alternatively one can display
deformation grids expressing shape changes between two selected scores on the PCs.
Since shape changes can be subtle, it is often necessary to amplify shape variation by
some amplification scalar. Finally, a look at eigenvalues (or singular values) provides
information on how a shape-axis is important for explaining shape variation.

This approach is applied to the concatenated male and female gorilla datasets of
shapes.

>library(shapes)
>data(gorf.dat); data(gorm.dat)
>gor<-array(c(gorf.dat, gorm.dat), dim=c(8,2,59))

The first step consists of superimposing configurations. Then we perform a PCA of the tangent
shape space coordinates. For graphical purpose, we first rotate shapes on their principal axis
with the aligne function (see Section 4.2.3).

>GOR<-aligne(gor)
>go<-pgpa(GOR)
>gos<-orp(go$rotated)
>m<-t(matrix(gos, 16, 59))
>pcs<-prcomp(m)

We plot the PCA scores, and we display the variance explained by each PC with a barplot.

>par(mar=c(4,4,1,1))
>layout(matrix(1:4,2,2))
>plot(pcs$x, pch=c(rep("f",30), rep("m", 29)))
>barplot(pcs$sdev^2/sum(pcs$sdev^2),ylab="% of variance")
>title(sub="PC Rank",mgp=c(0,0,0))

6.1 Explorative Analyses of the Shape Space 235

Note the use of the mgp option in the title() command. It positions the subtitle within the
graph and it is also available in other graphical functions. We estimate the mean configuration,
and we record the maximal and minimal scores for the two first PCs. Extreme configurations
are plotted, with segments between appropriate landmarks.

>mesh<-as.vector(mshape(gos))
>max1<-matrix(mesh+max(pcs$x[,1])*pcs$rotation[,1],8,2)
>min1<-matrix(mesh+min(pcs$x[,1])*pcs$rotation[,1],8,2)
>joinline<-c(1,6:8,2:5,1,NA,7,4)
>plot(min1,axes=F,frame=F,asp=1,xlab="",ylab="",pch=22)
>points(max1,pch=17)
>title(sub="PC1",mgp=c(-4,0,0))
>lines(max1[joinline,],lty=1)
>lines(min1[joinline,],lty=2)
>max2<-matrix(mesh+max(pcs$x[,2])*pcs$rotation[,2],8,2)
>min2<-matrix(mesh+min(pcs$x[,2])*pcs$rotation[,2],8,2)
>plot(min2,axes=F,frame=F,asp=1,xlab="",ylab="",pch=22)
>points(max2,pch=17)
>title(sub="PC2",mgp=c(-4,0,0))
>lines(max2[joinline,],lty=1)
>lines(min2[joinline,],lty=2)

Males and females occupy different positions on the first two PCs of shape varia-
tion (Fig. 6.1). According to the position of individuals along PC axes, one sees that
the first PC opposes skull outlines that are rather elongated antero-posteriorly (males)
and more globular skulls (females). The second PC opposes forms having relatively
larger neurocranium and reduced faces (females), and forms with relatively smaller
neurocranium and more pronounced faces (males).

One can visualize shape variation along PC by using thin-plate splines, with the
tps function defined in Section 4.3. The variation is easily displayed using the mean
shape as references and extreme reconstructed shapes as targets. For producing a field
of vector differences, we can opt for the same method as in Section 4.3.

>par(mar=c(0,1,2,2))
>msh<-mshape(gos)
>tps(msh, min1,12)
>points(min1, pch=21, bg="black")
>title("PC1: left extreme")
>tps(msh,max1,12)
>points(max1,pch=22, bg="black")
>title("PC1: right extreme")

The shapepca function of the shapes package directly plots PC scores and
provides a graphical display for visualizing shape changes along axes. The function
needs an object of the procGPA class. One can display shape variation using ex-
treme configurations, vectors fields, tps, or even doing a small movie for depicting
changes between both sides of the PC. Similarly, one can visualize PC scores and
related variation with the Rmorph package and the visu function.

236 6 Statistical Analysis of Shape using Modern Morphometrics

f

ff

f

fff f

f

f

ff

f

f

f

f
f

f

f

f

f

f

f

f

f
f

f

ff

f

mm

m

m
mm m

m
m

m
m

m
m

m

m

m

m

m

m

m

m mm
m

m m

m

m

m

−0.05 0.00 0.05

−
0.

04
0.

00
0.

04

PC1

P
C

2
%

 o
f v

ar
ia

nc
e

0.
0

0.
1

0.
2

0.
3

0.
4

PC Rank

PC1

PC2

Fig. 6.1. Graphical display of shape variation depicted by the two first principal components of
total shape variation of the concatenated gorf.dat and gorm.dat datasets; on the left: plot
of PC scores and barplot of PC contributions; on the right: illustration of shape variation along
each PC. Dotted links correspond to the minimal scores, while full links to maximal scores.
The segment appearing inside the skull outline approximately corresponds to the boundary
between the face and the neurocranium

PC1: left extreme PC1: right extreme

Fig. 6.2. Illustration of shape variation with deformation grids along the first axis of the PCA
applied to configurations of the gorf.dat plus gorfm.dat datasets

6.1 Explorative Analyses of the Shape Space 237

One could also interpret shape change as resulting from an accumulation of
growth gradients expressed from a global to a local scale. Shape variation can thus
be decomposed into global to local components. Thin-plate splines and the bending
energy needed for transforming one configuration to one other can help us to under-
stand intuitively how to decompose shape variation into these components. Variation
will be depicted into global deformation consisting of affine or nonaffine parts, and
local deformation that necessarily consists of nonaffine deformation. It can be use-
ful to distinguish between both components, because affine changes and variation
deal with global flattening, shearing, or dilatation that may possibly receive a sim-
ple interpretation. Translated in terms of deformation grids, the affine components
correspond to deformation that keeps parallelism between lines of the original grid
(usually corresponding to a grid of squares). In other words, each square of the grid
is transformed in a similar parallelogram throughout the configuration. This affine
deformation is also called uniform deformation because it concerns the whole con-
figuration equally.

Bookstein and other authors [10, 12, 27, 104] have provided several formulae
for estimating uniform components of shape variation. The uniform and nonuniform
components of shape variation rely on the bending energy matrix and are coined with
the methods of principal, partial and relative warps.

For convenience, several authors prefer to work on the set of superimposed con-
figurations, with the reference (the mean shape) aligned along its principal axes.
This does not change anything in the superimposition; the dispersion of landmarks
is just maximized on the x-axis. We produce this computation by combining and
modifying the superimposition functions written in Section 4.2. The procalign
function is a possible way to produce this alignment. Notice the use of eigen for
avoiding problems with reflections. Alternatively we can obtain very similar results
by superimposing configurations that have been previously rotated on their principal
component of variation with the aligne function.

Function 6.1. procalign

Argument:
A: Array containing configuration matrices.

Values:
rotated: Aligned configurations array. In addition to the superimposition, the config-

uration datasets have been projected onto the Euclidean Shape space according to a
orthogonal projection (the mean shape being the tangent point between spaces).

meansh: Mean shape used for the alignement, aligned along its principal axes.
Required functions: pgpa, trans1, centsiz, mshape, pPsup.

238 6 Statistical Analysis of Shape using Modern Morphometrics

1 procalign<-function(A)
2 {pA<-pgpa(A); n<-dim(A)[3]; k<-dim(A)[2]
3 A<-pA$rotated; msh<-pA$mshape
4 A1<-A
5 sv<-eigen(var(msh))
6 V<-sv$vectors;
7 rotmsh<-msh%*%V
8 for (i in 1:n)
9 {A1[,,i]<-pPsup(A[,,i],rotmsh)$Mp1}

10 list("rotated"=orp(A1), "meansh"=rotmsh)}

It is simple to compute the uniform shape vectors for a given specimen for 2D
data. There are two uniform components of k × p elements. Rohlf [98] gives the
following formulae:

U1 = (
√

α

γ
yi,

√

γ

α
xi) ,

and

U2 = (−
√

γ

α
xi,

√
α

γ
yi) ,

where α =
∑

x2, and γ =
∑

y2, with xi, yi being the coordinate of the reference
configuration (it is usually the mean shape).

One calculates the scores u1 and u2 by multiplying the V matrix of differences
between the aligned specimens and the reference with the uniform components. The
V matrix has n × kp dimensions, with the first p columns corresponding to the first
dimensions, and the next p columns to the second dimension. U1 represents a hor-
izontal shear, while U2 represents a vertical dilatation. In R environment, we can
translate the formula as a function that returns both uniform components and scores
with the uniform2D function.

Function 6.2. uniform2D

Argument:
A: Array containing 2D configuration matrices.

Values:
scores: Scores of the uniform component for each observation. The two columns

of this matrix object respectively correspond to the U1 and U2 scores.
uniform: Two-column matrix of uniform component vectors.
meanshape: Meanshape aligned along its principal axis.
rotated: Superimposed and projected configurations.

Required functions: procalign, pgpa, trans1, centsiz, mshape, pPsup.

6.1 Explorative Analyses of the Shape Space 239

1 uniform2D<-function(A)
2 {n<-dim(A)[3]
3 kp<-dim(A)[1]*dim(A)[2]
4 temp<-procalign(A)
5 msh<-temp$meansh
6 proc<-temp$rotated
7 X<-t(matrix(proc,kp,n))
8 V<-X-rep(1, n)%*%t(as.vector(msh))
9 alph<-sum(msh[,1]^2)

10 gam<-sum(msh[,2]^2)
11 U1<-c(sqrt(alph/gam)*msh[,2],sqrt(gam/alph)*msh[,1])
12 U2<-c(-sqrt(gam/alph)*msh[,1],sqrt(alph/gam)*msh[,2])
13 score<-V%*%cbind(U1,U2)
14 list("scores"=score,"uniform"=cbind(U1,U2),"meanshape"=msh,
15 "rotated"=proc)}

Associated deformation grids can illustrate the deformation related to the first
and second uniform components as in the following example.

>gou<-uniform2D(gor)
>layout(matrix(c(1,1,1,1,2,4,3,5),2,4))
>msh<-gou$meanshape
>Un<-gou$uniform
>par(mar=c(5,4,4,2))
>plot(gou$scores,pch=c(rep("f",30),rep("m", 29)),asp=1)
>par(mar=c(4,1,4,1))
>tps(msh, matrix(as.vector(msh)+
+ Un[,1]*max(gou$scores[,1]),8,2),12)
>title("U1: left")
>tps(msh, matrix(as.vector(msh)+
+ Un[,2]*max(gou$scores[,2]),8,2),12)
>title("U2: top")
>tps(msh, matrix(as.vector(msh)+
+ Un[,1]*min(gou$scores[,1]),8,2),12)
>title("U1: right")
>tps(msh, matrix(as.vector(msh)+
+ Un[,2]*min(gou$scores[,2]),8,2),12)
>title("U2: bottom")

Rohlf and Bookstein [104] have provided strategies for computing the uniform
(or affine) components of shape variation using different methods. They supply an
approach permitting us to assess the uniform components using regression of the su-
perimposed coordinates onto the coordinates of the reference shape. The resulting
number of coefficients is redundant and higher than the number of uniform compo-
nents (4 against 2 for 2D data, and 9 against 5 for 3D data). To resolve the problem,
they use a singular-value decomposition calculation. The approach is convenient
because it can be easily amenable to 3D data. In contrast to the former approach,
every component contains a mixture of shear and dilatation, which makes them more

240 6 Statistical Analysis of Shape using Modern Morphometrics

f

f

f

f

f
f

f

ff

f

f f

f

f

f

f
ff

f

f

f

f

f

f

f

f

f

f

f f

m

m
m

m

mm

m

mm

m
mm

m

m

m
m

m

m

m

m

m

m

m

m

m

m
m

m

m

−0.04 −0.02 0.00 0.02 0.04

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

U1

U
2

U1: right U2: top

U1: left U2: bottom

Fig. 6.3. Illustration of uniform shape variation within the female gorf.dat and male
gorfm.dat dataset. Males correspond to “m” and females to “f”. Males have relatively
flatter and longer skull outlines than females on the U2 component

difficult to interpret. However, these components correspond to a rotation of those
described above. Taking into consideration that configurations are all centered on
their centroid (no need to center the data), one can directly compute the regression
coefficients for each coordinate as

Bx = (X′
rXr)−1(X′

r)X
′
x ;

Xr corresponds to the reference configuration matrix (here the mean shape), Xx to
the n×p matrix of x-coordinates, and Bx is an n×k matrix of regression coefficients.
By and eventually Bz are computed similarly. The coefficients are then combined in
a single B matrix of n raws and k2 columns so that

B = [B′
x|B′

y|B′
z] .

To respect dimensionality and to obtain only a three-column matrix from B, one
performs a singular-value decomposition as follows:

LSR′ = B(Ik ⊗ X′
r) .

L is an n by n matrix of left singular vectors, S the diagonal of singular values and
R is the kp by kp matrix of right singular vectors. The product LS equals the scores
of the uniform components, while R are the coefficients of the uniform components.
We write the uniformG function to compute uniform components and theirs scores
of 2D or 3D data.

6.1 Explorative Analyses of the Shape Space 241

Function 6.3. uniformG

Argument:
A: Array containing configuration matrices.

Values:
score: Scores of the uniform component for each observation.
un: Matrix of uniform component vectors.

Required functions: procalign, pgpa, trans1, centsiz, mshape, pPsup.

1 uniformG<-function(A)
2 {n<-dim(A)[3]; k<-dim(A)[2]; p<-dim(A)[1]
3 temp<-procalign(A)
4 msh<-temp$meansh
5 proc<-temp$rotated
6 Bn<-Xn<-list()
7 for (i in 1:k)
8 {Bn[[i]]<-solve(t(msh)%*%msh)%*%t(msh)%*%(proc[,i,])}
9 if (k==2)

10 {LSR<-svd(t(rbind(Bn[[1]],Bn[[2]]))%*%
11 (diag(1,2)%x%t(msh)))
12 score<-LSR$u%*%diag(LSR$d)[,2:3]
13 Un<-LSR$v[,2:3]}
14 if (k==3)
15 {LSR<-svd(t(rbind(Bn[[1]],Bn[[2]],Bn[[3]]))%*%
16 (diag(1,3)%x%t(msh)))
17 score<-LSR$u%*%diag(LSR$d)[,2:6]
18 Un<-LSR$v[,2:6]}
19 list("score"=score, "uniform"=Un)}

One can choose the strategy of relative warps presented in [10] to obtain the
remaining components of variation; alternatively, one can simply project the shape
coordinate residuals onto an orthogonal space that will contain nonaffine deforma-
tion only. One achieves this using the approach of Burnaby [16]. Indeed, one can
consider any configuration as the result of the transformation of a given reference.
One can decompose the transformation into a sum of affine and a sum of nonaffine
transformations. One can thus define an affine subspace and a nonaffine subspace.
The affine and nonaffine subspaces are orthogonal and their direct sum is equivalent
to the shape space. Since it is possible to define the uniform portion in the shape
space, one can calculate the nonaffine components by projecting the data in the com-
plement space as we have proceeded with the Burnaby method (Section 3.4.3). We
obtain them so that:

Nu = Ikp − U(U′U)−1U′ ,

where Ikp is the identity matrix and U the uniform components of variation arranged
in 2 or 5 columns. The matrix of Procrustes residuals V follows the relationship:

V = X − 1nXm ,

242 6 Statistical Analysis of Shape using Modern Morphometrics

where X corresponds to the matrix of n by kp aligned coordinates, Xm to the mean
shape. These Procrustes residuals are projected onto V by matrix multiplication, and
a singular-value decomposition is performed on the result of the multiplication to
appraise the left L, right Rsingular vectors and singular values S. We have

VNu = LSR′ .

The nonaffine components correspond to the right term R. The product LS gives
the scores on each nonaffine component. The method described here is not different
in essence from the relative warp methodology (see [10, 98]). Deformation grids or
displays of vector differences are helpful for understanding the changes occurring
along components of nonaffine deformation.

For illustrating the analysis of the nonaffine deformation, we continue exam-
ining the gorf.dat and gorm.dat gorilla datasets, for which we have already
computed uniform components.

>kp<-dim(gor)[2]*dim(gor)[1]
>n<-dim(gor)[3]
>X<-t(matrix(gou$rotated,kp,n))
>V<-X-t(t(rep(1,n)))%*%as.vector(msh)
>Ben<-diag(1,kp)-Un%*%solve(t(Un)%*%Un)%*%t(Un)
>LSR<-svd(V%*%Ben)

We compute the coefficients and the scores for each nonaffine component.

>score<-LSR$u%*%diag(LSR$d)
>NonUnif<-LSR$v

We plot the scores of individuals on nonaffine components on a graph; deformation grids
associated with variation on axes are displayed as well.

>layout(matrix(c(1,1,1,1,2,3,4,5),2,4))
>plot(score[,1:2],pch=c(rep("f",30),rep("m",29)),xlab="RW1",
+ ylab="RW2",asp=1)
>tps(msh, matrix(as.vector(msh)+NonUnif[,1]*max(score[,1])
+ ,8,2),20)
>title("RW 1: right")
>tps(msh, matrix(as.vector(msh)+NonUnif[,1]*min(score[,1])
+ ,8,2),20)
>title("RW 1: left")
>tps(msh, matrix(as.vector(msh)+NonUnif[,2]*max(score[,2])
+ ,8,2),20)
>title("RW 2: top")
>tps(msh, matrix(as.vector(msh)+NonUnif[,2]*min(score[,2])
+ ,8,2),20)
>title("RW 2: bottom")

We can estimate the variance of shape explained by each affine and nonaffine
component by computing the variance of scores. Only the first k − 6 nonaffine com-
ponents contain variation, the last ones having 0 eigenvalues.

6.1 Explorative Analyses of the Shape Space 243

>paste("Nonaffine variation =",round(sum
+ (diag(var(score[,1:(kp-6)]))),5))
[1] "Nonaffine variation = 0.0023"
>paste("Affine variation =",round(sum
+ (diag(var(gou$score[,1:2]))),5))
[1] "Affine variation = 0.00081"
>paste("Total variation =", round(sum
+ (diag(var(X))),5))
[1] "Total variation = 0.00311"

The total shape variation is indeed equal to the sum of the nonaffine and affine variations.

>diag(var(gou$score[,1:2]))/sum(diag(var(X)))
U1 U2

0.1206839 0.1406331
>round(diag(var(score[,1:(kp-6)]))/sum(diag(var(X))),4)
[1] 0.3396 0.1238 0.0853 0.0495 0.0424 0.0337 0.0251
[8] 0.0189 0.0120 0.0083

f

ff

f

f
f

f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f
f

f

ff

m
m

m

m
mm m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

mm

m
m

m

m

m

m

−0.05 0.00 0.05

−
0.

06
−

0.
02

0.
02

0.
04

0.
06

RW1

R
W

2

RW 1: right RW 2: top

RW 1: left RW 2: bottom

Fig. 6.4. Illustration of the first two nonuniform components of shape variation within the
concatened gorf.dat and gorm.dat dataset. Males correspond to “m” and females to
“f”. Males and females are well characterized on the first component of nonaffine deformation.
This component corresponds to a general bending of the configuration. The second component
represents a differential of dilatation between the anterior and posterior parts of the skull
cross section: differences between sexes are not characterized by this kind of morphological
deformation

In our example, the variation explained by affine transformation summarizes 26%
of the total variation. The second uniform component (dilatation) accounts for 14%.
The nonaffine components summarize variation that decrease with their rank, the
first explaining nearly 34% of the total shape variation of the sample.

244 6 Statistical Analysis of Shape using Modern Morphometrics

6.1.2 Outlines

As for Procrustean data, it is possible to visualize shape changes along main com-
ponents of shape variation using the variety of modern morphometric methods for
analyzing outlines.

As an example, we will analyze outlines of fossil rodent molars belonging to
two different species, Megacricetodon tautavelensis and Megacricetodon aunayi.
For simplicity these species names are abbreviated in the text by tauta and auna.
The original dataset contains 64 points sampled in a clockwise way on upper left
molar of 29 and 31 individuals for each species. Since teeth have rather complex
outlines (see Fig. 6.4), we select the elliptic Fourier methodology for defining shape
parameters of the outlines. The datasets are stored in two data frames, of k columns,
and n × p rows. For convenience, we transform them in two array objects, tauta
and auna, of respective dimensions: 64, 2, 29 and 64, 2, 31.1

Plotting the sampled coordinates or the outline of a given individual is achieved with the
familiar commands of R:

>tauta<-read.table("/home/juju/morph/tauta.R")
>auna<-read.table("/home/juju/morph/auna.R")
>taut<-array(NA,dim=c(64,2,29))
>taut[,1,]<-tauta[,1]; taut[,2,]<-tauta[,2]
>aun<-array(NA,dim=c(64,2,31))
>aun[,1,]<-auna[,1]; aun[,2,]<-auna[,2]
>plot(taut[,,1], asp=1, pch=3, xlab="X",ylab="Y")
>lines(taut[,,1]); points(t(taut[1,,1]),pch=16,cex=2)

1.6 1.8 2.0 2.2 2.4 2.6

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

X

Y

Fig. 6.5. Raw coordinates and outline of the first individual of the Megacricetodon tautave-
lensis dataset. The first digitized landmark is indicated by a circle

For outlines to be compared, one must superimpose outlines on their centroid and
perform any necessary alignment, or one can use the normalized Fourier transform.
1 The datasets are available in the onlline supplement.

6.1 Explorative Analyses of the Shape Space 245

Our choice is driven by the fact that there is no landmark available on the teeth;
therefore the elongation of the first ellipse is used for aligning specimens and stan-
dardizing measurements. The same is true for the starting point. We perform the
standardized elliptic Fourier analysis of both samples.

>coe<-matrix(NA,29,32*4)
>for (i in 1:29)
+ {N<-NEF(taut[,,i])
+ coe[i,]<-c(NA,NB,NC,ND)}
>coe1<-matrix(NA,31,32*4)
>for (i in 1:31)
+ {N<-NEF(aun[,,i])
+ coe1[i,]<-c(NA,NB,NC,ND)}

The high order harmonic coefficients should contain very little information con-
cerning differentiation between groups, and are more likely to contain noise because
of digitization error (see Chapter 5). When using the standardization, one can drop
the first three coefficients of the first harmonic because they are constant. The last
one is concerned with the relative elongation of the first ellipse. In some papers [89],
the remaining variable coefficient of the first harmonic is not taken into account
because it is said that it may not contain systematic information. Whether this coef-
ficient must be included or analyzed separately depends on the way we think about
harmonic signification. The variation contained in this coefficient corresponds to the
relative width-on-length ratio. Prior to digitization, teeth were numerized under a
stereographic camera. Depending on their orientation below the camera, teeth could
actually look wider or longer. We choose therefore to forget the d1 coefficient for
limiting measurement error caused by orientation of teeth below the objective of the
stereographic camera.

We need to estimate the number of Fourier harmonics to retain for future analy-
ses. One can examine the total cumulative power and decide to select harmonics so
that 99% of the total power is reached. Since we have stored harmonic coefficients
into a matrix object, we can calculate this cumulative power with the apply func-
tion. We remove the first harmonic for this computation, since, besides being subject
to error measurement, it summarizes most of the variance.

>coef<-rbind(coe, coe1)
>co<-coef^2
>tharm<-apply(co,2,sum)
>power<-apply(matrix(tharm, 32,4),1,sum)
>round(cumsum(power[-1])/sum(power[-1]),3)[1:9]
[1] 0.465 0.840 0.944 0.955 0.985 0.991 0.996 0.997 0.998

The first seven harmonics totalize more than 99% of the total power remaining after first
removing variation contained in the relative length of the first ellipse. This option for selecting
harmonics does not consider the actual variation in the sample. Instead, we can examine the
cumulative variance explained by coefficients.

>vharm<-apply(coef,2,var)
>variation<-apply(matrix(vharm,32,4),1,sum)

246 6 Statistical Analysis of Shape using Modern Morphometrics

>round(cumsum(variation[-1])/sum(variation[-1]),3)[1:18]
[1] 0.357 0.530 0.686 0.763 0.854 0.890 0.928 0.945 0.959
[10] 0.969 0.975 0.980 0.984 0.987 0.990 0.992 0.994 0.995

The results are sensibly similar. Even in excluding the first harmonic, the first seven following
ones totalize more than 92% of the total reconstructable variation. This means that by taking
only seven harmonics, we are not losing too much information. It also means that most of the
tooth variation is described by a few harmonic coefficients.

In addition, one can estimate the percent of error variation contained on each
coefficient by replicating measurements on similar specimens, or by using the ap-
proach of Yezerinac et al. (Section 2.6, [124]). This other way consists of excluding
harmonics that carry more relative error variation than explained variation.

To examine variation in the whole sample, we perform a PCA of the first 28
coefficients selected on basis of the cumulative total power and on the proportion of
explained variation.

>pc<-princomp(coef[,c(2:8,32+2:8,64+2:8, 96+2:8)])
>layout(matrix(c(1,1,1,1,2,3),2,3))
>plot(pc$score, pch=c(rep("a",29), rep("t",31)), asp=1)
>(pc$sdev^2/sum(pc$sdev^2))[1:5]

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
0.37810540 0.17056417 0.14000524 0.07961182 0.06154700

The last line of the code calculates the percent of variance on each PC. The first two PCs
summarize, respectively, 37.8% and 17.1% of the variance.

To reconstruct variation along axes, We must first estimate the Fourier coeffi-
cients of the mean shape by averaging the first harmonic coefficients, including the
mean of the first harmonic coefficients, that we have ignored to perform the PCA.
Once done, we use the scores and eigenvectors for reconstructing theoretical outlines
at different positions along the principal axes.

>mshcoef<-apply(coef[,c(1:8,32+1:8,64+1:8, 96+1:8)],2,mean)

Although the first harmonic is not considered for explaining variation, the ex-
treme scores are multiplied by the related eigenvectors and added to the correspond-
ing coefficients of the meanshape to compute the coordinates of extreme shapes. This
provides a means of describing extreme shape change explained by PC-axes.

>ev<-pc$loadings
>Mx1<-mshcoef+max(pc$score[,1])*c(ev[1:7,1],
+ 0,ev[8:14,1],0,ev[15:21,1],0,ev[22:28,1],0)
>mx1<-mshcoef+min(pc$score[,1])*c(ev[1:7,1],
+ 0,ev[8:14,1],0,ev[15:21,1],0,ev[22:28,1],0)
>Mx2<-mshcoef+max(pc$score[,2])*c(ev[1:7,2],
+ 0,ev[8:14,2],0,ev[15:21,2],0,ev[22:28,2],0)
>mx2<-mshcoef+min(pc$score[,2])*c(ev[1:7,2],
+ 0,ev[8:14,2],0,ev[15:21,2],0,ev[22:28,2],0)

6.1 Explorative Analyses of the Shape Space 247

We achieve the reconstruction of outlines by inverse Fourier transformation with
the iefourier function.

>Mx1<-iefourier(Mx1[1:8],Mx1[9:16],Mx1[17:24],Mx1[25:32]
+ ,8,64)
>mx1<-iefourier(mx1[1:8],mx1[9:16],mx1[17:24],mx1[25:32]
+ ,8,64)
>Mx2<-iefourier(Mx2[1:8],Mx2[9:16],Mx2[17:24],Mx2[25:32]
+ ,8,64)
>mx2<-iefourier(mx2[1:8],mx2[9:16],mx2[17:24],mx2[25:32]
+ ,8,64)
>plot(Mx1,type="l",col="grey60",asp=1,frame=F,axes=F,
+ main="PC1",xlab="",ylab="",lwd=2)
>points(mx1, type="l",asp=1)
>plot(Mx2,type="l",col="grey60",asp=1,frame=F,axes=F,
+ main="PC2",xlab="",ylab="",lwd=2)
>points(mx2, type="l",asp=1)

a

a

a

a

a

aaa
a

a

a

aa a
a

a

aa

a

a

a
a

a

a

a

a

a

a

a

t

t

t

t

t

t

t
t

t

t

t

t

t

t

tt t

t

t

t
t

t
t

t

t

t tt
t

t

t

−0.02 0.00 0.02 0.04

−
0.

02
0.

00
0.

01
0.

02
0.

03

Comp.1

C
om

p.
2

PC1

PC2

Fig. 6.6. PCA applied to the first 8 − 1 harmonics defined from the outlines of the left first
molar of fossil rodents of the genus Megacricetodon. “a” labels correspond to the “auna”
species, “t” labels to the “tauta” species. Black and thin outlines correspond to minimal values
along axes, and gray and thick outlines to maximal scores

We notice in Fig. 6.6 that the first two principal components oppose both species
relatively well. The species “tauta” seems to have a more complex and angular out-
line than the species “auna.”

248 6 Statistical Analysis of Shape using Modern Morphometrics

6.2 Discriminant and Multivariate Analysis of Variance

When one compares several groups, one can choose either discriminant analysis for
group discrimination and eventually inferring prediction concerning the category of a
new observation, or multivariate analysis of variance for testing whether differences
between groups are significantly greater than within-group variation.

6.2.1 Outlines

We will first examine differences between outlines using the outlines of fossil rodents
as examples. We keep the number of coefficients previously selected for the principal
component analysis of variance. These are the coefficients of the second to the eighth
harmonics. The first group contains 29 individuals, while the second contains 31 in-
dividuals. To perform a one-way MANOVA, we simply code the explaining variable
(species) as a factor.

>fact<-as.factor(c(rep(1,29), rep(2,31)))
>coeff<-coef[,c(2:8,32+2:8,64+2:8, 96+2:8)]
>summary(manova(coeff~fact), test="Hotelling")

Df Hotelling-Lawley approx F
fact 1 3.8379 4.2491
Residuals 58

num Df den Df Pr(>F)
fact 28 31 7.601e-05 ***
Residuals

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Both groups are significantly different.

For investigating the morphological effect on the linear discriminant axes, we
nearly proceed as for the principal component analysis. However, since the within
variance-covariance matrix has been used for standardizing the between-group vari-
ance, the linear discriminant loadings have to be premultiplied by the within-group
matrix to be compatible with shape variation (see Fig. 6.7). There are six steps to
follow:

1. Estimate the linear discriminant functions.
2. Project data onto the discriminant axes.
3. Compute the pooled within-group or error variance-covariance matrix.
4. premultiply linear discriminant axes by the within variance-covariance matrix,

for removing effects of standardization.
5. Reconstruct outlines along axes: For this, one calculates the mean shape, on

which one adds the rectified discriminant loadings multiplied by the desired
scores. The scores we use are thus the mean group score, or extreme scores
for individuals on axes, or even amplified scores for an easier visualization of
shape differences – if those are small.

6.2 Discriminant and Multivariate Analysis of Variance 249

6. Use reverse Fourier functions for producing outlines.

We follow these six steps for depicting group discrimination between the two
rodent species.

Step 1.

>library(MASS)
>mod1<-lda(coeff, fact)
>LD<-mod1$scaling

Step 2.

>ldascore<-predict(mod1)$x

Step 3.

>n<-dim(coeff)[1]
>mod3<-lm(coeff~fact)
>dfw<- n - length(levels(fact))
>SSw<- var(mod3$residuals) * (n-1)
>VCVw<-SSw/dfw

Step 4.

>LDs<-VCVw%*%LD
>layout(matrix(c(1,2),1,2))
>hist(ldascore[1:29],xlim=range(ldascore),main=

"Score distribution", xlab="Discriminant score")
>hist(ldascore[30:60],col="grey",add=T)

Step 5: ampl is the amplification coefficient – here extreme differences are exaggerated twice.

>mshcoef<-apply(coef[,c(1:8,32+1:8,64+1:8, 96+1:8)],2,mean)
>ampl<-2
>Mx1<-mshcoef+ ampl * max(ldascore[,1])*c(LDs[1:7,1],
+ 0,LDs[8:14,1],0,LDs[15:21,1],0,LDs[22:28,1],0)
>mx1<-mshcoef+ ampl * min(ldascore[,1])*c(LDs[1:7,1],
+ 0,LDs[8:14,1],0,LDs[15:21,1],0,LDs[22:28,1],0)

Step 6.

>Mx1<-iefourier(Mx1[1:8],Mx1[9:16],Mx1[17:24],Mx1[25:32]
+ ,8,64)
>mx1<-iefourier(mx1[1:8],mx1[9:16],mx1[17:24],mx1[25:32]
+ ,8,64)
>plot(Mx1,type="l",col="grey55",asp=1,frame=F,axes=F,lwd=2
+ ,main="Variation on LD1 x 2",xlab="",ylab="")
>points(mx1, type="l",asp=1)

The rodents differ in the more or less accentuated concavities and convexities
appearing along the outline (Fig. 6.7).

Another possibility for observing differences between groups – when two groups
only are to be differentiated – is to look at mean shape of each group. However, this

250 6 Statistical Analysis of Shape using Modern Morphometrics

Score distribution

Discriminant score

F
re

qu
en

cy

−4 −2 0 2 4

0
2

4
6

8
Variation on LD1 x 2

Fig. 6.7. Discriminant analysis based on the species category applied to the first 8 − 1 har-
monics defined from the outlines of left first molar of fossil rodents. Black outline and white
bins in the histogram correspond to the species “auna”, thick gray outline and gray bins in the
histogram correspond to the species“tauta”

will not necessarily emphasize the significant shape components that differ between
groups.

Compute averaged coefficients mshcoef1 and mshcoef2 for each group.

>mshtauta<-apply(coef[1:29,c(1:8,32+1:8,64+1:8,96+1:8)]
+ ,2,mean)
>mshauna<-apply(coef[30:60,c(1:8,32+1:8,64+1:8,96+1:8)]
+ ,2,mean)

For exaggerating differences between mean groups, we use the difference between each
species mean shape and the overall mean shape.

>msh<-apply(rbind(mshtauta, mshauna), 2, mean)
>ampl<-4
>tauta2<-msh+(mshtauta-msh)*ampl
>auna2<-msh+(mshauna-msh)*ampl
>TAUT<-iefourier(tauta2[1:8], tauta2[9:16],
+ tauta2[17:24], tauta2[25:32],8,64)
>AUN<-iefourier(auna2[1:8], auna2[9:16],
+ auna2[17:24], auna2[25:32],8,64)
>plot(TAUT,type="l",asp=1,frame=F,axes=F,main=
+ "Differences between mean groups exagerated x 4",
+ xlab="",ylab="",col="grey55",lwd=2)
>points(AUN, type="l")

The differences between mean groups (Fig. 6.8) are nearly the same as the variation found on
the linear discriminant axis.

6.2 Discriminant and Multivariate Analysis of Variance 251

Four−times exagerated

differences between group means

Fig. 6.8. Four-times amplified differences between mean shapes for each species of the rodent
teeth dataset. The black and thin outline corresponds to the species “auna” while the thick and
gray outline corresponds to the species “tauta”

6.2.2 Procrustes Data

For Procrustes data, things are becoming more difficult than classic multivariate sta-
tistics. When one works on superimposed coordinates, the number of dimensions
of the shape space is not equal to the number of analyzed variables pk. Indeed, the
inherent transformations (scaling, translation, rotation) accompanying the superim-
position procedure reduces the rank number contained in original data. There are
four dimensions lost for 2D data and seven for 3D data. This mismatch between the
number of dimensions and the number of variables makes it difficult to use standard
multivariate tests for Procrustes data. These tests need to be adapted.

One must slightly adapt multivariate tests to estimate the significance of shape
difference between groups of configurations depicted by landmarks. Two parameters
must be modified in the test:

1. The number of space dimensions should replace the number of variables in the
transformation of the multivariate statistic to its F -approximation. We automat-
ically obtain the number of dimensions by estimating the rank of the matrix of
variance-covariance with the qr function. This rank substitutes the number of
variables in the test.

2. Since between-group (or effect) variance is scaled by within-group (or error)
variance by using matrix multiplication and matrix inverse, one encounters a
computational problem with classic algorithms estimating matrix inverse. In-
deed, one cannot invert a nonsingular matrix as simply as usual covariance ma-
trices, and one must use the Moore-Penrose generalized inverse. Fortunately the
ginv function of the MASS package calculates this inversion.

We modify the Hotelling-Lawley trace statistic and its F -approximation in a
function called Hotellingsp that receives several arguments: sum of squares and
cross-products of effect, sum of squares and cross-products of residual variation, and

252 6 Statistical Analysis of Shape using Modern Morphometrics

their respective degrees of freedom. We use the F -approximation following
Section 3.4.3. For implementing the two possible approximations, the last argument
of the function is set to exact=FALSE, or to exact=TRUE. In the latter case, the
F -approximation follows the second moment estimate as suggested by McKeon [73].

Function 6.4. Hotellingsp

Arguments:
SSef: Sum of squares and cross-products of effect.
SSer: Sum of squares and cross-products of residual variation.
dfef: df for the effect term.
dfer: df for the error term.
exact: Logical value indicating whether one should use the estimate of McKeon [73].

Value:
A summary table containing the degrees of freedom, the Hotelling-Lawley trace, the

F -approximation and relative degrees of freedom, and the p-value.

1 Hotellingsp<-function(SSef, SSer, dfef, dfer, exact=F)
2 {library(MASS)

p corresponds to the number of shape space dimensions.

3 p <- qr(SSef+SSer)$rank
4 k<-dfef; w<-dfer
5 s<-min(k,p)
6 m<-(w-p-1)/2
7 t1<-(abs(p-k)-1)/2
8 Ht<-sum(diag(SSef%*%ginv(SSer)))
9 Fapprox<-Ht*(2 * (s*m+1))/(s^2*(2*t1+s+1))

10 ddfnum<-s*(2*t1+s+1)
11 ddfden<-2*(s*m+1)
12 pval= 1-pf(Fapprox, ddfnum, ddfden)
13

14 if (exact)
15 {b<-(p+2*m)*(k+2*m)/((2*m+1)*(2*m-2))
16 c1<-(2+(p*k+2)/(b-1))/(2*m)
17 Fapprox<-((4+(p*k+2)/(b-1))/(p*k))*(Ht/c1)
18 ddfnum<-p*k
19 ddfden<-4+(p*k+2)/(b-1)}
20

21 unlist(list("dfeffect"=dfef,"dferror"=dfer,"T2"=Ht,
22 "Approx_F"=Fapprox,"df1"=ddfnum,"df2"=ddfden,"p"=pval))}

Using the same strategy as before, we will examine differences between cross
sections of ape skulls depicted by landmark data. We use the gorf.dat, pan.dat,
and pongo.dat datasets of the shapes package. The datasets must be first reorga-
nized because landmarks are not labeled in the same order for each set.

6.2 Discriminant and Multivariate Analysis of Variance 253

>library(shapes)
>gorf<-gorf.dat
>panf<-panf.dat[c(5,1,2:4,6:8),,]
>pongof<-pongof.dat[c(5,1,2:4,6:8),,]
>APE<-array(c(panf, gorf, pongof),dim=c(8,2,80))
>AP<-orp(pgpa(aligne(APE))$rotated)
>fact<-as.factor(c(rep("p",26),rep("g",30),rep("o",24)))
>m<-t(matrix(AP, 16, 80))
>n<-dim(m)[1]

When sets are assembled and superimposed, we apply a linear model to our data, the explain-
ing factor being species. We use this model to compute the effect and error sum of squares and
cross-products.

>mod1<-lm(m~as.factor(fact))
>dfef<- length(levels(fact))-1
>dfer<- n - length(levels(fact))
>SSef<-(n-1)*var(mod1$fitted.values)
>SSer<-(n-1)*var(mod1$residuals)

Finally, we test for differences between within-group and between-group variance-covariance
matrices with the adapted Hotelling-Lawley multivariate test.

Hotellingsp(SSef, SSer, dfef, dfer)
dfeffect dferror T2 Approx_F
2.00000 77.00000 17.08507 46.27206

df1 df2 p
24.00000 130.00000 0.00000

The group means are significantly different.

We can use linear discriminant analysis and reconstruct configurations corre-
sponding to extreme values along discriminant axes to determine differences between
groups. Since in our case, there are three groups, there will be two discriminant axes.
The linear discriminant axes are premultiplied by the within variance-covariance ma-
trix and associated scores to reconstruct configurations depicted by scores in the dis-
criminant space.

>mod1<-lda(m, fact)
Warning message:
variables are collinear in: lda.default(x, grouping, ...)

Plot individuals on the linear discriminant axes.

>score<-predict(mod1)$x
>layout(matrix(c(1,1,2,3),2,2))
>plot(score,pch=as.character(fact),asp=1)

Calculate averaged shapes for each group.

>LD<-mod1$scaling
>msh<-apply(m, 2, mean)

254 6 Statistical Analysis of Shape using Modern Morphometrics

Estimate the within group variance-covariance.

>mod3<-lm(m~as.factor(fact))
>n<-dim(m)[1]
>dfw<- n - length(levels(fact))
>SSw<- var(mod3$residuals) * (n-1)
>VCVw<-SSw/dfw
>LDs<-VCVw%*%LD

Estimate configurations corresponding to changes onto linear discriminant axes.

>LD1M<-(matrix(msh+ max(score[,1])* LDs[,1],8,2))
>LD1m<-(matrix(msh+ min(score[,1])* LDs[,1],8,2))
>LD2M<-(matrix(msh+ max(score[,2])* LDs[,2],8,2))
>LD2m<-(matrix(msh+ min(score[,2])* LDs[,2],8,2))
>joinline<-c(1,6:8,2:5,1,NA,7,4)
>par(mar=c(5,1,2,1))
>plot(LD1M,axes=F,frame=F,asp=1,xlab="",ylab="",
+ pch=22,main="LD1")
>points(LD1m,pch=17)
>lines(LD1M[joinline,],lty=1)
>lines(LD1m[joinline,],lty=2)
>plot(LD2M,axes=F,frame=F,asp=1,xlab="",ylab="",
+ pch=22, main="LD2")
>points(LD2m,pch=17)
>lines(LD2M[joinline,],lty=1)
>lines(LD2m[joinline,],lty=2)

Note the warning message that appears due to the fact that matrices of variance-
covariance are not singular. We could have avoided this by substituting original data
by their projections on the p−4 PC-axes: the result would have been strictly similar.
On the projections of individuals, we notice that no individual has been misclassified.
The first linear discriminant axis mainly shows differences between the Asian and
the African species, while the second axis opposes the gorilla to the chimpanzee
and orangutan. The orangutan has a more triangular skull cross section, while the
chimpanzee and gorilla are more rectangular. On the second axis, the chimpanzee is
opposed to both gorilla and orangutan: differences between species mainly concern
the facial part of the skull – the base of the skull in chimpanzee is upturned anteriorly,
while it is inflected downwards for both other species (Fig. 6.9).

For other kinds of shape variables, one can usually proceed as with independent
multivariate datasets. When shape dimensions are lost during the transformation of
original variables into shape variables, one can use the Hotelling-Lawley trace test
developed before.

6.3 Clustering

As seen in Chapter 3, we can use clustering methods for investigating whether there
is a grouping structure in the collection of observations. We will use a part of the

6.3 Clustering 255

p p

p

p
p

p
p

pp

p
p

p

p

p

p
p

p
p

p

pp
pp

p

p

p

g

g

g
g

g
g

g

g
g

g g

g

g
g

g g

g

g g

g

gg
g

g

g

g g

g

g

g
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o
o o

o

o

o
o

o

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

8

LD1

LD
2

LD1

LD2

Fig. 6.9. Discriminant analysis among group of three different species of ape: “p” labels corre-
spond to chimpanzee, “g” to gorilla, and “o” to orangutan. The morphological interpretations
of the linear discriminant axes are displayed on the right side of the graph: deformation corre-
sponds to extreme individual scores on LD-axes. Square symbols and full lines correspond to
maximal values, triangle symbols and dotted lines to minimal values

configuration set for apes to investigate whether hierarchical and partitioning meth-
ods result in the same classification between female gorilla and chimpanzee skulls.
We first perform an UPGMA and a complete linkage on the Euclidean distance
in the tangent shape space. Once configurations are superimposed and projected,
we display the tree using a simple line of commands with the hclust and dist
functions.

>library(MASS)
>library(shapes)
>gorf<-gorf.dat
>panf<-panf.dat[c(5,1,2:4,6:8),,]
>pongof<-pongof.dat[c(5,1,2:4,6:8),,]
>APE<-array(c(panf, gorf, pongof),dim=c(8,2,80))
>APE<-array(c(panf, gorf),dim=c(8,2,56))
>AP<-orp(pgpa(APE)$rotated)
>m<-t(matrix(AP, 16, 56))
>par(mar=c(0.5,2,1,1))
>layout(matrix(c(1,2),2,1))
>plot(hclust(dist(m), method="average"),main="UPGMA"
+ ,labels=c(rep("P",26),rep("G",30)),cex=0.7)
>plot(hclust(dist(m), method="complete"),main="COMPLETE"
+ ,labels=c(rep("P",26),rep("G",30)),cex=0.7)

256 6 Statistical Analysis of Shape using Modern Morphometrics

A single individual is misclassified in the UPGMA method, while the complete linkage
method is able to identify correctly both groups (Fig. 6.10).

G G
G

G
G G

G G
G G

P
G

G G
G

G G G
G G

G
G G

G G
G G G

G
G G

P P P
P

P P
P

P
P P

P
P

P P
P P

P P
P P

P
P P

P P

0.
02

0.
06

0.
10

UPGMA
G G G

G
G G

G G
G

G G G G G G G G
G G

G
G

G
G G

G G
G

G
G G

P
P P

P
P P P P P
P P

P P
P

P P
P P P

P
P P

P P
P P

0.
00

0.
05

0.
10

0.
15

COMPLETE

Fig. 6.10. UPGMA and complete linkage clustering applied to tangent shape space coordinates
of the ape dataset containing the female chimpanzee and gorilla data. "G" labels are for gorillas
and "P" for chimpanzees

Assuming that groups are not known in advance, one may want to estimate the
number of groups within the data using a partitional clustering method and the elbow
approach (see Section 3.4.3). In the following example, I used the clustering structure
returned by the pam function and I computed the within- and between-group sum of
squares using a linear model with response being the grouping factor.

>library(cluster)
>df<-dim(m)[1]-1
>SStot<-sum(diag(var(m)))*df
>expl<-0
>for (i in 2:20)
+ {mod<-pam(dist(m),i)
+ mod1<-lm(m~as.factor(mod$clustering))
+ expl[i]<-sum(diag(var(mod1$fitted.values)))*df/SStot}
>plot(1:20,expl,ylab="Explained variance"
+ ,xlab="Group number")
>lines(1:20,expl)

The elbow method used in Fig. 6.11 shows that the line breaks for two groups.

> pam(dist(m),2)$clustering
[1] 1

6.4 Morphometrics and Phylogenies 257

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

Group number

E
xp

la
in

ed
 v

ar
ia

nc
e

Fig. 6.11. Estimation of group numbers using partitional clustering with the pam function
applied on the superimposed configurations of the female chimpanzee and gorilla datasets

[26] 2
[51] 2 2 2 2 2 2
> pam(dist(m),3)$clustering
[1] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 2 2 1 1
[26] 2 3
[51] 3 3 3 3 3 3

With an assumption of two groups, one individual of chimpanzee is misclassified in the gorilla
group. Moreover, increasing the number of groups results in the nearly same partition, except
that some clusters are truly monospecific.

Several other methods can perform clustering analysis of data. Users have to
define the method and distance metrics; their choices are guided by the type of data.
For example, one can eventually normalize elliptic Fourier coefficients since the first
summarize more power and variance than the following ones. For clustering group
means, it is recommended to use the Mahalanobis distance between groups since this
will be scaled by the within-group variance-covariance.

6.4 Morphometrics and Phylogenies

There are many possible applications combining morphometric methods and phy-
logenies (for example, see Macleod and Forey [69]). Although using morphometric
characters to estimate phylogenies is feasible, this is not always recommended (see
[97, 100]). One can use morphometric exploration for identifying characters that

258 6 Statistical Analysis of Shape using Modern Morphometrics

could further be included in a morphological dataset to infer phylogenies by parsi-
mony.

An interesting issue is to fit morphometric data onto a given phylogenetic tree.
Several methods are available for estimating ancestral character states; nevertheless,
in the case of Procrustes data [100] notes that one cannot use linear parsimony esti-
mates. Actually, observations produced with Procrustean superimpositions are sensi-
tive to the orientation of the reference shape (that one usually takes as being the mean
shape). Squared parsimony or maximum likelihood methods for estimating ancestral
character states are preferred over linear parsimony.

I used the mosquito dataset presented in Rohlf [96]. You can find the phylogeny
and the set in data supplied by the free “tpstree” software developed by Rohlf [94].2

We need the data concerning terminal tips of the tree, the phylogeny, and then to
perform a Procrustes analysis of configurations defined by landmarks digitized on
the wings of the eleven species of mosquitoes present in the set (Fig. 6.12). Their
phylogenetic relationships are illustrated by a tree in Fig. 6.13.

Import the set of original configuration in R.

>dat<-scan("/home/juju/morph/mosqH.tps", what="char")

Arrange the set in an p × k × n array object.

>taxa<-dat[c(1:11)*38]
>taxa<-sub("ID=", "", taxa)
>rem<-sort(c(c(1:11)*38, (c(1:11)*38)-37))
>dat<-as.numeric(dat[-rem])
>dat1<-matrix(dat,18*11,2, byrow=TRUE)
>dat2<-array(NA, dim=c(18,2,11))
>dat2[,1,]<-dat1[,1]
>dat2[,2,]<-dat1[,2]

Perform the superimposition and plot each species using different gray-scale levels.

>mosq<-orp(pgpa(dat2)$rotated)
>palette(gray(1:11/16))
>par(mar=c(1,1,3,1))
>plot(mosq[,1,],mosq[,2,],asp=T,cex=0,xlab="",axes=F,
+ frame=F,ylab="",main="Procrustes superimposition")
>joinline<-c(1:13,1,NA,10,18,9,NA,13,18,NA,8,17,7,NA,16,17,
+ NA,4,15,5, NA,2,14,15,NA,6,16,13,NA,3,14,13)
>for (i in 1:11)
+ {lines(mosq[joinline,,i],col=i)}
>points(mosq[,1,],mosq[,2,], asp=T, cex=0.7, pch=20)

We write the phylogeny, and transform the phylogram into a chronogram accord-
ing the method of Sanderson [109]. We transform the phylogeny into a chronogram
with the chronogram function of the ape package.

2 http://life.bio.sunysb.edu/ee/rohlf/software.html

6.4 Morphometrics and Phylogenies 259

Procrustes superimposition

Fig. 6.12. Procrustes superimposition of the TPStree mosquito wings dataset

>library(ape)
>mosqp<-read.tree(text="(AN1:16,(cu101:2,((ma29:1,
+ (cl21:1,ae44:1):3):3,((ur17:1,(wy13:1,or28:6):4):2,
+ ((to12:1,de126:3):1,ps32:30):1):2):2):8);")
>mosqp$node.label<-c(12:21)
>layout(matrix(c(1,2),2,1))
>par(mar=c(3,2,3,2))
>mosqp<-root(mosqp, "AN1")
>plot(mosqp, show.node.label=T,main="Phylogram",cex=0.7)
>chrono<-chronogram(mosqp)
>plot(chrono,show.node.label=T,main="Chronogram",cex=0.7)

The combination of information from morphology and phylogeny permits us to
address evolutionary questions regarding the relationship between divergence in time
and in wing morphological evolution. One can determine the strength of the relation-
ship using a Mantel test on the chronological distances and the Euclidean morpholog-
ical distances. Before this, we must enter the order of superimposed configurations
as they appear in the phylogeny. For this purpose, we use the match function.

>ordphyl<-match(mosqp$tip.label, taxa)
>mosq1<-mosq[,,ordphyl]
>procdata<-t(matrix(mosq1, 36, 11))
>chronodist<-cophenetic.phylo(chrono)
>euclidist<-as.matrix(dist(procdata))
>mantel.test(chronodist, euclidist)$p
[1] 0.427

Morphological disparity is not related to time divergence. We can address the question differ-
ently and analyze whether phylogenetic divergence is related to morphological variation.

>phyldist<-cophenetic.phylo(mosqp)
>mantel.test(phyldist, euclidist)$p
[1] 0.606

260 6 Statistical Analysis of Shape using Modern Morphometrics

Phylogram

AN1

cu101

ma29

cl21

ae44

ur17

wy13

or28

to12

de126

ps32

12

13

14

15
16

17

18
19

20
21

Chronogram

AN1

cu101

ma29

cl21

ae44

ur17

wy13

or28

to12

de126

ps32

12

13

14

15
16

17

18
19

20
21

Fig. 6.13. Phylogeny and chronogram of the mosquito dataset. The nodes are labeled starting
from the root with labels 12 to 21

The test does not tell that divergence in morphology is not related to time of divergence be-
tween species. The test only says that convergence may have occurred, and that rates of mor-
phological evolution are probably not the same along every branch of the tree.

If one wants to determine whether there is a relationship between time of diver-
gence and divergence in morphology, one must infer ancestral character states.

Although morphological divergence is not always proportional to time diver-
gence, and this may preclude some reliable estimate of ancestral morphologies,
we will proceed as if to show a strategy for estimating ancestral character states
at tree nodes. We will follow the generalized linear model approach for reconstruct-
ing discrete and continuous characters as described in [24]. We have to determine the
variance-covariance among terminal taxa VAR(Y). The vcv.phylo function re-
ceiving the phylo object as argument returns this variance-covariance matrix. The
variance-covariance among terminal taxa corresponds to the shared history among
taxa. We need to estimate the covariance between terminal taxa Y and ancestors

6.4 Morphometrics and Phylogenies 261

VAR(Anc,Y) as well; this corresponds to the shared history between terminal
taxa and nodes. To obtain this matrix, we use the functions of ape. Ntip returns the
number of terminal taxa, dist.nodes returns the distance between every node of
the tree (terminal and internal), and mrca that returns the most common ancestor for
each pair of nodes.

>n<-Ntip(chrono)
>dis <- dist.nodes(chrono)
>MRCA <- mrca(chrono, full = TRUE)
>M <- dis[n + 1, MRCA]
>dim(M) <- rep(sqrt(length(M)), 2)

M corresponds to the vector of distances between the root and the most common ancestor
of every pair of descendants. Directly using the dim function on M allows the coercion into
a matrix object. The covariance between terminal taxa and nodes is obtained by logical
indexing.

>vcvay<-M[-(1:n), 1:n]

Ancestral character states are determined as the deviation of each node from the
root value Ro. One must estimate the root. We choose the ace function with the pic
method as implemented in the ape package to estimate the ancestral morphology
of the root defined as a weighted average considering the topology of the tree (see
Fig. 6.14 for an illustration of the estimated ancestral morphology).

Fig. 6.14. The ancestral morphology of the mosquito wing estimated at the root of the tree. The
estimated shape corresponds to a weighted average considering the phylogenetic variances and
covariances along branches

>kp<-dim(procdata)[2]
>rootp<-numeric(kp)
>for(i in 1:kp)
+ {rootp[i]<-ace(procdata[,i],mosqp, method="pic")$ace[1]}
>ROOTP<-matrix(rootp, 18,2)

262 6 Statistical Analysis of Shape using Modern Morphometrics

>par(mar=c(0,0,0,0))
>plot(ROOTP, asp=1, axes=F, frame=F)
>lines(ROOTP[joinline,])

In order to estimate ancestral character states Anc, one must perform a few ma-
trix calculations such that

Anc = VAR(Anc,Y)VAR(Y)−1(Y − Ro) + Ro .

>n<-dim(procdata)[1]
>A<-vcvay[-1,]%*%ginv(vcv.phylo(chrono))%*%
+ (procdata-(rep(1,n)%*%t(rootp))) +
+ rep(1,(n-2))%*%t(rootp)
>ancestral<-array(t(rbind(rootp,A)),dim=c(18,2,10))

We have everything for examining which branches are concerned with rapid or
slow morphological evolution (Fig. 6.15). We can estimate rates of morphological
evolution from morphologies of descendants and ancestors. In our case, rates cor-
respond to the amount of Euclidean distance scaled by branch length between two
OTUs. Because of the randomness inherent in the course of phenotypic evolution,
these rates are nevertheless underestimated.

>tipandnode<-rbind(procdata, rootp, A)
>DD<-as.matrix(dist(tipandnode))
>le<-dim(chrono$edge)[1]
>rate<-numeric(le)
>for (i in 1:le)
+ {rate[i]<-DD[chrono$edge[i,1],chrono$edge[i,2]]
+ / chrono$edge.length[i]}
>par(mar=c(2,2,2,2))
>plot(chrono, edge.width=rate, label.offset=0.03)

In Figure 6.15, we notice an important acceleration in morphological divergence
occurred at the split between the taxa abbreviated by “ae44” and “cl21.”

One can address many other macro-evolutionary questions by combining a mor-
phometric approach and a phylogenetic approach. I invite the reader to read Paradis
[81] if he is interested in analysis of phylogenetics and evolution with R.

6.5 Comparing Covariation Patterns

Rather than examining whether two groups are different in shape, one can investi-
gate for homogeneity or divergence in patterns of shape variance-covariance between
groups. We have already developed several strategies (see Section 3.4.4). However,
these strategies must be adapted for landmark data.

First one can perform a Mantel test between variance-covariance matrices. The
Mantel test will simulate the distribution of correlation under the null hypothesis by
randomly permuting rows and columns of one of the hemimatrices. For this purpose,

6.5 Comparing Covariation Patterns 263

AN1

cu101

ma29

cl21

ae44

ur17

wy13

or28

to12

de126

ps32

Fig. 6.15. Rates of morphological evolution estimated on branches of the chronogram of the
mosquito dataset

one must include the diagonal of the variance-covariance within the test, because it
contains the variance for each coordinate. In addition, since one landmark is defined
by two or three coordinates, the rows and columns of the matrices corresponding to
similar landmarks are not independent and are not interchangeable [56]. One should
not randomly permute coordinates but pairs or triplets of coordinates associated with
each landmark.

We have to write a function for performing the Mantel test on Procrustean data.
For this goal, it is easier to use one previous function that already performs the Man-
tel test. We can learn how the mantel.test function of the ape package has
been written. In typing mantel.test we can see that the function calls two other
functions,(mantz.stat and perm.rowscols), which we will slightly modify.
The mantz.stat function calls lower.triang. The latter returns the lower tri-
angle of a square matrix. This latter function does not need to be modified because
it specifies that the test considers the diagonal as well. We show below the required
modifications and write a new Mantel test function that considers the geometry be-
tween landmarks as well.

We slightly modify the mantz.stat function into mantrstat to obtain the
correlation between hemimatrices rather than the sum of the product between matrix
elements; this will not change the test, but it provides some measure of correlation.

264 6 Statistical Analysis of Shape using Modern Morphometrics

Function 6.5. mantrstat

Arguments:
m1: Square matrix.
m2: Square matrix.

Value:
Element-wise correlation coefficient between the lower triangles of each matrix.

Required function: lower.triang.

1 mantrstat<-function (m1, m2)
2 { cor(lower.triang(m1),lower.triang(m2))}

Then we modify the perm.rowscols internal function intopermrowscols
to perform the permutation between rows and columns. We add a third argument for
specifying whether the configurations are organized either 1D, 2D, or 3D. The de-
fault value will be one, but one will be allowed to change this value in the argument
of the general function that will perform the Mantel test. The m1 matrix must be
organized with the first p columns corresponding to the x-coordinates, and the next
columns to the y, and eventually to z. The combination of the sample and rep
functions allows us to sample rows and columns and helps us to handle the geometry
contained in landmark data.

Function 6.6. permrowscols

Arguments:
m1: Square matrix.
n: Number of landmarks × number of dimensions.
coord: Number of dimensions

Value:
Permuted matrix.

1 permrowscols<-function (m1,n,coord)
2 {s <- sample(1:(n/coord))
3 m1[rep(s,coord), rep(s,coord)]}

Finally, we must program a new Mantel test, mantel.t2, nearly copying and
pasting the former one, changing the names of the two internal functions and adding
the argument coord, which specifies the number of coordinates that have to be per-
muted together.

6.5 Comparing Covariation Patterns 265

Function 6.7. mantel.t2

Arguments:
m1: Square matrix.
m2: Square matrix.
coord: Number of dimensions.
nperm: Number of permutations.
graph: Logical value indicating whether a graph should be returned.

Values:
r.stat: Observed statistic (Element wise correlation coefficient between both hemi-

matrices).
p: p-value.

Required functions: lower.triang, perm.rowscols, mantrstat.

1 mantel.t2<-function(m1,m2,coord=1,nperm=1000,graph=FALSE,...)
2 {n<-nrow(m1)
3 realz<-mantrstat(m1, m2)
4 nullstats<-replicate(nperm,mantrstat(m1,
5 perm.rowscols(m2,n,coord)))
6 pval <- sum(nullstats > realz)/nperm
7 if (graph) {
8 plot(density(nullstats), type = "l", ...)
9 abline(v = realz) }

10 list(r.stat = realz, p = pval)}

We apply this test to the patterns of shape covariation of brain structure in control
and schizophrenic patients. The question concerns whether these patterns are similar.
We use the dataset of Bookstein [11] provided in the shapes package (Fig. 6.16).
The dataset contains 13 landmarks on 14 control and 14 schizophrenic patients.

>library(shapes)
>schizo<-orp(pgpa(schizophrenia.dat)$rotated)
>control<-t(matrix(schizo[,,1:14],26,14))
>schizop<-t(matrix(schizo[,,15:28],26,14))
>plot(control[,1:13], control[,14:26],pch=3,
+ asp=1,xlab="", ylab="", frame="")
>points(schizop[,1:13], schizop[,14:26],pch=16, cex=0.7)
>mantel.t2(var(schizop), var(control), coord=2)
$r.stat
[1] 0.5150001

$p
[1] 2e-05

The test is significant, meaning that patterns in covariation in both groups are similar.
Using the coli function defined in Chapter 3, we can also test whether prin-

cipal component-axes have the same direction. Here we only focus on the two first
components, which totalize about 50% of the overall variation in both groups.

266 6 Statistical Analysis of Shape using Modern Morphometrics

−0.4 −0.2 0.0 0.2

−
0.

2
0.

0
0.

2
0.

4

Fig. 6.16. Superimposition of landmarks digitized from MR images of the brains of control
and schizophrenic patients. Crosses are controls, while circles are patients diagnosed with
schizophrenia

>ei1<-eigen(var(control))
>ei2<-eigen(var(schizop))
>unlist(coli(ei2$vectors[,1], ei1$vectors[,1]))

z.stat p angle
-0.0986313 0.6380000 1.6695882
>unlist(coli(ei2$vectors[,2], ei1$vectors[,2]))

z.stat p angle
0.4320158 0.0180000 1.1240696
>unlist(coli(ei2$vectors[,1], ei1$vectors[,2]))

z.stat p angle
-0.3038691 0.1420000 1.8795475
>unlist(coli(ei2$vectors[,2], ei1$vectors[,1]))

z.stat p angle
0.3999028 0.0340000 1.9822071

While the first eigenvectors do not share the same direction, the second eigenvectors have
significantly similar direction. We notice that the second eigenvector of the schizophrenic
patient is collinear to the first of the control group as well. We could have more qualitatively
depicted the morphological meaning for each eigenvector by providing deformation grids or
vectors associated with changes on each PC for each group. For this aim, we would have to
estimate the mean shape, as well as scores of the PC.

The last possible question concerns whether geometry between variable ordina-
tions is similar between both groups. One can answer using a Procrustes test. Since
eigenvectors are of unit size, we scale them by the standard variation present on each

6.6 Analyzing Developmental Patterns with Modern Morphometrics 267

axis (square root of the eigenvalue). We can remove the four last eigenvectors since
the number of dimensions is reduced during the Procrustes superimposition.

conf1<-(ei1$vectors[,1:22])%*%(sqrt(diag(ei1$values[1:22])))
conf2<-(ei2$vectors[,1:22])%*%(sqrt(diag(ei2$values[1:22])))
protest(conf1, conf2)
Call:
protest(X = conf1, Y = conf2)

Correlation in a symmetric Procrustes rotation: 0.6493
Significance: < 0.001
Based on 1000 permutations.

The relationships between variables are similar between both groups. We conclude that the
schizophrenic and control patients do not differ in the covariation of internal brain structure
described by the landmarks selected in this study.

Not only can we analyze the covariation patterns between groups, but we can also
examine covariation between parts of a structure, or between one morphology and
a set of predictor variables. For this latter task, we can follow the two-block partial
least-squares approach defined in Section 3.4.4. The computation is similar with that
for multivariate morphometrics and one can use our pls function. Moreover, as for
PCA or discriminant analysis, it is possible to reconstruct shapes along the left and
right singular vectors to interpret patterns of shape covariation. Since the method is
quite trivial, this task appears in the exercise section.

6.6 Analyzing Developmental Patterns with Modern
Morphometrics

6.6.1 Allometry

Analyzing growth patterns with modern morphometrics is not so different from tra-
ditional morphometrics. The advantage is that one can depict allometric changes in
terms of configuration change more easily than with analyzing a collection of lin-
ear relationships between measurements. One must carefully work with degrees of
freedom (or shape space dimension): observations as measured by modern morpho-
metrics are often interdependent (because of superimposition or transformation of
original coordinates), and one must choose an appropriate methodology. Monteiro
[74] has proposed a multivariate regression model for searching causal factors in
the analysis of shape variation using morphometrics. Shape is considered to be the
dependent variable, while size or age (or any other vector) is considered to be the
independent variable.

Since one can adopt traditional statistical methods for Fourier analysis and out-
line analysis, we will rather regard the method in detail for landmarks Procrustes
analysis. The dimensions of the space covered by superimposed coordinates after
translation, scaling and rotation are reduced by 4 degrees of freedom for 2D data and

268 6 Statistical Analysis of Shape using Modern Morphometrics

by 7 for 3D data. One can directly work on the first principal components defined
on the variation of landmark displacements between individuals, or on Kendall co-
ordinates that allows one to respect the geometry of the shape space; however, one
can also work on superimposed coordinates modifying multivariate tests. Let W be
the matrix of size n by kp containing superimposed and projected shape coordinates
(projected onto the tangent Euclidean space). One can estimate the regression coef-
ficient matrix (B) by using the standard formula

B = (X′X)−1X′W ,

where X corresponds to the centered matrix of independent variables.
The lm function can accept a multivariate dependent variable set, and can return

coefficients, fitted values and residuals.
We will work on the famous rat calvarial dataset, which can be found on the

Internet.3 This dataset has been extensively worked on in the orange book [10]. It
corresponds to 8 landmarks digitized in two dimensions on skull section of 21 rats,
and these have been measured at regular ages of 7, 14, 21, 30, 40, 60, 90, and 150
days, yielding 168 observations. For some skulls, some landmarks were not recorded,
so these observations will be excluded from the dataset. The final set corresponds to
164 observations. This dataset is ideal for estimating growth patterns since it con-
tains the age; in addition, we can estimate the size as the centroid size from the
landmark coordinates for each configuration. We first have to load the dataset on
R. If the computer is directly connected to the web, we directly catch the data using
scan or read.table by writing the web path to the file. Missing values have been
recorded as 9999 in the original file. Each line contains the x1, y1, x2, y2, x3, y3 . . .
coordinates. The first two columns correspond to the individual number and to the
age of the rat in days. We must slightly adapt the format in R for our function to work
correctly.

>rats<-read.table("http://life.bio.sunysb.edu/morph/data/
+ Book-VilmannRat.txt", skip = 2)
>rats<-as.matrix(rats)
>missing<-NA
>for (i in 1:168) {if (any(rats[i,]==9999)){missing[i]<-i}}
>missing<-as.numeric(na.omit(missing))
>rats<-rats[-missing,]
>RAT<-array(t(rats[,c((1:8*2+1),(1:8*2+2))]),dim=c(8,2,164))

Superimpose all configurations of the dataset.

>ratp<-pgpa(RAT)
>RAP<-ratp$rotated
>n<-dim(RAP)[3]; k<-dim(RAP)[2]; p<-dim(RAP)[1]
>rap<-t(matrix(RAP[,,],16,164))

Extract centroid size from the ratp object.

3 http://life.bio.sunysb.edu/morpho/data/Book-VilmannRat.txt

6.6 Analyzing Developmental Patterns with Modern Morphometrics 269

>RAS<-ratp$cent.siz
>RAA<-rats[,2]
>RAI<-as.factor(rats[,1])

We have now a rap matrix containing shape variables, a RAS vector containing
sizes, a RAA vector containing ages, and a RAI factor containing individual cate-
gories. First we will look whether size and shape are related. The RAI factor is a
random variable, while size is a fixed independent variable. To determine whether
allometry is present, we must test whether size is related to shape variables. Individ-
ual variation around the general allometric relationship corresponds to the interaction
between the size and individual factors. Also, we could have first filtered by the effect
individuals. We will only work on the raw relationships between shape and size, and
without considering the problems linked to longitudinal data. Goodall [38] presented
a statistical framework for analyzing Procrustes shape data, and he developed a pos-
sible F -test. We assess the significance of the regression model using the Goodall
F -test which is a simple ratio of diagonal variances:

Fs =

∑
d2

X̄iXm

/q
∑

d2

XiX̄i

/(n − q − 1)
.

This test is based on the Procrustes chord distance (see [38]), and should work de-
pending on the assumption that variation is isotropic, and that variation is equal for
each landmark. The numerator is the sum of squared Procrustes chord distances be-
tween estimated shapes and the mean shape of the sample, while the denominator is
the sum of Procrustes distances between each Xi shape and its X̄i estimate. These dis-
tances are the metric of the Kendall shape space, and since they are sum of squares,
one can use them for measuring shape variance. In addition, these can be calculated
as the trace of the sum of squares and cross-products of effects and residuals divided
by the appropriate degrees of freedom. When variation is small, one can approximate
mean-shapes with the averages of configurations coordinates, and one can directly
use the trace of sum-of-squares and cross-products matrix. One can compare the Fs-
value with an F -distribution with qm, and (n − q − 1)m degrees of freedom, m
being the number of shape space dimensions. One can use the ratio between vari-
ation explained by the model and total variation as a percentage of shape variation
explained by a given factor (here the shape). One can visualize the effect of size with
the estimated shapes for minimal and maximal values of size (see Fig. 6.17).

>mod1<-lm(rap~RAS)
>RAM<-apply(rap,2,mean)

Alternatively RAM<-as.vector(ratp$mshape).

>M<-rep(1,164)%*%t(RAM)
>num<-sum(apply((mod1$fitted.values-M)^2,1,sum))/1
>den<-sum(apply((rap-mod1$fitted.values)^2,1,sum))/
+ (n - 1 -1)
>Fs<-num/den

270 6 Statistical Analysis of Shape using Modern Morphometrics

[1] 512.7921
>1-pf(Fs, 1 * k *p-4, (n-1-1)*(k*p-4))
[1] 0
>sum(diag(var(mod1$fitted.values)))/sum(diag(var(rap)))
[1] 0.7596167

Estimate configurations that are associated with minimal and maximal centroid sizes.

>fit.val<-mod1$fitted.values
>Ma<-matrix(fit.val[which(RAS==(max(RAS))),],p,k)
>mi<-matrix(fit.val[which(RAS==(min(RAS))),],p,k)
>par(mar=c(1,1,1,1))
>plot(rbind(Ma,mi),asp=1,xlab="",ylab="",axes=F,frame=F)
>polygon(Ma)
>polygon(mi, border="grey55",lwd=2)

Fig. 6.17. Plot of the shape explained by size from the Villman calvarial growth dataset. The
thick gray configuration corresponds to the estimated shape for the smaller individual, while
the black corresponds to the estimated shape for the larger individual

The adjusted model is very significant, meaning that there is allometry in the
dataset. However, we have not applied the appropriate model since the observations
are not independent but partly longitudinal – the same individuals being measured
several times during its growth. This model is also imperfect because the Goodall
F -statistic assumes that variation is isotropic (each landmark having the same vari-
ance). If one wants to consider both the longitudinal nature of the data and the
fact that variation is not isotropic, one should apply a multivariate test, such as the
Hotelling-Lawley multivariate test. Since the independent variable is not a factor but
a continuous variable, the degree of freedom is 1 for the effect, and is n − 2 for the
error term, n being the number of observations.

>mod<-lm(rap~RAS)
>Sef<-var(mod$fitted.values)*163
>Ser<-var(mod$residuals)*163

6.6 Analyzing Developmental Patterns with Modern Morphometrics 271

>ddef<-1
>dder<-162
>Hotellingsp(Sef, Ser, ddef, dder)
dfeffect dferror T2 Approx_F
1.00000 162.00000 17.98975 207.57405

df1 df2 p
13.00000 150.00000 0.00000

Notice that we can reduce the number of shape space dimensions by applying
a principal component analysis to the original data. The studied space contains 13
dimensions; therefore, we take the first 13 columns of PC scores to perform the same
test.

>anova(lm(prcomp(rap)$x[,1:13]~RAS))
Analysis of Variance Table

Df Pillai approx F
(Intercept) 1 2.634e-29 3.039e-28
RAS 1 0.947 207.574
Residuals 162

num Df den Df Pr(>F)
13 150 1
13 150 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Since we have longitudinal replicated data, we should test the effect of size
against the interaction between size and individual, rather than onto the residual vari-
ation. One can write the model of morphological growth as:

Yij = µY + αi + β(xij − µxi
) + γi(xij − µxi

) + εij ,

where Yij is the shape of one individual i at the time j; µY the mean shape of the
sample; αi the shape difference between the mean shape of the sample and the mean
shape for the ith individual; xij the size of one observation, xi the averaged size for
a given individual; β, the estimate of the mean growth slope; and γi, the estimate of
the individual variation in growth. The morphology is thus equated with an individ-
ual effect, a size effect, an interaction effect (individual variation of growth pattern)
and an error term. In the case of our example, we can compare the effect of size
with the interaction between size and individual. The appropriate term for testing the
significance of the allometric relationship should be the interaction between size and
individual rather than the residual variation. Our design is not completely balanced,
so effects will not be orthogonal. We can use type II mean squares estimation. In
order to produce sum of squares and cross-products, the individual effect must first
first estimated, while general growth must be placed as second term in the model.

272 6 Statistical Analysis of Shape using Modern Morphometrics

>jj<-(lm(prcomp(rap)$x[,1:13]~RAI*RAS))
>SSef<-crossprod(jj$effects[jj$assign==2,])
>dfef<-length(which(jj$assign==2))
>SSre<-crossprod(jj$effects[jj$assign==3,])
>dfre<- length(which(jj$assign==3))
>Hotellingsp(SSef, SSre, dfef, dfre)

dfeffect dferror T2 Approx_F
1.000000e+00 2.000000e+01 1.349225e+02 8.302924e+01

df1 df2 p
1.300000e+01 8.000000e+00 4.652088e-07

As in the previous tests, allometry significantly explains shape variation.

If we want to work on residual shape variation not explained by size (in other
words, independently of growth), we can use the residual variation and eventually
perform principal component analysis and other statistical tests on it.

6.6.2 Developmental Stability

Fluctuating asymmetry is often considered to be a measure of developmental insta-
bility in organisms [78]. One can measure fluctuating asymmetry from quantitative
characters according to a variety of methods. The most commonly used method is
the FA10 index based on a two-way ANOVA of continuous characters [78]. Measure
of fluctuating asymmetry for complex traits evaluated by geometric morphometrics
have been more recently developed in the papers of Auffray et al. [4], Mardia et al.
[71], and Klingenberg et al. [55]. Mardia et al. [71] consider two kinds of bilateral
symmetric structures: matching symmetry where two separate copies are mirror im-
ages of each other, and object symmetry where the structure itself is symmetric and
contains the axes of symmetry.

One must reflect sides onto each other for them to be comparable in geometric
terms. Strategy for transforming the datasets involves a preliminary reflection of one
side for matching symmetry, while it introduces the generation of one reflected copy
of the original object for object symmetry.

The reflection for matching symmetry is easily obtained by multiplying one of
the coordinates (x or y or z) by −1. Once done, the set of side1 and reflected side2
is superimposed according to a Procrustes registration.

Producing a reflected copy in object symmetry involves two steps: First reverse
the sign of one of the coordinates by −1, and second, relabel each paired landmark
by its symmetric counterpart. Then the set of original objects and their reflected and
re-labeled copy are superimposed according to a Procrustes registration.

In the model of Palmer [78], the significance of fluctuating asymmetry is tested
against measurement error. One must measure the same structure several times in
different sessions to estimate measurement error. Whether one works with object
symmetry or matching symmetry has some influence since it affects degrees of free-
dom for each component of the two-way ANOVA.

The first available test for estimating the significance of fluctuating asymmetry
and other components consists of what is called a “Procrustes two-way ANOVA” on

6.6 Analyzing Developmental Patterns with Modern Morphometrics 273

the superimposed configurations (which coordinates have been projected onto the
tangent shape space). The variance components included in this ANOVA correspond
to the sum of the diagonal elements of the mean squares for each effect. This strategy
ignores whether there are changes in the covariance structure between effects.

If variation is isotropic (the same for each landmark), the assumptions of the
model are fullfilled and one can work with the Goodall F -statistic (see Section 6.6.1).
The degrees of freedom are given in Table 6.1.

Table 6.1. Degrees of freedom for Procrustes symmetry and asymmetry studies as adapted
from the two-way analysis of variance for fluctuating asymmetry [78]. n: number of individu-
als, p: number of paired landmarks, u: number of single landmarks (on the median symmetric
plane), r: number of replicated measurements

2D

Effects Matching Symmetry Object symmetry

Individuals (n − 1) × (2p − 4) (n − 1) × (2p + u − 2)
Sides 2p − 4 2p + u − 2
Individuals × sides (n − 1) × (2p − 4) (n − 1) × (2p + u − 2)
Error (r − 1) × 2n × (2p − 4) (r − 1) × 2n × (2p + u − 2)

3D

Effects Matching Symmetry Object Symmetry

Individuals (n − 1) × (3p − 7) (n − 1) × (3p + 2u − 4)
Sides 3p − 7 3p + u − 3
Individuals × sides (n − 1) × (3p − 7) (n − 1) × (3p + u − 3)
Error (r − 1) × 2n × (3p − 7) (r − 1) × n × (6p + 3u − 7)

Under anisotropic conditions, one must use a more general multivariate test that
can be an adaptation of the Hotelling-Lawley test for x groups with appropriate de-
grees of freedom (see Sections 6.2 and 3.4.3).

We will evaluate and test asymmetries in a dataset composed of 52 pairs of left
and right jaws of Mus musculus domesticus.4 The dataset is organized in a data frame:
the first three columns respectively correspond to the individual label, side and ses-
sion; the other columns are landmark location organized as x1, y1, x2, y2 . . . x16, y16.
We must first reflect the left side by multiplying one coordinate by −1, superimpose
the configurations, and estimate variation components. We have digitized individuals
twice to allow measurement error to be estimated. Superimposed configurations are
illustrated in Fig. 6.18.

>DDO<-read.table("/home/juju/morph/Mouse.txt",header=T)
>Ddo<-as.matrix(DDO[,3+c(1:16*2-1,1:16*2)],208,32)
>ddo<-array(t(Ddo),dim=c(16,2,208))
>ind<-as.factor(DDO[,1])

4 The dataset is available in the online supplement.

274 6 Statistical Analysis of Shape using Modern Morphometrics

>side<-as.factor(DDO[,2])
>for (i in 1:104) {ddo[,1,i*2-1]<- - ddo[,1,i*2-1]}
>ddosup<-orp(pgpa(ddo)$rotated)
>par(mar=c(2.5, 2.5, 1.5,1.5))
>plot(ddosup[,1,], ddosup[,2,], asp=1,xlab="X", ylab="Y",
+ axes=F, frame=F)
>DDOsup<-t(matrix(ddosup,32,208))

Fig. 6.18. Superimposition of the right and reflected left jaw configurations for the mouse
dataset, replicated digitization included

>mod<-lm(DDOsup ~ ind * side)
>effects<-mod$effects
>SSind<-crossprod(effects[which(mod$assign==1),,drop=F])
>SSside<-crossprod(effects[which(mod$assign==2),,drop=F])
>SSinter<-crossprod(effects[which(mod$assign==3),,drop=F])
>SSres<-var(mod$residuals)*207

Note the special indexation with drop=F. This argument allows matrices of one row not to
be coerced into a vector object.

The material has been digitized in 2D, and there is a total of 52 individuals,
two replicates and two sides. We can consider jaws as belonging to the matching
symmetry class. The degrees of freedom are then 1428 for individual, 28 for side,
1428 for interaction, and 2912 for error effects. We simply divide the trace of each
sum-of-squares and cross-products matrices by their degrees of freedom to calculate
the Procrustes mean squares.

>MSind<-sum(diag(SSind))/1428
>MSside<-sum(diag(SSside))/28
>MSinter<-sum(diag(SSinter))/1428
>MSres<-sum(diag(SSres))/2912

6.6 Analyzing Developmental Patterns with Modern Morphometrics 275

Individual and side effects are tested against interaction, and fluctuating asym-
metry (interaction) is tested against error measurement.

>MSinter/MSres
[1] 2.620457
>MSind/MSinter
[1] 4.121681
>MSside/MSinter
[1] 10.74571
>1-pf(MSind/MSinter, 1428,1428)
[1] 0
>1-pf(MSside/MSinter, 28,1428)
[1] 0
>1-pf(MSinter/MSres, 1428,2912)
[1] 0

We can remove the residual variation from the fluctuating asymmetry term to
obtain an index of fluctuating asymmetry. This is the Procrustean equivalent of the
FA10 index used in fluctuating asymmetry studies. One can compare this level of
shape asymmetry between different populations for further investigation.

One can use a more general multivariate model for comparing variance terms if
one thinks that variation is anisotropic and of different levels for each landmark. For
this task, we use the transformed Hotelling-Lawley trace test that we have developed
for for Procrustes data (Section 6.2).

>Hotellingsp(SSinter, SSres, 51, 104)
dfeffect dferror T2 Approx_F

51.000000 104.000000 80.528171 4.233449
df1 df2 p

1428.000000 2102.000000 0.000000

>Hotellingsp(SSside, SSinter, 1, (52-1))
dfeffect dferror T2 Approx_F

1.000000e+00 5.100000e+01 1.248993e+01 1.070566e+01
df1 df2 p

2.800000e+01 2.400000e+01 5.712875e-08

>Hotellingsp(SSind, SSinter, 1, (52-1))
dfeffect dferror T2 Approx_F
1.0000 51.0000 215.4229 184.6482

df1 df2 p
28.0000 24.0000 0.0000

Since both tests (under isotropic and under anisotropic conditions) give similar
results, we conclude that fluctuating asymmetry, directional asymmetry and individ-
ual variation are significant effects of bilateral variation in the mouse jaw sample.

The Procrustes test in the case of object symmetry is less obvious because
shape dimensions of effects and error are not necessarily equal and orthogonal.

276 6 Statistical Analysis of Shape using Modern Morphometrics

Klingenberg et al. [55] introduce a permutation approach for estimating the signifi-
cance of the multivariate statistic.

6.6.3 Developmental Integration

In Chapter 3, we have explained how to analyze covariation patterns between two
sets of variables. Klingenberg et al. [57] have used this approach for investigating the
relationships between two sets of landmark measurements on configurations based
on the fluctuating asymmetry and individual variance-covariance matrices. One can
estimate the position of developmental modules (within which relationships between
characters should be high, compared with covariation between modules) using dif-
ferent partitions of landmark sets. These sets should likewise have geometric con-
tinuity. In other words, a module should be recognizable as a continuous region of
the complex structure under investigation. The rodent jaw has been hypothesized to
be structured in two developmental and functional modules: the ascending ramus
region and the alveolar region where the teeth are implanted. We can investigate
different partitions of contiguous landmark sets to find which minimizes covaria-
tion between modules. As an example, we will use the previous mouse jaw dataset
(Fig. 6.19). One can use the Rv coefficient as defined in Section 3.4.3 as a measure
of association between different landmark sets. The Rv function works on the total
variance-covariance with the indices of a first block of variable to calculate the Rv
coefficient in a quicker way that the function pls.

Function 6.8. Rv

Arguments:
VCV: Variance-covariance matrix.
index1: Indices of variables included in the first block of the partition.

Value:
The function returns the Rv coefficient.

1 Rv<-function(VCV, index1)
2 {VCV1<-VCV[index1,index1]
3 VCV2<-VCV[-index1,-index1]
4 VCV12<-VCV[index1,-index1]
5 VCV21<-VCV[-index1,index1]
6 sum(diag(VCV12%*%VCV21))/sqrt(sum(diag(VCV1%*%VCV1))
7 *sum(diag(VCV2%*%VCV2)))}

We will examine all contiguous partitions containing equal numbers of land-
marks (8 and 8). Since our landmarks have been digitized along the mandible out-
line, the definition of partitions is not difficult using progressive indexing on matrix
columns. First, we define all the different possible partitions using the landmark in-
dices contained in the first submatrix.

6.6 Analyzing Developmental Patterns with Modern Morphometrics 277

1
2

3

4

5

6

11

12
13

14

9

8

7

10

15

16

Fig. 6.19. Landmark labels for the mouse jaw dataset. The oblique black lines separate two
partitions of landmarks that are assumed to correspond to different developmental and func-
tional modules

>part1<-matrix(NA,16,8)
>for (i in 1:16)
+ {part1[i,]<-c(1:16,1:8)[i:(i+7)]}

The part1 matrix represents the 16 alternative partitions for which the Rv coefficient will
be estimated for both interindividual and intra-individual covariance matrices. We can use
the pls function (programmed in Section 3.4.2) to compute the Rv coefficient or the small
function that we have written above. The Rv coefficients are stored in one vector later bound
with the partition matrix.

>Rvind<-Rvint<-numeric(16)
>for (i in 1:16)
+ {Rvind[i]<-Rv(SSind/51, part1[i,])
+ Rvint[i]<-Rv(SSinter/51, part1[i,])}
>data.frame(part1, Rvind, Rvint)

X1 X2 X3 X4 X5 X6 X7 X8 Rvind Rvint
1 1 2 3 4 5 6 7 8 0.4035437 0.2681725
2 2 3 4 5 6 7 8 9 0.3537373 0.2317912
3 3 4 5 6 7 8 9 10 0.3531442 0.2249909
4 4 5 6 7 8 9 10 11 0.3881753 0.2188373
5 5 6 7 8 9 10 11 12 0.3531832 0.1803118
6 6 7 8 9 10 11 12 13 0.3855864 0.2039900
7 7 8 9 10 11 12 13 14 0.3675017 0.2160983
8 8 9 10 11 12 13 14 15 0.3636016 0.1970535
9 9 10 11 12 13 14 15 16 0.4244084 0.3142359
10 10 11 12 13 14 15 16 1 0.4068938 0.3278042
11 11 12 13 14 15 16 1 2 0.3945449 0.3279134
12 12 13 14 15 16 1 2 3 0.4288943 0.3288309
13 13 14 15 16 1 2 3 4 0.3436903 0.2517959
14 14 15 16 1 2 3 4 5 0.3968735 0.3537576
15 15 16 1 2 3 4 5 6 0.3651967 0.3844970
16 16 1 2 3 4 5 6 7 0.4031166 0.3732866

278 6 Statistical Analysis of Shape using Modern Morphometrics

The different Rv indices obtained for individual and fluctuating asymmetry variation indicate
a lower association, respectively, for the third and the fifth partitions (Fig. 6.20). However, for
individual variation the Rv coefficient obtained using the fifth partition is very close to the
third. It seems that the module hypothesis as defined in Fig. 6.19 is the one that minimizes the
covariation between sets of landmarks.

1

2

3

4

5

6
7

8
9

10

11
12

13

14
15

16

Fig. 6.20. First configuration of the mouse jaw dataset. The black line separates two set of
landmarks between which the covariation is minimal considering the fluctuating asymmetry
variance-covariance matrix. The dotted line identifies sets that minimize interindividual co-
variation between parts. If we first filter allometry from shape variation, using both variance-
covariance matrices, we find that the best partition for two modules corresponds to the black
line

One can estimate the significance and the interval of confidence of the Rv coef-
ficient by permuting rows of the matrix of original coordinates. In order to take into
account the specificity of Procrustes data, Klingenberg et al. [57] have performed a
resuperimposition of the data before recomputing simulated coefficients of associa-
tion.

We can perform the same analysis by first filtering shape explained by growth
(allometric variation). We filter allometric variation by multivariate regression, and
then we work on residuals. The following calculations are the same as before.

>size<-pgpa(ddo)$cent.siz
>ddor<-lm(DDOsup~size)$residuals
>mod2<-lm(ddor ~ ind * side)
>SSind<-crossprod(mod2$effects[which(mod2$assign==1)
+ ,,drop=F])
>SSinter<-crossprod(mod2$effects[which(mod2$assign==3)
+ ,,drop=F])
>for (i in 1:16)
+ {Rvind[i]<-Rv(SSind/51, part1[i,])
+ Rvint[i]<-Rv(SSinter/51, part1[i,])}
>data.frame(part1, Rvind, Rvint)

6.6 Analyzing Developmental Patterns with Modern Morphometrics 279

X1 X2 X3 X4 X5 X6 X7 X8 Rvind Rvint
1 1 2 3 4 5 6 7 8 0.4192148 0.2730352
2 2 3 4 5 6 7 8 9 0.3607052 0.2376113
3 3 4 5 6 7 8 9 10 0.3573718 0.2333540
4 4 5 6 7 8 9 10 11 0.3570127 0.2264582
5 5 6 7 8 9 10 11 12 0.3465407 0.1862966
6 6 7 8 9 10 11 12 13 0.3766381 0.2045771
7 7 8 9 10 11 12 13 14 0.3832399 0.2196039
8 8 9 10 11 12 13 14 15 0.3826982 0.2037115
9 9 10 11 12 13 14 15 16 0.4844754 0.3204999
10 10 11 12 13 14 15 16 1 0.4629691 0.3325938
11 11 12 13 14 15 16 1 2 0.4508821 0.3349671
12 12 13 14 15 16 1 2 3 0.4399647 0.3351378
13 13 14 15 16 1 2 3 4 0.3355519 0.2601936
14 14 15 16 1 2 3 4 5 0.3714398 0.3581845
15 15 16 1 2 3 4 5 6 0.3824649 0.3895218
16 16 1 2 3 4 5 6 7 0.4162497 0.3808510

Here the fifth partition provides the lowest correlations between modules for both the fluctuat-
ing assymetry and the individual variations. This result is similar to that found in Klingenberg
et al. [57].

Removing allometry has the advantage of eliminating the part of variation ex-
plained by common growth for both modules.

Problems

6.1. Significance of the Rv coefficient
Write a function that makes a permutation test for estimating the significance of the
Rv coefficient.

6.2. Estimate PLS morphological meaning
Using the singular vectors of the partial two-block least-squares performed on mice
jaws, provide an interpretative sketch of how the different modules covary using
the partition that minimizes their covariation. For this goal, use the singular-value
decomposition of the appropriate block.

7

Going Further with R

Chapter coauthored by: Emmanuel Paradis and Julien Claude

Rather than only using the available packages, and other sources of information, we
can learn more, studying at the edge of shape statistics by observing the behaviour
of tests. In addition, for gaining time in computation, we can interface R with other
software and languages.

7.1 Simulations

Simulations are not commonly used in modern morphometrics, but they allow the be-
haviour of tests to be assessed. Moreover, one can use simulations for nonparametric
testing in morphometrics.

One can perform a variety of simulations under R by using random sequences
(Section 1.4.5) combined with loops and logical indexings. Since configurations
are often depicted by several variables, we must generate random data following
multivariate distributions. The mvtnorm package is well designed for the study of
multinormal datasets. The rmvt function generates random multivariate distribu-
tions following a variance-covariance matrix passed as a sigma argument.

We can generate sets of configurations with raw coordinates, Bookstein coordi-
nates, or Kendall coordinates drawn from a given multivariate distribution, and then
look at the behaviour of Procrustes superimposition. We can define a mean shape
of coordinates (x1 = 0, y1 = 0, x2 = 1, y2 = 0, x3 = 1, y3 = 2) around
which there will be random deviation. As a first model, we simulate isotropic vari-
ation around these mean coordinates. By keeping two coordinates constant, and by
generating variation onto the third coordinate, we simulate a variation that mimics
the variation of Bookstein coordinates. For these simulations, we need to generate a
matrix of random multinormal observations for each coordinate that we want to vary.
For isotropic variation, we must specify the sigma argument of the rmvt function
as a diagonal matrix with equal diagonal elements. The range of simulated variation
depends on the value of the diagonal elements.

282 7 Going Further with R

>layout(matrix(1:4, 2,2))
>par(mar=c(1,1,3,1))

Define the mean shape.

>Ms<-matrix(c(0,1,2,0,0,2),3,2)

Simulate random variation around each landmark of the mean shape.

>simu1<-rmvt(100,diag(0.05,6),df=99)[,c(1:3*2-1,1:3*2)]
>Simu1<-as.vector(Ms)+t(simu1)
>A1<-array(Simu1, dim=c(3,2,100))

Plot the simulated points.

>plot(A1[,1,],A1[,2,],asp=1,pch=1:3,axes=F,frame=F,
+ main="Simulation on 3 coordinates")

Simulate variation for the third landmark, mimicking multinormal covariation of Bookstein
coordinates.

>simu<-rmvt(100,diag(0.05,2),df=99)
>simu<-cbind(0,0,simu[,1],0,0, simu[,2])
>Simu<-as.vector(Ms)+t(simu)
>A<-array(Simu, dim=c(3,2,100))

Plot the points of the second simulation.

>plot(A[,1,],A[,2,],asp=1,pch=1:3,axes=F,frame=F,
+ main="Simulation on 1 coordinate")

Observe the behaviour of Procrustes superimposition with both simulations of isotropic vari-
ation.

>pA1<-pgpa(A1)$rotated
>pA<-pgpa(A)$rotated

Plot the superimposed coordinates for each simulated dataset.

>plot(pA1[,1,],pA1[,2,],asp=1,pch=1:3,axes=F,frame=F,
+ main="Procrustes 3 sim coord")
>plot(pA[,1,],pA[,2,],asp=1,pch=1:3,axes=F,frame=F,
+ main="Procrustes 1 sim coord")
>mpA<-t(matrix(pA,6,100))
>mpA1<-t(matrix(pA1,6,100))

Observe the covariance matrices estimated from superimposed coordinates.

>var(mpA)
>var(mpA1)

We can observe that the superimposition procedure introduces biases that directly
depend on the configuration. These biases will manifest themselves in the variance
and covariance based on coordinates of superimposed configurations: the estimated
variance-covariance will no more follow the initial assumptions of variation. Al-
though we have simulated random isotropic variation, the effect of Procrustes su-
perimposition reassigned different variances to the points according to their position

7.1 Simulations 283

Simulation on 3 coordinates

Simulation on 1 coordinate

Procrustes 3 sim coord

Procrustes 1 sim coord

Fig. 7.1. Simulated isotropic variation of two kinds around a mean shape of coordinates
(x1 = 0, y1 = 0, x2 = 1, y2 = 1, x3 = 2, y3 = 1). Up, variation is simulated around each
landmark; while bottom, landmark variation is simulated only for one landmark mimicking
behaviour of Bookstein coordinates: the two others are considered as the baseline

in the configuration. In this example, landmarks that are distant from the centroid
concentrate less variation than landmarks that are close to the centroid. Landmarks
close to the centroid absorb the simulated variation (Fig. 7.1).

One can simulate more complex variation by entering a symmetric matrix of
variance-covariance for specifying the sigma argument of rmvt.

If Procrustes superimpositions introduce biases in estimating variance-covariance
matrices and in multinormality in shape parameters, we must interpret standard mul-
tivariate tests with caution. Nonparametric distributions for the observed statistic
may provide local solutions. Indeed, it is possible to obtain these distributions taking
into account the effect of variable transformation (e.g., like Procrustes registration).
Permutations of coordinates across observations can be a convenient way to simulate
a null distribution of the statistic under interest. After the permutation, we should add
the superimposition step to produce the new estimated and simulated statistics.

In Chapter 6, we used the Mantel test for investigating whether patterns of shape
covariation between schizophrenic and control patients were similar. For running this
test, we used the variance-covariance matrices estimated from superimposed coordi-
nates in both groups. The permutation was concerned with the rows and columns of

284 7 Going Further with R

the variance-covariance matrix, but did take into account the superimposition proce-
dure. We must develop an alternative test.

In the hypothesis of no common variation, one can permute landmarks among
individuals in one of the groups to produce a covariance matrix whose structure is
independent on the other covariance matrix. We can simulate the statistic consider-
ing the absence of similarity between patterns of covariation and compare it with an
observed statistic (the linear correlation between lower triangle matrices elements).
If the observed statistic is above the upper tail of the random distribution, one can
conclude for similarity between matrices of covariance. The alternative hypothesis
corresponds then to the similarity between matrices. After the permutation, we add a
superimposition step, and generate the statistic that estimates the correlation between
the variance-covariance matrix of one group and the simulated random variance-
covariance matrix of the other group. We could write this new test in a new function;
however, we will detail the procedure step-by-step so you can generate random vari-
ation for any other test. Notice that, like in the traditional Mantel test, only one set is
resampled. Resampling the other set would not correspond to the hypothesis of inde-
pendence, and it is even possible that most of the simulated statistics will be greater
than the observed statistic (because Procrustes superimposition introduce covariation
between new variables). We first write two functions to compute our statistic. The
first extracts the lower triangle of the covariance matrix, while the second computes
the linear correlation between elements of the lower triangle of both matrices.

>lowertriang<-function (m)
+ {d<- dim(m)
+ m[col(m) <= row(m)]}
+ mstat<-function (m1, m2)
+ {cor(lower.triang(m1), lower.triang(m2))}

Then we compute the observed statistic.

>library(shapes)
>schizo<-orp(pgpa(schizophrenia.dat)$rotated)
>vcontrol<-var(t(matrix(schizo[,,1:14],26,14)))
>vschizo<-var(t(matrix(schizo[,,15:28],26,14)))
>stat.obs<-mstat(vcontrol,vschizo)
>stat.obs
[1] 0.5150001

We declare the stat.dis vector to store simulated statistics under the null hypothesis.
A loop starts for reiterating the permutation 500 times.

>stat.dis<-numeric(500)
>schizosim<-controlsim<-array(NA, dim=c(13,2,14))
>for (j in 1:500){

In a second loop, landmarks are resampled among configurations of the first set.

+ for (i in 1:13)
+ {controlsim[i,,]<-schizo[i,,sample(1:14)]}
+ simu.dat<-array(c(schizo[,,15:28],controlsim),

7.1 Simulations 285

+ dim=c(13,2,28))
+ simu<-orp(pgpa(simu.dat)$rotated)
+ vcontrols<-var(t(matrix(simu[,,1:14],26,14)))
+ vschizos<-var(t(matrix(simu[,,15:28],26,14)))
+ stat.dis[j]<-mstat(vcontrols,vschizos)}

After the permutation, we calculate the statistic between the new resampled set and the second
variance-covariance matrix.

>sum(stat.dis>stat.obs)/500
[1] 0.042
>plot(1,type="n", xlim=c(0.2,0.7),ylim=c(0,14), main

="null density distributions", xlab="zstat")
>points(density(stat.dis), type="l", lwd=2)
>abline(v=stat.obs)

Since the observed value is in the upper tail of the distribution, we conclude for sim-
ilarity between variance-covariance matrices in both the schizophrenic and control
groups. We can visualize the position of the observed statistic and the density of the
distribution under the null hypothesis with a simple graph (Fig. 7.2).

0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8
10

12
14

null density distributions

zstat

Fig. 7.2. Distribution density of the statistic measuring relationships between covariance ma-
trices under the null hypothesis. The vertical line indicates the observed value. The thick full
curve corresponds to the null distribution obtained by permuting landmarks across one set
and resuperimposing configurations, the thick dotted curves to the null distribution obtained
by permuting landmarks across one set but without resuperimposing configurations, and the
thin dotted curve to the null density distribution of the Mantel test statistic as performed in
Chapter 6

286 7 Going Further with R

We can compare the null distribution that we have estimated with the one that has
been estimated with the Mantel test as developed in Chapter 6. We can also compare
these tests with a test that ignores the resuperimposition step.

We reiterate nearly the same permutation but without considering resuperimposition.

>stat.dis1<-numeric(5000)
>schizosim<-controlsim<-array(NA, dim=c(13,2,14))
>for (j in 1:5000){
+ for (i in 1:13){
+ controlsim[i,,]<-schizo[i,,sample(1:14)]}
+ simu.dat<-array(c(schizo[,,15:28], controlsim)
+ , dim=c(13,2,28))
+ simu<-simu.dat
+ vcontrols<-var(t(matrix(simu[,,1:14],26,14)))
+ vschizos<-var(t(matrix(simu[,,15:28],26,14)))
+ stat.dis[j]<-mstat(vcontrols,vschizos)}
>sum(stat.dis1>stat.obs)/5000
[1] 8e-04
>points(density(stat.dis1), type="l",lty=3, lw=2)

Our code for the permutation uses functions that were defined in Section 6.6. We
change parts of the code in the Mantel test dealing with the null distribution. We
name the new mantel.t3 function.

Function 7.1. mantel.t3

Arguments:
m1: Square variance-covariance matrix.
m2: Square variance-covariance matrix.
coord: Number of dimensions.
nperm: Number of permutations.
graph: Logical value indicating whether a graph should be returned.

Values:
r.stat: Observed statistic (Element wise correlation coefficient between both hemi-

matrices).
null: Simulated data for the null distribution.

Required functions: lower.triang, perm.rowscols, mantrstat.

1 mantel.t3<-function(m1,m2,coord=1,nperm=5000,graph=FALSE)
2 {n <- nrow(m1)
3 realz <- mantrstat(m1, m2)
4 nullstats<-replicate(nperm,mantrstat(m1,
5 perm.rowscols2(m2, n, coord)))
6 list(r.stat = realz, null=nullstats)}

>jj<-mantel.t3(var(schizop),var(control),coord=2)
>sum(jj$null>stat.obs)/5000
[1] 2e-04
>points(density(jj$null),type="l",lty=3)

7.2 Writing Functions and Implementing Methods 287

We notice that when we permute landmarks and resuperimpose the configura-
tions, the test does not reject the null hypothesis in more cases than the former tests.
This is true as well, but in a lesser extent if we ignore the resuperimposition proce-
dure (Fig. 7.2). It is possible that the last two tests are inflating the type I error rate. It
seems clear that the Mantel test for Procrustes data, as it has been firstly formulated
[56], is accepting the alternative hypothesis more easily than the two other tests.

One can also run simulations to estimate the power and specificity of tests applied
to morphometric data. Since shape statistics is a rather new discipline, and since the
geometry of shape spaces are not always Euclidean, this is probably an important
field that needs to be developed in modern morphometrics. Simulations of random
or nonrandom shapes is necessary for estimating the false positive rate (proportion
of negative instances that were erroneously reported as being positive: this fraction is
usually reported as α) and the false negative rate of a given test (proportion of false
negatives/number of positive instances: this fraction is reported as β and is equal to
1 - the power of the test). For examining type I or II error rates, one can combine the
approach of simulated variation in shape (randomized or not) with a nonparametric
test as illustrated before.

7.2 Writing Functions and Implementing Methods

Because R is an interpreted language, all commands are in fact expressions of the
language, and there are many examples of these in this book. As such, R stands apart
from the other languages because all users are confronted with it. Even if a user
prefers one of the several GUIs available for R, almost all of these provide a scripting
output of the commands clicked on the menus (e.g., the Rcmdr package, the Cocoa-
GUI for Apple OS, or the RKWard package for KDE). Consequently, programming
in R may be approached from the computer scientist’s side, as choosing this language
among others, but also from the user’s side, as extending the commands used in data
analysis.

Writing functions in R is the canonical way to generalize R commands. We have
previously seen that a series of R commands can be saved in a script file, and then
called from R, so we will concentrate in this section on writing functions. We will
first see a few interesting concepts about writing computer functions, and the choices
that have to be made to complete the task. Then, we will detail a worked example on
contour acquisition.

7.2.1 Generalities and Strategies

Computer functions in general, and in R in particular, have two main features: they
are created and used for a repetitive task, and some elements may have different
values for each of these repetitions. These elements are called variables in the com-
puting jargon, but this is a very different concept than the statistical variables. In
most computer languages, including R, one can create functions without defining
variables:

288 7 Going Further with R

> specialMessage <- function()
+ cat("\nYou did something wrong.\n")
> specialMessage()

You did something wrong.

However, in practice, even in this simple example, it is often useful to define a
variable controlling the output:

> specialMessage <- function(out)
+ {
+ if (out) cat("\nYou did something wrong.\n")
+ else cat("\nCongratulations!\n")
+ }
> specialMessage(0)

Congratulations!
> specialMessage(1)

You did something wrong.

Here, out is a formal argument of the function: every occurrence of this variable
in the body of the function will be replaced by the value given when the function is
called (here 0 or 1).

What happens if an object name is used inside the function but this is not a formal
argument? R uses a mechanism called lexical scoping to solve this problem: if the
object has not been created inside the function, then it looks for it the environment
above the function call.

> specialMessage <- function(out)
{ if (out) cat(badMessage)
+ else cat(goodMessage)}
> badMessage <- "\nYou did something wrong.\n"
> goodMessage <- "\nCongratulations!\n"
> specialMessage(0)

Congratulations!
> specialMessage(1)

You did something wrong.

Every object created inside a function is local to the function, and deleted when
its execution is finished. There are two ways for an R function to return a result:
either R implicitly returns the last expression of the function (the preferred way), or
the return function is explicitly used anywhere in the function, in which case its
argument is returned and the execution of the function is halted.

The above considerations give a (very) brief outline of some guidelines in
programming functions in R (you can find more details in the manuals installed with

7.2 Writing Functions and Implementing Methods 289

R). Apart from these, all considerations regarding the use of R functions equally ap-
ply to R programming. A motto that you should follow is simplicity. In R, simple
expressions are much faster and efficient than more complicated ones. In particular,
one can often avoid using for and/or if statements by using vectorization and log-
ical indexing. For instance, if we want to replace all negative values in a x vector by
0, we could use one of the two commands:

>x[x < 0] <- 0
>for (i in 1:length(x)) if (x[i] < 0) x[i] <- 0

Note that the first one is both simpler and much more efficient. Functions useful to
achieve simplicity include match, and lapply. . . .

In spite of the flexibility of R, it is not always possible to achieve simplicity and
efficiency in R programs. For some repeated computations based on complex criteria,
it is almost impossible to avoid the for and if statements, which may result in long
execution times. If this is the case, and one wishes to write general functions that are
likely to be used by other users, then it is possible to write some of the codes in a
compiled language (C, C++, or FORTRAN). This solution is particularly well-suited
when one is writing functions that are distributed in a package through CRAN. In
this situation, the R Core Development Team handles the compilation of the package,
which depends on the operating system.

The degree to which R codes are transferred to a compiled language may vary
greatly. In the extreme form, all computations, including object handling, are written
in compiled languages that require you to use special functions to set object attributes
(e.g., mode and length). Here we will focus on a more practical approach that uses
C codes only for some parts of the computation. The advantage of the C language is
that simple functions may be written. The rationale of writing as few codes in C as
possible is that you cannot modify them without recompiling.

A general programming strategy in R may be defined as follows.

1. Write all the code in R paying some attention on simplicity.
2. If you can not avoid complicated use of for and/or if statements, try to avoid

parts of the codes that take some time, possibly using R profiling tools (see
?Rprof).

3. Once you have identified computational bottlenecks, and you think these are are
bug-free, write a C function and replace the corresponding R codes by a call
to .C.

This strategy helps to make a function lasting and evolving in a positive way
because the way end-users call it is stable through time while its efficiency improves.

7.2.2 A Worked Example in R+C Programming: Contour Acquisition
Revisited

We have seen a function in Chapter 2 that aims to extract the contour of an object
from a digital image read with the pixmap package. The present section illustrates
how to perform the same task calling a C program. Because it is a worked example,

290 7 Going Further with R

comments around the R code are in normal font here, while the ones around C code
are in slanted font.

A strength of the interface between C and R is that is very simple, and C programs
can be written with a minimum of overhead work. This makes this approach acces-
sible with little background on the C language. We will see step-by-step through this
example how the program is developed. You can find some introductions about the
C language and summaries of its syntax on the Internet.

1 #include <R.h>

The file R.h tells the C compiler where to find all the information it needs to create the
executable library (will be a *.dll file under Windows, *.so file for the other operating systems).

2 #define THRESHOLD 0.1

It is possible to define constants or blocks of commands (i.e., macros). This is clearly useful if
one uses the same value at several places in the program.

3 int Modulo8(int x)
4 { while (x < 0) x += 8;
5 while (x >= 8) x -= 8;
6 return x;}

We can also define any C function that we may need. Here this function takes as argument an
integer and returns its value modulo 8. It obviously returns an integer.

7 void contour (double*x,int*nrow,int*start,int*cont,int*l)

Now we can start writing the function that will receive the data from R. Note that all data
are passed from R to C as pointers. An important detail is that matrices in R are actually
vectors, so they are passed to C as one-dimensional (and not 2D) arrays, and their elements are
accessed with the familiar syntax x[1] (and not x[1][1]). This implies a slight arithmetic
manipulation in C to access the contiguous elements of a matrix. We also need to know that
the elements of a matrix in R are filled column-wise, so that x[5, 3] and x[2*nrow(x)
+ 5] are the same. Another detail to keep in mind is that indexing in C starts at 0, so x[1]
returns the second element of x.

8 {int i, a=0, sel, o[8], left, center, right, loc=*start,
9 init = *start - *n, n = *nrow;

10 double diff, ndiff;

The body of the function starts with a curly brace similarly to R (the R syntax is superficially
similar to C’s). In comparison to R, all variables used in a C function must be declared. The
distinction between integers and reals is explicit in C.

11 o[0] = -n; o[1] = -n - 1;
12 o[2] = -1; o[3] = n - 1;
13 o[4] = n; o[5] = n + 1;
14 o[6] = 1; o[7] = 1 - n;

7.2 Writing Functions and Implementing Methods 291

We use the integer o to find the indices of the eight neighbors around a given pixel. Here we
see the use of the one-dimensional indexing logic explained above. Later, we will store the
index of the central pixel in loc, so the index of the pixel on its left will be given by loc +
o[0], the index of the pixel on the upper left-hand side will be loc + o[1], and so on in
a clockwise way.

15 while (abs(x[loc] - x[init]) < THRESHOLD) {
16 init -= n;
17 loc -= n;}
18 init = loc;
19 sel = 2;

This loop finds the actual starting point of the contour using the same criterion as in Conte.
Note that the index is moved to the left of the matrix, so it is decreased by the number of rows.
sel stores the direction where the next step will be processed.

20 while (loc != init || a < 3) {

The acquisition of the contour starts with an iteration that is ended as long as the focus pixel
has not come back to its starting point (we add a further condition because loc and init
initially store the same value).

21 left = loc + o[Modulo8(sel - 1)];
22 center = loc + o[Modulo8(sel)];
23 right = loc + o[Modulo8(sel + 1)];

We find the indices of the three pixels in the selected direction. The three pixels are those in the
same direction (sel), on the left-hand side (sel - 1), and on the right-hand side (sel +
1). We use the Modulo8 function defined above in case sel has gone beyond the permitted
interval (see below).

24 if (abs(x[loc] - x[left]) > THRESHOLD) {
25 if (abs(x[loc] - x[center]) < THRESHOLD){
26 if (abs(x[loc] - x[right]) < THRESHOLD) {
27 loc = cont[a] = center;
28 a++;}}
29 else sel++;}
30 else sel--;}

If the “center” and “right” pixels are within the object, and the “left” one is not, the algorithm
progresses forward and the index of the “center” pixel is stored as within the contour.
If the “center” pixel is outside the object, the positions of the three pixels is shifted clockwise
(else sel++) and the evaluation is repeated.
If both the “center” and “left” pixels belong to the object, then the positions of the three pixels
is shifted counter clockwise (else sel-) and the evaluation is repeated.

31 *l = a;}

Once the acquisition is finished, the number of pixels found during the process is stored in *l
which is returned by the function, and a right curly brace marks the end of the function.

The C program will be called from R with the .C function, which sends to the
compiled library the objects matching the arguments defined in the C function. It is

292 7 Going Further with R

convenient to prepare a little information in R beforehand, We assume that we have
the same data as for Conte.

>N <- nrow(imagematrix)
>n <- length(imagematrix)
>start <- x[1] + N*(x[2] - 1) - 1

The result of the call is stored in the ans object.

>ans <- .C("contour", as.double(imagematrix), as.integer(n),
+ as.integer(start), integer(n), as.integer(1),
+ PACKAGE = "imaginos")

The arguments of .C are the name of the C function, the variables passed to C, and
the package where to find the C function (there are other options; see ?.C). The call
.C returns, in a list object, the variables possibly modified by the C program. Note
the fourth argument, which is simply a vector of n integers (initialized to 0’s), and is
destined to store the indices of the contour (cont in C). This illustrates a common
problem when interfacing C with R: the size of the objects passed to C must be a
priori determined, but here we do not know how many pixels will be in the contour
(Some memory allocation can be done in C with the standard malloc functions,
but this cannot be returned to R). A simple and safe solution, that is used here is to
create a vector sufficiently large and to keep track of how many elements are used to
finally delete the useless 0’s once the calculation has been done.1 Because n is the
number of pixels of the image, the contour cannot include more than n points. This
may require a significant amount of computer memory for very large images (e.g.,
for a 10 megapixel image, 40 Mb will be allocated since an integer is stored on 4
bytes), but the unneeded memory can be released by the following command:

>cont <- ans[[4]][1:ans[[5]]]
>j <- cont %/% N
>i <- cont %% N

The two last commands convert the vector-style indices stored in cont in matrix-
style indices.

It will be more convenient to include all these R commands within a function,
such as:

Conte2 <- function(imagematrix, x)
{ N <- nrow(imagematrix)
....

list(X = i, = j)}

It is easy to further develop such an R+C program. For instance, subsequent uses
of the program may make it necessary to use different values of the THRESHOLD
constant: it is straightforward to define this variable in R and pass it to C.

1 Another solution is using the .Call and .External interfaces to C, but these require
using specific functions to manipulate R objects in C.

7.3 Interfacing and Hybridizing R 293

7.3 Interfacing and Hybridizing R

R is efficient in many applications, but not in all where computers are useful. Indeed,
in practice, data analyses use a combination of computer programs chosen according
to their respective features and merits. There is a difference between using several
programs with no logical or practical connections, and using tools that are integrated
and communicate in a logical way. The latter is possible with open source software
such as R and other tools that may be more appropriate for some tasks. The inte-
gration of computer programs needs to be developed in its own right like any other
computer tool.

Why should we bother with such integration? There are at least two good reasons.
First, a developer may want to integrate a given application in his/her programs. If he
develops an R function for this task, this work will be available to any user familiar
with R. Additionally, standard R programming would be used. Second, integrating
other applications with R allows one to use the best of both (or several) programs.
Other programs may be better than R, for instance for image analyses, but R has
appropriate statistical and graphical functions that are likely to be better for analyses
of the results of an image analysis.

7.3.1 Example 1: Creating an Animation with R and ImageMagick

Here we build an animate function that serially displays a series of images given
either as a vector of character mode, or as a directory where all JPEG files are
read. The delay argument is the time in seconds between each image. By default,
a 400 × 400 display is used. This requires ImageMagick2 to be installed. Under
Windows, you will have to install an X server to run the X11-based programs like
“animate”, “display”, and “import” that exist in Imagemagick.

Function 7.2. animate

Arguments:
files: Vector containing the name of the image files.
dir: Alternatively, the name of the directory containing the image files.
delay: Time in seconds between each image.
width: Width of the display.
height: Height of the display.

Value:
The animation produced from the inputed image files.

1 animate <- function(files, dir = NULL, delay = 2,
2 width = 400, height = 400)
3 {if (!is.null(dir)) {
4 pwd <-getwd()
5 if (pwd != dir) {

2 www.imagemagick.org

294 7 Going Further with R

6 setwd(dir)
7 on.exit(setwd(pwd))}
8 files<-base::dir()
9 files<-files[grep("//.jpe?g$",files,ignore.case=TRUE)]}

10 cmd<-paste(" -delay ", 100*delay, " -size ", width, "x",
11 height, " ", files, sep = "", collapse = " ")
12 system(paste("animate", cmd))}

Producing an animation is a pedagogical way to visualize shape changes along
axes. We use it for deforming a template along the first axis of variation using the
thin-plate splines strategy.

We first have to define a template; this template is a collection of points defining
an object. We will draw it from the rodent jaw example formerly used in the analy-
sis of asymmetry. The first digitization jjM corresponds to the 16 landmarks used
in the mouse dataset, the following digitizations corresponds to pseudolandmarks
strategically sampled on different curves composing the drawing (see Fig. 7.3).

>library(pixmap)
>jaw<-read.jpeg("/home/juju/morph/jaw2.jpg")
>par(mar=c(0,0,0,0))
>plot(jaw)
>jjM<-locator(16, type="p", pch=8, col="white")
>jj2<-locator(type="l", pch=8, col="white")
>jj3<-locator(type="l", pch=8, col="white")
>jj4<-locator(type="l", pch=8, col="white")
>jj5<-locator(type="l", pch=8, col="white")
>jj6<-locator(type="l", pch=8, col="white")
>jj7<-locator(type="l", pch=8, col="white")
>jj8<-locator(type="l", pch=8, col="white")
>X<-c(jjM$x,NA,jj2$x,NA,jj3$x,NA,jj4$x,NA,jj5$x,
+ NA,jj6$x,NA,jj7$x,NA,jj8$x)
>Y<-c(jjM$y,NA,jj2$y,NA,jj3$y,NA,jj4$y,NA,jj5$y,
+ NA,jj6$y,NA,jj7$y,NA,jj8$y)

One can display the template using conventional graphical functions. Note that
NA is used for separating the different lines making the outlines of structures of the
jaw (Fig. 7.4).

>par(mar=c(0,0,0,0))
>mat<-cbind(X,Y)
>plot(1, type="n", xlim=c(0,1030),ylim=c(0, 530),
+ frame=F, axes=F, xlab="", ylab="",asp=1)
>lines(mat[-(1:17),])
>points(mat[1:16,], cex=1.3, pch=19)

Now we have to calculate the meanshape and the superimposed coordinates from
the dataset.

>DDO<-read.table("/home/juju/morph/Mouse.txt",header=T)

7.3 Interfacing and Hybridizing R 295

Fig. 7.3. Digitization of landmarks, curves, and outlines for producing a template of a mouse
jaw. Stars correspond to landmark data, while lines correspond to curves: seven different
curves have been used for producing the rodent jaw template

Fig. 7.4. Illustration of the template digitized on the mouse jaw

>Ddo<-as.matrix(DDO[,3+c(1:16*2-1,1:16*2)],208,32)
>ddo<-array(t(Ddo),dim=c(16,2,208))
>ind<-as.factor(DDO[,1])
>side<-as.factor(DDO[,2])
>for (i in 1:104) {ddo[,1,i*2-1]<- - ddo[,1,i*2-1]}
>super<-pgpa(ddo)
>ddosup<-super$rotated
>DDOsup<-t(matrix(ddosup,32,208))
>meansh<-super$msh

We use the tps2d function to perform a thin-plate splines warping of the tem-
plate using the meanshape as a target. The reference corresponds to the landmark
digitized on the template. We compute the PCA of coordinates in the tangent shape
space for extracting the first axis of variation.

296 7 Going Further with R

>meansho<-tps2d(mat[-(1:16),], mat[1:16,], meansh)
>PCA<-princomp(DDOsup)

We produce a series of 30 configurations that correspond to changes along the
first principal axis and by amplifying the deformation twice. This is done using the
seq function, and the M and outM objects of the list class. Each configuration
corresponds respectively to the estimate of landmark position when the shape evolve
along the first axis. The template shape is evaluated from these configurations. We
display each deformed configuration on a different graph. For each iteration of the
loop, we store the produced graphs in one empty subdirectory. The name of files is
given by the Name vector.

>setwd("/home/juju/morph/temp")
>M<-list()
>outM<-list()
>Name<-paste("image",1:30, sep="")
>Name<-paste(Name, "jpeg", sep=".")
>par(mar=c(0,0,0,0))
>seq1<-seq(min(PCA$score[,1]),max(PCA$score[,1]),
+ length=30)*2
>for (i in 1:30){
+ plot(meansh, type="n",asp=1, xlab="", ylab="", frame=F,
+ axes=F, xlim=c(-0.5,0.7))
+ M[[i]]<-matrix(seq1[i]*PCA$loadings[,1]+
+ as.vector(meansh),16,2)
+ outM[[i]]<-tps2d(meansho, meansh, M[[i]])
+ points(M[[i]], cex=1.3, pch=21, bg="black")
+ lines(outM[[i]])
+ jpeg(Name[i])}

We can display extreme deformation as a graph as well.

>plot(meansh, type="n", asp=1, xlab="", ylab="",
+ frame=F, axes=F, xlim=c(-0.35,0.55))
>lines(outM[[1]], col="grey50")
>lines(outM[[30]])

Fig. 7.5 shows deformation of the template of the jaw on the principal axis.
We have amplified this deformation three times. We can notice the important shape
changes occurring in the angular apophysis. Although thin-plate splines are interpo-
lations, these interpolations fit quite well with the reality of mouse jaw variation.

The animation is simply displayed using the animate function that was created
just before.

>animate(Name)

7.3.2 Example 2: Using ImageMagick to Display High Resolution Images

Because pixmap may be very slow to read and plot very large images and because
the plot is static (no zoom), we may want an alternative solution eventually using

7.4 Conclusion 297

Fig. 7.5. Deformation on the first PC-axis for the mouse dataset, the dotted outline corresponds
to the deformation associated with minimal extreme, while the full line corresponds to the
deformation associated with the maximal extreme. Variation has been amplified twice for
rendering visualization easier

an external application. ImageMagick includes a program called display that dis-
plays an image in a specific window. We directly call it from R with the function
display written below. The color argument specifies whether to display the
gray-scale image or the image in its original colors (the default).

Function 7.3. display

Arguments:
file: Name of the image file.
color: Logical telling whether gray-scale or color image should be displayed.
width: Width of the display.
height: Height of the display.

Value:
Display of the image on the screen.

1 display <- function(file,color=TRUE,width=400,height=400)
2 {cmd <- "display"
3 if (!color) cmd <- paste(cmd, "-monochrome")
4 cmd <- paste(cmd," -size ",width,"x",height,sep ="")
5 system(paste(cmd, file))}

7.4 Conclusion

Modern morphometrics is becoming an important area of statistics. This is not only
a tool but also a scientific discipline in expansion. One can analyze variation in com-
plex morphologies via a large number of strategies and methods that have been pub-
lished during the last three decades; and that will be published in the near future. The
purpose of this book is not to explain and summarize all of them, but to illustrate how

298 7 Going Further with R

to implement them in R. Most algorithms are present in the literature, and more are
to come. Any user or developer having some basic knowledge in the R environment
and language can develop his/her own toolbox and produce standard or customized
graphs, helped with the increasing number of packages available on R.

We have seen several good reasons for using R in this domain. There are im-
provements in morphometrics for which R can become a favorite companion:

• Developing new statistical methods for the analysis of shapes and estimating their
efficiency

• Appraising the power and specificity of tests applied to shape variables

For tasks expensive to compute, interfacing R with some other freewares can
become the appropriate strategy. Another one would be to develop other libraries
or packages, especially concerning the management and interaction with image
processing and 3D objects. This is certainly a good perspective open for morphome-
tricians and R users. This will depend, however, on the investments of morphome-
tricians for using R more systematically, rather than homemade, sometimes obscure
software, that is also not always free.

Problems

7.1. Nonparametric MANOVA
Develop a function to perform a nonparametric, one-way multivariate analysis of
variance. This can be achieved by permuting landmarks between observations and
resuperimposing newly simulated configurations.

Appendix A: Functions Developed in this Text

Function Short Description

myfun Sum of squares of a given vector
angle2d Angle between two vectors in 2D

ild Distance between two landmarks
angle Unoriented angle between two vectors

angle3 Oriented angle between two vectors
regularradius Extract coordinates equally spaced radii on an outline

smoothout Outline smoothing
landmark.addition Add pseudolandmarks on an outline

eigenrotation Rotation of the major axis of a configuration along the x-axis
Conte Outline extraction
ELLI 2D confidence ellipse coordinates
coli Collinearity test between two vectors

isojoli Multivariate test of isometry
pls Two blocks partial least-squares

Angle Cosinus angle between two vectors
centsiz Scale a configuration to unit centroid size

centcoord Coordinates of the centroid of a configuration
basesiz Baseline size of a configuration

booksteinM Baseline registration of a configuration
booksteinA Baseline registration for a set of configurations

mbshape Mean shape using Bookstein coordinates
tranb Translation of a configuration according baseline coordinates

transb Translation and scaling of a configuration
according baseline coordinates

bookstein3d Bookstein registration for 3D configurations
transl Translate the configuration onto the origin
trans1 Translate the configuration onto the origin
helmert Helmert matrix

helmertM Helmertize a configuration
kendall2d Kendall coordinates for a configuration

300 Appendix A: Functions Developed in this Text

Function Short Description

fPsup Full Procrustes superimposition
ild2 Interlandmark distances between two configurations
pPsup Partial Procrustes superimposition

mshape Averaged shape from a set of configurations
aligne Align configurations on their princiapl axes

fgpa Generalized full Procrustes analysis, first algorithm
fgpa2 Generalized full Procrustes analysis, second algorithm
stp Stereographic projection onto the tangent space
orp Orthogonal projection onto the tangent space

medsize Median size of a configuration
argallvec Angles between homologous vectors of configurations

oPsup Orthogonal resistant fit
rrot Resistant fitting rotation in 3D
r3sup 3D orthogonal resistant fit
grf2 Generalized resistant fit for 2D configurations
grf3 Generalized resistant fit for 3D configurations
tps2d 2D tps interpolation
tps Deformation grids from thin-plate splines
FM Form matrix (EDMA)
fm Form vectorized matrix (EDMA)

mEDMA Averaged mean form (EDMA)
MDS Multidimensional scaling

mEDMA2 mean form matrix (EDMA)
vEDMA Variance covariance matrix (EDMA)

alltri All possible triangulations in a configuration
anglerao Rao angles in a configuration
meanrao Mean shape (based on Rao angles)
vcvrao Variance covariance matrix (based on Rao angles)
raoinv Configuration coordinates from Rao angles

cumchord Cumulative chordal distance
bezier Bezier coefficients and vertices

beziercurve Bezier curve fitting
fourier1 Radial Fourier analysis

ifourier1 Reverse Radial fourier outline fitting
fourier2 Tangent angle Fourier analysis

ifourier2 Reverse tangent angle Fourier outline fitting
efourier Elliptic Fourier analysis

iefourier Reverse elliptic fourier outline fitting
NEF Normalized elliptic fourier analysis

eigenshape Extract eigenshape from outlines
procalign partial GPA with mean shape aligned on the major axis
uniform2d 2D uniform components and scores for shape variation
uniformG Uniform components and scores for shape variation

Hottelingsp Multivariate T 2
HL for shape data

vcvay Covariance phylogenetic matrix between descendant and ancestors
mantel.t2 Mantel test for Procrustes data

Rv Rv correlation coefficient of Escoufier
mantel.t3 Alternative Mantel test for Procrustes data

specialMessage Tutorial function
Conte2 Outline extraction in C
animate Movie from a sequence of images
display Display high resolution images

Appendix B: Packages Used in this Text

Package Short Description

graphics R functions for base graphics
rgl 3D visualization device (OpenGL)

base Base R functions
utils R utility functions

stats R statistical functions
datasets Base R datasets

grDevices Graphics devices and support for base and
grid graphics

MASS Functions and datasets to support Venables and Ripley,
“Modern Applied Statistics with S” (4th edition)

shapes Functions and datasets for statistical shape analysis
ade4 Multivariate data analysis and graphical display

Rcmdr The R commander GUI for R
R.matlab Read and write of MAT files together with

R-to-Matlab connectivity
pixmap Functions for handling .ppm images (“Pixel Maps”)
rimage Image Processing Module for R

rtiff A .tiff reader for R
scatterplot3d 3D scatter plot

dynamicGraph Interactive graphical tool for manipulating graphs
sp Classes and methods for spatial data

splancs Spatial and space-time point pattern analysis
car Companion to Applied Regression

nlme Linear and nonlinear mixed effects models
lmtest Testing linear regression models
lme4 Linear and generalized linear mixed-effects models

HH Statistical analysis and data display
gee Generalized Estimating Equation solver

302 Appendix B: Packages Used in this Text

Package Short Description

VGAM Vector Generalized linear and Additive Models
ape Analyses of Phylogenetics and Evolution

PHYLOGR Phylogenetically based statistical analyses
smatr (Standardized) Major axis estimation and testing routines
Flury Datasets from Flury, 1997

Rmorph Morphometric analyses with R
cluster Cluster analysis extended
vegan Community ecology package
mclust Model-based clustering and normal mixture modeling

including Bayesian regularization
CCA Canonical correlation analysis

Hmisc Miscellaneous functions from F. E. Harrell Jr.
CircStats Circular Statistics

compositions Compositional data analysis
geometry Mesh generation and surface tesselation
mvtnorm Multivariate normal and t-distributions

References

[1] Adams D. C., Rohlf F. J. and Slice D. E. 2004. Geometric morphometrics:
Ten years of progress after the “revolution”. Italian Journal of Zoology 71:
5–16.

[2] Atchley W. R. and Anderson D. 1978. Ratios and the statistical analysis of
biological data. Systematic Zoology 27: 71–78.

[3] Atchley W. R., Gaskins C. T. and Anderson D. 1976. Statistical properties of
ratios. I. empirical results. Systematic Zoology 25: 137–148.

[4] Auffray J.-C., Alibert P., Renaud S., Orth A. and Bonhomme F. 1996. Fluc-
tuating asymmetry in mus musculus subspecific hybridization: traditional and
Procrustes comparative approach. In: Advances in Morphometrics, Marcus
L. F., Corti M., Loy A., Naylor G. J. P. and Slice D. E., editors, pages 275–283.
Plenum Press, New York.

[5] Bailey R. C. and Byrnes J. 1990. A new, old method for assessing measure-
ment error in both univariate and multivariate morphometric studies. System-
atic Zoology 39: 124–130.

[6] Baylac M. and Friess M. 2005. Fourier descriptors, procrutes superimposi-
tion, and data dimensionality: an example of cranial shape analysis in modern
human populations. In: Modern Morphometrics in Physical Anthropology,
Slice D. E., editor, pages 145–165. Kluwer Academic / Plenum, New York.

[7] Bookstein F. L. 1984. A statistical method for biological shape comparisons.
Journal of Theoretical Biology 107: 475–520.

[8] Bookstein F. L. 1986. Size and shape spaces for landmark data in two dimen-
sions (with discussion). Statistical Science 1: 181–242.

[9] Bookstein F. L. 1989. Principal warps: thin-plate splines and the decompo-
sition of deformations. IEEE Transactions on Pattern Analysis and Machine
Intelligence 11: 567–585.

[10] Bookstein F. L. 1991. Morphometric tools for landmark data: Geometry and
Biology. Cambridge University Press, Cambridge.

[11] Bookstein F. L. 1996. Biometrics, biomathematics and the morphometric
synthesis. Bulletin of mathematical biology 58: 313–365.

304 References

[12] Bookstein F. L. 1996. A standard formula for the uniform shape component
in landmark data. In: Advances in Morphometrics, Marcus L. F., Corti M.,
Loy A., Naylor G. J. P. and Slice D. E., editors, pages 153–168. Plenum Press,
New York.

[13] Bookstein F. L. 1997. Landmark methods for forms without landmarks: Lo-
calizing group differences in outline shape. Med. Image. Anal. pages 225–243.

[14] Bookstein F. L. 2005. After landmarks. In: Modern Morphometrics in Physi-
cal Anthropology, Slice D. E., editor, pages 49–71. Kluwer Academic/Plenum,
New York.

[15] Bookstein F. L., Chernoff B. L., Elder R. L., Humphries J. M., Smith G. and
Strauss R. E. 1985. Morphometrics in evolutionary biology. Academy of
Natural Sciences of Philadelphia Special Publ. 15: 1–277.

[16] Burnaby T. P. 1966. Growth-invariant discriminant functions and generalized
distances. Biometrics 22: 96–110.

[17] Campbell N. A. and Mahon R. J. 1974. A multivariate study of variation
in two species of rock crab of the genus leptograpsus. Australian Journal of
Zoology 22: 417–425.

[18] Carpenter K. E., Sommer J. I. and Marcus L. F. 1996. Converting truss inter-
landmark distances to cartesian coordinates. In: Advances in Morphometrics,
Marcus L. F., Corti M., Loy A., Naylor G. J. P. and Slice D. E., editors, pages
103–111. Plenum Press, New York.

[19] Chambers J. M., Cleveland W. S., Kleiner B. and Tukey P. A. 1983. Graphical
Methods for Data Analysis. Wadsworth, Brooks and Cole,.

[20] Cheverud J. M., Dow M. M. and Leutenegger W. 1985. The quantitative as-
sessment of phylogenetic constraints in comparative analyses: sexual dimor-
phism in body weight among primates. Evolution 39: 1335–1351.

[21] Cole III T. 2002. WinEDMA User’s Guide Version 1.0.1 beta,.
[22] Cole III T. and Richtsmeier J. T. 1998. A simple method for visualization of

influential landmarks when using euclidean distance matrix analysis. Ameri-
can Journal of Physicla Anthropology 107: 273–283.

[23] Crampton J. S. 1995. Elliptic fourier shape analysis of fossil bivalves: some
practical considerations. Lethaia 28: 179–186.

[24] Cunningham C. W., Omland K. E. and Oakley T. H. 1998. Reconstructing
ancestral character states: A critical reappraisal. Trends in Ecology and Evo-
lution 13: 361–366.

[25] Dalgaard P. 2002. Introductory Statistics with R. Springer Verlag, New York.
[26] Diniz-Filho J. A. F., Sant’Ana C. and Bini L. 1998. An eigenvector method

for estimating phylogenetic inertia. Evolution 52: 1247–1262.
[27] Dryden I. E. and Mardia K. V. 1998. Statistical Shape Analysis. Wiley,

Chichester.
[28] Dryden I. E. and Walker G. 1999. Highly resistant regression and object

matching. Biometrics 55: 820–825.
[29] Escoufier Y. 1973. La dépendance de deux aléas vectoriels critères et visuali-

sation. Revue de statistique appliquée 21: 5–16.

References 305

[30] Felsenstein J. 1985. Phylogenies and the comparative method. The American
Naturalist 125: 1–15.

[31] Ferson S., Rohlf F. J. and Koehn R. K. 1985. Measuring shape variation of
two-dimensional outlines. Systematic Zoology 34: 59–66.

[32] Friess M. and Baylac M. 2003. Exploring artificial cranial deformation using
elliptic Fourier analysis of Procrustes aligned outlines. American Journal of
Physical Anthropology 122: 11–22.

[33] Galton F. 1907. Classification of portraits. Nature 76: 617–619.
[34] Garland Jr. T. and Ives A. 2000. Using the past to predict the present: confi-

dence intervals for regression equations in phylogenetic comparative methods.
The American Naturalist 155: 346–364.

[35] Garland Jr. T. and Janis C. 1985. Does metatarsal/femur ratio predict maximal
running speed in cursorial mammals. Journal of Zoology 125: 1–15.

[36] Gayon J. 2000. History of the concept of allometry. The American Zoologist
40: 748–758.

[37] Giardina C. R. and Kuhl F. P. 1977. Accuracy of curve approximation by har-
monically related vectors with elliptical loci. Computer graphics and image
processings 6: 236–258.

[38] Goodall C. R. 1991. Procrustes methods in the statistical analysis of shape
(with discussion). Journal of the Royal Statistical Society, Series B 53:
285–339.

[39] Gower J. C. 1975. Generalized Procrustes analysis. Psychometrika 40: 33–50.
[40] Grafen A. 1989. The phylogenetic regression. Philosophical Transactions of

the Royal Society London B 326: 119–156.
[41] Green B. F. 1952. The orthogonal approximation of an oblique structure in

factor analysis. Psychometrika 17: 429–440.
[42] Gunz P., Mitteroecker P. and Bookstein F. L. 2005. Semi landmarks in three di-

mensions. In: Modern Morphometrics in Physical Anthropology, Slice D. E.,
editor, pages 73–98. Kluwer Academic / Plenum, New York.

[43] Haines A. J. and Crampton J. S. 2000. Improvements to the method of
fourier shape analysis as applied in morphometric studies. Palaeontology 43:
765–783.

[44] Humphries J., Bookstein F. L., Chernoff B., Smith G. R., Elder R. L. and Poss
S. G. 1981. Mutivariate discrimination by shape in relation to size. Systematic
Zoology 30: 291–308.

[45] Hurley J. R. and Cattel R. B. 1962. The Procrustes program: producing
direct rotation to test an hypothesized factor structure. Behavioural Science 7:
258–262.

[46] Huxley J. S. 1924. Constant differential growth-ratios and their significance.
Nature 114: 895–896.

[47] Huxley J. S. 1932. Problems of Relative Growth. Methuen, London 1st edition.
[48] Huxley J. S. and Teissier G. 1924. Terminology of relative growth. Nature

137: 780–781.
[49] Jolicoeur P. 1963. The degree of generality of robustness in martes americana.

Growth 27: 1–28.

306 References

[50] Jolicoeur P. and Mossimann J. 1960. Size allometry: size and shape variables
with characterizations of the lognormal and generalized gamma distribution.
Journal of the American Statistical Association 330: 930–945.

[51] Jolicoeur P., Pirlot P., Baron G. and Stephan H. 1984. Brain structure and cor-
relation patterns in insectivora, chiroptera, and primates. Systematic Biology
33: 14–29.

[52] Jolliffe I. 2002. Principal Component Analysis. Springer, New York 2nd

edition.
[53] Kendall D. G. 1983. The shape of Poisson-Delaunay triangles. In: Studies in

Probabilities and related topics, Demetrescu M. C. and Iosifescu M., editors,
pages 321–330. Nagard, Montreal.

[54] Kendall D. G. 1984. Shape manifolds, Procrustean metrics and complex
projective spaces. Bulletin of the London Mathematical Society 16: 81–121.

[55] Klingenberg C. P., Burluenga M. and Meyer A. 2002. Shape analysis of
symmetric structures: quantifying variation among individuals and asymme-
try. Evolution 56: 1909–1920.

[56] Klingenberg C. P. and McIntyre G. S. 1998. Geometric morphometrics of
developmental instability: analyzing patterns of fluctuating asymmetry with
Procrustes methods. Evolution 54: 1363–1375.

[57] Klingenberg C. P., Mebus K. and Auffray J.-C. 2003. Developmental inte-
gration in a complex morphological structure: how distinct are the modules in
the mouse mandibule. Evolution and Development 5: 522–531.

[58] Kuhl F. P. and Giardina C. R. 1982. Elliptic Fourier features of a closed
contour. Computer graphics and image processings 18: 236–258.

[59] Lele S. 1991. Some comments on coordinate free and scale invariant methods
in morphometrics. American Journal of Physical Anthropology 85: 407–415.

[60] Lele S. 1993. Euclidean distance matrix analysis (edma): estimation of mean
form difference. Mathematical Geology 25: 573–602.

[61] Lele S. and Cole III T. M. 1996. A new test for shape differences when
variance-covariance matrices are unequal. Journal of Human Evolution 31:
193–212.

[62] Lele S. and Richtsmeier J. T. 1990. Statistical models in morphometrics: are
they realistic? Systematic Zoology 39: 60–69.

[63] Lele S. and Richtsmeier J. T. 1991. Euclidean distance matrix analysis: a
coordinate free approach to comparing biological shapes using landmark data.
American Journal of Physical Anthropology 86: 415–428.

[64] Lele S. and Richtsmeier J. T. 1992. On comparing biological shapes: detec-
tion of influential landmarks. American Journal of Physical Anthropology 87:
49–65.

[65] Lohman G. P. 1983. Eigenshape analysis of microfossils: a general morpho-
metric procedure for describing changes in shape. Mathematical Geology 15:
659–672.

[66] Lohman G. P. and Schweitzer P. N. 1990. On eigenshape analysis. In: Pro-
ceedings of the Michigan Morphometrics, Rohlf F. J. and Bookstein F. L.,

References 307

editors, pages 147–165. The University of Michigan Museum of Zoology, Ann
Arbor.

[67] Lynch M. 1991. Methods for the analysis of comparative data in evolutionary
biology. Evolution 45: 1065–1080.

[68] Macleod N. 1990. Digital images and automated image analysis systems. In:
Proceedings of the Michigan Morphometrics, Rohlf F. J. and Bookstein F. L.,
editors, pages 21–35. The University of Michigan Museum of Zoology, Ann
Arbor.

[69] Macleod N. and Forey P. L. 2002. Morphology, shape and phylogeny. Taylor
and Francis, London.

[70] Mantel N. 1967. The detection of disease clustering and a generalized regres-
sion approach. Cancer Research 27: 209–220.

[71] Mardia K. V., Bookstein F. L. and Moreton I. 2000. Statistical assessment of
bilateral symmetry of shapes. Biometrika 87: 285–300.

[72] Mardia K. V., Coombes A., Kirkbride J., Linney A. and Bowie J. L. 1996.
On statistical problems with face identification from photographs. Journal of
Applied Statistitics 23: 655–675.

[73] McKeon J. J. 1974. F-approximations to the distribution of hotelling’s T
square. Biometrika 61: 381–383.

[74] Monteiro L. R. 1999. Multivariate regression models and geometric mor-
phometrics: the search for causal factors in the analysis of shape. Systematic
Biology 48: 192–199.

[75] Mosimann J. E. 1970. Size allometry: size and shape variables with charac-
terizations of the lognormal and generalized gamma distributions. Journal of
the American Statistical Association 65: 930–948.

[76] Neter J., Kutner M. H. and Nachtstheim C. J. 1996. Applied Linear Regression
Models. McGraw-Hill/Irwin, Cambridge 3rd edition.

[77] Neter J., Kutner M. H., Nachtstheim C. J. and Wasserman W. 1996. Applied
linear statistical models. Irwin, Chicago, Bogota, Boston 4th edition.

[78] Palmer A. R. 1994. Fluctuating asymmetry: a primer. In: Developmental
instability: its origins and implications, Markow T., editor, pages 335–364.
Kluwer, Dordrecht.

[79] Palmer A. R. and Strobeck C. 1986. Fluctuating asymmetry: Measurement,
analysis, patterns. Annual Review of Ecology and Systematics 17: 391–421.

[80] Paradis E. 2002. R for beginners,.
[81] Paradis E. 2006. Analyses of phylogenetics and evolution with R. Springer,

New York 1st edition.
[82] Paradis E. and Claude J. 2002. Analysis of comparative data using generalized

estimating equations. Journal of Theoretical Biology 218: 175–285.
[83] Paradis E., Claude J. and Strimmer K. 2004. Analyses of phylogenetics and

evolution in R language. Bioinformatics 20: 289–290.
[84] Peres-Neto P. and Jackson D. 2001. How well do multivariate data sets match?

the advantages of a Procrustean superimposition approach over the Mantel
test. Oecologia 129: 169–178.

308 References

[85] Pinheiro J. C. and Bates D. M. 2000. Mixed-Effects Models in S and S-PLUS.
Springer, New York 1st edition.

[86] Qannari E. M., Vigneau E. and Courgoux P. 1998. Une nouvelle distance
entre variables. apllication en classification. Revue de statistique appliquée
46: 21–32.

[87] Rao C. R. and Suryawanshi S. 1996. Statistical analysis of shape of objects
based on landmark data. Proceedings of the National Academy of Science
USA 93: 12132–12136.

[88] Rao C. R. and Suryawanshi S. 1998. Statistical analysis of shape through
triangulation of landmarks: a study of sexual dimorphism in hominids. Pro-
ceedings of the National Academy of Science USA 95: 4121–4125.

[89] Renaud S., Michaux J., Jaeger J.-J. and Auffray J.-C. 1996. Fourier analysis
applied to Stephanomys (Rodentia, Muridae) molars: non-progressive evolu-
tionary pattern in a gradual lineage. Paleobiology 22: 251–261.

[90] Renaud S., Michaux J., Mein P., Aguilar J. P. and Auffray J. 1999. Patterns
of size and shape differentiation during the evolutionary radiation of the euro-
pean miocene murine rodents. Lethaia 32: 61–71.

[91] Reyment R. A. 1991. Multidimensional palaeobiology. Pergamon, Oxford,
New York, Seoul, Tokyo 1st edition.

[92] Richtsmeier J. T., Cheverud J. M. and Lele S. 1992. Advance in anthropolig-
ical morphometrics. Annual Review of Anthropology 21: 283–305.

[93] Richtsmeier J. T., Deleon V. B. and Lele S. R. 2002. The promise of geometric
morphometrics. Yearbook of Physical Anthropology 45: 63–91.

[94] Rohlf J. F. Tpstree.
[95] Rohlf J. F. 1986. Relationships among eigenshape analysis, Fourier analysis,

and analysis of coordinates. Mathematical Geology 18: 845–654.
[96] Rohlf J. F. 1993. Relative warp analysis and an example of its application to

mosquito wings. In: Pp. 131–159 in Contributions to Morphometrics, Marcus
L. F., E. B. and Garcia-Valdecasas A., editors, pages 131–159. Museo Na-
cional de Ciencias Naturales, Vol. 8, Madrid.

[97] Rohlf J. F. 1998. On applications of geometric morphometrics to studies of
ontogeny and phylogeny. Systematic Biology 47: 147–158.

[98] Rohlf J. F. 1999. Shape statistics: Procrustes superimposition and tangent
spaces. Journal of Classification 16: 197–223.

[99] Rohlf J. F. 2000. Statistical power comparisons among alternative morpho-
metric methods. American Journal of Physical Anthrophology 111: 463–478.

[100] Rohlf J. F. 2002. Geometric morphometrics and phylogeny. In: Morphology,
Shape and Phylogeny, MacLeod N. and Forey P. L., editors, pages 175–193.
London.

[101] Rohlf J. F. 2003. Bias and error in estimates of mean shape in morphometrics.
Journal of Human Evolution 44: 665–683.

[102] Rohlf J. F. and Archie A. W. 1984. A comparison of Fourier methods for
the description of wing shape in mosquitoes (Diptera: Cuculidae). Systematic
Zoology 33: 302–317.

References 309

[103] Rohlf J. F. and Bookstein F. L. 1987. A comment on shearing as a method for
size correction. Systematic Zoology 36: 356–367.

[104] Rohlf J. F. and Bookstein F. L. 2003. Computing the uniform component of
shape variation. Systematic Biology 52: 66–69.

[105] Rohlf J. F. and Corti M. 2000. Use of two-block partial least-squares to study
covariation in shape. Systematic Biology 49: 740–753.

[106] Rohlf J. F. and Marcus L. F. 1993. A revolution in morphometrics. Trends in
Ecology and Evolution 8: 129–132.

[107] Rohlf J. F. and Slice D. E. 1990. Extension of the Procrustes method for the
optimal superimposition of landmarks. Systematic Biology 39: 40–59.

[108] Rohlf J. 1990. Fitting curves to outlines. In: Proceedings of the Michigan
Morphometrics, Rohlf F. J. and Bookstein F. L., editors, pages 167–177. The
University of Michigan Museum of Zoology, Ann Arbor.

[109] Sanderson M. J. 1997. A nonparametric approach to estimating divergence
times in the absence of rate constancy. Molecular Biology and Evolution 14:
1218Ű–1231.

[110] Siegel A. F. and Benson R. H. 1982. A robust comparison of biological
shapes. Biometrics 38: 341–350.

[111] Siegel A. F. and Pinkerton J. R. 1982. Robust comparison of three dimesional
shapes with an application to protein molecule configurations. Technical Re-
port, department of statistics, Pinceton University 224.

[112] Slice D. E. 1996. Three-dimensional, generalized resitant fitting and the
comparison of least-squares and resistant fit residuals. In: Advances in Mor-
phometrics, Marcus L. F., Corti M., Loy A., Naylor G. J. P. and Slice D. E.,
editors, pages 179–199. Plenum Press, New York.

[113] Slice D. E. 2001. Landmark coordinates aligned by Procrustes analysis do
not lie in Kendall’s shape space. Systematic Biology 50: 141–149.

[114] Small C. G. 1996. The statistical theory of shape. Springer, New York.
[115] Sneath P. H. A. 1967. Trend-surface analysis of transformation grids. Journal

of Zoology 151: 65–122.
[116] Strauss R. E. and Bookstein F. L. 1982. The truss: body form reconstruction

in morphometrics. Systematic Zoology 31: 113–135.
[117] Thompson D. A. 1917. On growth and form. Cambridge University Press,

Cambridge.
[118] Valeri C. J., Cole III T., Lele S. and Richtsmeier J. T. 1998. Capturing data

from three-dimensional surfaces using fuzzy landmarks. American Journal of
Physical Anthropology 107: 113–124.

[119] Venables W. N. and Ripley B. D. 1997. Modern Applied Statistics with S-plus.
Springer-Verlag, 2nd edition.

[120] Venables W. N., Smith D. M. and the R Development Core Team. 2005. An
introduction to R,.

[121] Verbeke G. and Molenberghs G. 2000. Linear Mixed Models for Longitudinal
Data. Springer, New York 2nd edition.

[122] Walker J. 2000. Ability of geometric morphometric methods to estimate a
known covariance matrix. Systematic Biology 49: 686–696.

310 References

[123] Warton D., Wright I., Falster D. and Westoby M. 2006. Bivariate line-fitting
methods for allometry. Biological Reviews 81: 259–291.

[124] Yezerinac S. M., Loogheed S. C. and Handford P. 1992. Measurement error
and morphometric studies: statistical power and observer experience. System-
atic Biology 41: 471–482.

[125] Zahn C. T. and Rosckies R. Z. 1972. Fourier descriptors for plane closed
curves. IEEE Transcation on computer 21: 269–281.

Index

.C, 291, 292

abline, 20, 35, 82
abs, 20
ace, 94, 261
acos, 20
ade4, 31, 93, 105, 121, 127, 130, 301
affine shape variation, 237
agnes, 120
aligne, 165, 234, 237
allometry, 95, 267
alltri, 198
analysis of coordinates, 229
anatomical landmarks, 4
Angle, 103
angle, 51
angle, 51
angle2d, 63
angle3, 51, 63
animate, 293, 296
ANOVA, 65
Anova, 130
anova, 75
anova, 82, 86, 87, 130
anova.glm, 92
aov, 20, 130
ape, 93, 94, 120, 127, 258, 261, 263, 302
apply, 20, 24, 72, 99, 139, 245
area.pl, 67
Arg, 50
array, 12, 15
arrows, 35, 181
as.character, 11

as.complex, 11
as.logical, 11
as.numeric, 11
asin, 20
assignment, 9
atan, 20
attr, 121
attributes, 121
average form matrix, 193
axis, 35

base, 9, 20, 39, 70, 107, 130, 301
baseline, 141
baseline registration, 141
basesiz, 141
bezier, 210
Bezier polynomials, 209
beziercurve, 211
biplot, 108
bivariate analyses, 80
Bookstein coordinates, 153
Bookstein registration, 141
Bookstein registration, 3D, 145
bookstein2d, 143
bookstein3d, 147
booksteinA, 142
booksteinM, 141, 206
bootstrap, 74
boxplot, 72, 73
brightness, 46
Burnaby approach, 118

C language, 289
C++, 289

312 Index

calibrate, 42
cancor, 126
car, 80, 84, 130, 301
casefold, 58
cat, 56, 58, 74
categories, 14
cbind, 15
CCA, 126, 302
centcoord, 139, 149
centered preshape, 151
centroid size, 139, normalized141
centsiz, 140
chronogram, 258
ci.plot, 88
CircStats, 302
CircStats, compositions, 198
clara, 120, 122
class, 11
cluster, 120, 302
clustering, 255
cmdscale, 195
coli, 129, 265
collinearity, 103
colnames, 16
compar.cheverud, 93
compar.gee, 93
compar.lynch, 93
complex, 13
complex curves, 206
complex open curves, 208
compositions, 302
confidence interval, 74
configuration, 5, 28
Conte, 46, 48, 213
contour, 40, 41, 188
convert image format, 40
converting data, 56
cor, 20, 60, 84
cor.test, 84
cos, 20
crabs, 88
csize, 140
cumchord, 208
cumprod, 70
cumsum, 70

daisy, 122
data, 20, 31
data.frame, 12, 15, 32

datasets, 9, 301
de, 32
Delaunay triangulation, 137
delaunayn, 137, 199
dendrapply, 120
dendrogram, 120
density, 70, 71
density distribution, 70
deviance, 92
diag, 20
diff, 70
digit3.dat, 232
dim, 15, 261
discriminant analysis, 111
display, 297
dist, 20, 119, 122, 127, 171, 190, 255
dist.nodes, 261
dynamicGraph, 38, 301

EDMA, 190
EDMA, variance-covariance matrix, 197
efourier, 222
eigen, 21, 62, 107, 237
eigenrotation, 62
eigenshape, 231
eigenshape analysis, 229
elbow criterion, 123
elev.com, 97
elev.test, 97
ELLI, 84
ellipse, 84, 165
Euclidean shape space, 166
example, 8
expand.grid, 29
expression, 9, 287

F-test, 73
factor, 12, 14, 71
fanny, 120
fgpa, 157
fix, 128
Flury, 99, 302
FM, 190
fm, 190
for, 289
form difference matrix, 191
formula, 12, 14
Fortran, 289
Fourier analysis, 212

Index 313

Fourier analysis, elliptic, 221
Fourier analysis, equally spaced radii, 213
Fourier analysis, normalized elliptic, 225
Fourier analysis, tangent angles, 217
fourier1, 215
fourier2, 218
fPsup, 154
full Procrustes distance, 153
full Procrustes superimposition, 154
function, 12
functions, 287

gee, 89, 301
general linear test, 87
generalized full Procrustes analysis, 156
generalized resistant-fit, 177
generic function, 12
geometry, 137, 199, 302
ginv, 18, 21, 251
gl, 14
glm, 89, 90, 92
gorf.dat, 252
gpa, 164, 165
graphics, 8, 9, 20, 301
grDevices, 9, 301
grep, 58
grf2, 178
grf3, 179
groupedData, 81
growth, 95

hclust, 20, 120, 255
Helmert matrix, 150
helmertm, 150
HH, 88, 301
hierarchical clustering, 119
High resolution images, 296
hist, 70, 71
histogram, 70
Hmisc, 126, 302
homology, 4
Hotellingsp, 251

I, 82, 100
identify, 35, 38
iefourier, 223, 247
if, 289
ifourier1, 215
ifourier2, 219

ild, 49
image, 8, 40, 41, 188, 189
image analysis, 43
image data, 27
ImageMagick, 293
inaccuracy, 63
influential landmarks, 192
integration, 276
Interfacing R, 293
is.character, 11
is.complex, 11
is.logical, 11
is.numeric, 11
iso.lsr, 100
isojoli, 109

Jolicoeur approach, 106

Kendall coordinates, 150
Kendall shape space, 166
kendall2d, 152
kmeans, 120, 122
ks.test, 70

landmark, 4
landmark.addition, 55
lapply, 72, 289
layout, 37
lda, 112, 130
legend, 35
letters, 23
levels, 14
lexical scoping, 288
line.cis, 97
linear discriminant analysis, 248
lines, 35, 41, 161
list, 17
lm, 20, 60, 81, 86, 88, 268
lme, 82
lme4, 82, 301
lmer, 82, 129
lmosi, 100
lmtest, 82, 130, 301
load, 56
locator, 35, 38, 41–43, 48, 52, 67, 213
log-EDMA, 197
logarithm, 96

major axis method, 97

314 Index

MANOVA, 111, 248
manova, 118
mantel, 127
Mantel test, 127, 262, 283
Mantel test, alternative, 283
mantel.rtest, 127
mantel.t2, 264
mantel.t3, 286
mantel.test, 127, 128, 263
mantrstat, 263
mantz.stat, 263
MASS, 18, 21, 112, 114, 251, 301
match, 259, 289
matplot, 88
matrix, 12, 14, 15, 261
max, 20
mbshape, 142
Mclust, 120
mclust, 120, 123, 302
MDS, 195
mean, 20, 60
mean form matrix, 195
meanrao, 200
measurement error, 63
median, 74
median, 70, 172
mEDMA, 193
mEDMA2, 195
min, 20
missing data, 60
mode, 10
model.tables, 78
modified Hotelling-Lawley trace test, 252
modularity, 276
Mosimann approach, 99
mrca, 261
mshape, 157
mst, 120
multidimensional scaling, 195
multinomial, 92
multiple linear model, 61
Multivariate analyses, 105
mvtnorm, 281, 302

NA, 23
names, 20
NEF, 225
newick2phylog, 121
nj, 120

nlme, 81–83, 129, 301
nlme, 83
nls, 82, 96
nonaffine shape variation, 237
nonparametric test, 285
normality, 70
Ntip, 261
numeric, 12

opa, 164
oPsup, 173
order, 191
orp, 169
orthogonal projection, 167
outline, 205
outline extraction, 46, 290
outline smoothing, 54

pairs, 81, 99, 105
pam, 120, 122, 130, 131, 256, 257
pan.dat, 252
par, 35, 41
parametric splines, 208
partial generalized Procrustes superimposi-

tion, 162
partial Procrustes distance, 155
partial Procrustes superimpostion, 155
partitional clustering, 122
paste, 13
perimeter, 26
persp, 8, 20, 35, 37, 38, 105
pgpa, 162
phylog.gls.fit , 93
phylogenetic comparative method, 93
PHYLOGR, 93, 302
pic, 93, 130
pixmap, 33, 39, 289, 301
plot, 20, 35, 44, 76, 82, 120, 122, 128, 199
plot.gpa, 164
plot.lda, 113
plot.opa, 164
plotshapes, 143, 161, 162
pls, 125, 267, 276, 277
points, 20, 35, 41
poly, 206
Polygon, 188
polygon, 35, 41, 199
polynomial curves, 206
pongo.dat, 252

Index 315

prcomp, 107
precision, 63
predict, 61, 82, 83, 88, 115
predict.glm, 90
predict.lm, 89
preshape, 151, 155
preshape space, 151
principal component analysis, 106, 234
princomp, 107
procalign, 237
procGPA, 161, 235
Procrustes, 139
Procrustes ANOVA, 273
Procrustes distance, 148
Procrustes superimposition, 148
Procrustes test, 127, 267
protest, 127, 128
pseudolandmarks, 4, 51

qda, 114
qr, 251
quantile, 70

R.matlab, 33, 301
radial.phylog, 121
range, 70
rank, 191
raoinv, 202
rbind, 15
rbinom, 22, 90
Rcmdr, 32, 287, 301
read.jpeg, 33
read.pnm, 33
read.table, 32, 268
readTiff, 33
rectangle, 35
reduced major axis method, 97
reflection, 154
regularradius, 53, 213
rep, 22, 264
residuals, 82
resistant-fit, 2D, 171
resistant-fit, 3D, 174
return, 288
rf, 22
rgl, 9, 20, 38, 39, 301
rgl, 105
rgl.lines, 39
rgl.points, 20

rimage, 33, 39, 301
RLink, 33
Rmorph, viii, 84, 100, 140, 164, 165, 235,

302
rmvt, 281, 283
rnorm, 22
rotation, 141, 146, 154
round, 20
rownames, 16
rtiff, 33, 39, 301
runif, 22
Rv, 276

sample, 23, 74, 264
save, 56
scale, 60, 70, 125, 149
scan, 21, 32, 33, 268
scatterplot3d, 38, 301
scatterplot3d, 38, 105
sd, 70
segments, 20, 35
seq, 22, 67, 220, 296
shape space, 151
shapepca, 235
shapes, 31, 134, 143, 144, 161, 186, 203,

232, 234, 235, 252, 265, 301
shapiro.test, 70
shell, 9, 34
shift.com, 97
simple cubic splines, 207
simple open curve, 206
simulation, 281
sin, 20
size and shape, 99
size correction, 101
slope.com, 97
slope.test, 97
smatr, 97, 302
smoothout, 55
solve, 21, 137
sort, 20, 61
sp, 52, 186, 188, 301
spantree, 120
splancs, 67, 301
splinefun, 207
splines, 207
spsample, 52, 187, 188
sqrt, 17, 20

316 Index

stats, 9, 20, 70, 75, 120, 126, 130, 206, 207,
301

stereographic projection, 167
stp, 168
str, 10
strsplit, 20
sub, 20, 58
sub-Helmert matrix, 150
subset, 72
substr, 121
sum, 10, 70
summary, 70, 71, 82
summary.aov, 76, 130
summary.glm, 90
summary.manova, 118
summary.prcomp, 108
surface, 26
surface, 3D, 27
svd, 20, 21, 102, 143, 230
system, 9

t, 15, 21
t.test, 75
table, 71
tan, 20
tapply, 72
test for isometry, 98
text, 20, 35
thin-plate spline, 183, 235, 294
toupper, 120
tps, 185, 235
tps2d, 295
tpsgrid, 186
trans1, 149
transform, 32
translation, 141, 146, 149
tri.mesh, 199
triangle.plot, 105
triangular plot, 105

triangulation, 198
tridimensional graphs, 35
trigonometric Procrustes distance, 156
trimesh, 137
truss network, 134
Tukey HSD test, 76
TukeyHSD, 76
two-block partial least-squares, 124
type I and II error rates, 287

uniform component, 238
uniform component, 3D, 239
uniform component, regression approach,

240
uniform shape variation, 237
uniform2D, 238
uniformG, 240
unique, 60, 61
utils, 9, 20, 301

var, 20, 70, 84
varclus, 126
variable clustering, 126
variance.phylog, 93
vcv.phylo, 260
vcvrao, 201
vector, 12
vector, 15
vEDMA, 196
vegan, 120, 127, 302
VGAM, 92, 302
visu, 235
volume, 27

which, 20, 60
write.table, 56
writing data, 56

Xll(), 37

springer.com

Data Manipulation with R
Phil Spector

This book presents a wide array of methods applicable for reading
data into R, and efficiently manipulating that data. In addition to the
built-in functions, a number of readily available packages from CRAN
(the Comprehensive R Archive Network) are also covered. All of the
methods presented take advantage of the core features of R: vectori-
zation, efficient use of subscripting, and the proper use of the varied
functions in R that are provided for common data management tasks.

2008. 164 pp. (Use R) Softcover
ISBN 978-0-387-74730-9

Lattice:
Multivariate Data Visualization with R
Deepayan Sarkar

The book contains close to 150 figures produced with lattice. Many of
the examples emphasize principles of good graphical design; almost
all use real data sets that are publicly available in various R pack-
ages. All code and figures in the book are also available online, along
with supplementary material covering more advanced topics.

2008. Approx. 290 pp. (Use R!) Softcover
ISBN 978-0-387-75968-5

Bioconductor Case Studies
Huber F. Hahne, R.W. Gentleman and S.Falcon

 In this book, the authors present a collection of cases to apply Bio-
conductor tools in the analysis of microarray gene expression data.
Each chapter of this book describes an analysis of real data using
hands-on example driven approaches. Short exercises help in the
learning process and invite more advanced considerations of key
topics. The book is a dynamic document. All the code shown can be
executed on a local computer, and readers are able to reproduce
every computation, figure, and table.

2008. 292 pp. (Use R!) Softcover
ISBN 978-0-387-77239-4

Easy Ways to Order► Call: Toll-Free 1-800-SPRINGER ▪ E-mail: orders-ny@springer.com ▪ Write:
Springer, Dept. S8113, PO Box 2485, Secaucus, NJ 07096-2485 ▪ Visit: Your
local scientific bookstore or urge your librarian to order.

	000
	front-matter
	fulltext
	fulltext_2
	fulltext_3
	fulltext_4
	fulltext_5
	fulltext_6
	fulltext_7
	back-matter

