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SUMMARY 

Methods of evaluating and comparing the performance of diagnostic tests are of increasing importance 
as new tests are developed and marketed. When a test is based on an observed variable that lies on a 
continuous or graded scale, an assessment of the overall value of the test can be made through the 
use of a receiver operating characteristic (ROC) curve. The curve is constructed by varying the 
cutpoint used to determine which values of the observed variable will be considered abnormal and 
then plotting the resulting sensitivities against the corresponding false positive rates. When two or 
more empirical curves are constructed based on tests performed on the same individuals, statistical 
analysis on differences between curves must take into account the correlated nature of the data. This 
paper presents a nonparametric approach to the analysis of areas under correlated ROC curves, by 
using the theory on generalized U-statistics to generate an estimated covariance matrix. 

1. Introduction 

Methods of evaluating and comparing the performance of diagnostic tests or indices are of 
increasing importance as new tests or indices are developed or measured. When a test is 
based on an observed variable that lies on a continuous or graded scale, an assessment of 
the overall value of the test can be made through the use of a receiver operating characteristic 
(ROC) curve (Hanley and McNeil, 1982; Metz, 1978). The underlying population curve is 
theoretically given -by varying the cutpoint used to determine the values of the observed 
variable to be considered abnormal and then plotting the resulting sensitivities against the 
corresponding false positive rates. If a test could perfectly discriminate, it would have a 
value above which the entire abnormal population would fall and below which all normal 
values would fall (or vice versa). The curve would then pass through the point (0, 1) on the 
unit grid. The closer an ROC curve comes to this ideal point, the better its discriminating 
ability. A test with no discriminating ability will produce a curve that follows the diagonal 
of the grid. 

For statistical analysis, a recommended index of accuracy associated with an ROC curve 
is the area under the curve (Swets and Pickett, 1982). The area under the population ROC 

Key words. Jackknifing; Mann-Whitney test; Receiver operating characteristic (ROC) curve; Struc- 
tural components; U-statistics. 
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curve represents the probability that, when the variable is observed for a randomly selected 
individual from the abnormal population and a randomly selected individual from the 
normal population, the resulting values will be in the correct order (e.g., abnormal value 
higher than the normal value). Generally, parametric assumptions are applied on the 
distributions of the observed variable in the normal and the abnormal populations. 
Maximum likelihood programs for estimating the area under the curve and relevant 
parameters under a binormal model assumption have been widely employed (Dorfman 
and Alf, 1969; .Metz, 1978; Swets and Pickett, 1982) in order to estimate this area, although 
these distributions cannot be uniquely determined from the ROC curve. The methodology 
has been extended (Metz, Wang, and Kronman, 1984) to a "bivariate binormal" model for 
testing differences between correlated sample ROC curves that arise, for example, when 
different diagnostic tests are performed on the same individuals. 

This paper addresses the nonparametric comparison of areas under correlated ROC 
curves. When calculated by the trapezoidal rule, the area falling under the points comprising 
an empirical ROC curve has been shown to be equal to the Mann-Whitney U-statistic for 
comparing distributions of values from the two samples (Bamber, 1975). Although the 
trapezoidal rule systematically underestimates the true area (Hanley and McNeil, 1982; 
Swets and Pickett, 1982) when the number of distinct values taken on by a discrete-valued 
diagnostic variable is small (say, 5 or 6), it nonetheless produces a meaningful statistic that 
can be used with confidence when the variable takes on a larger number of values. Hanley 
and McNeil (1983) use some properties of this nonparametric statistic to compare areas 
under ROC curves arising from two measures applied to the same individuals. Their 
approach involves calculating for both the normal and the abnormal sample the correlation 
between the values of the original measures. The average of the two correlations is used 
along with the average of the areas under the two curves to arrive at an estimated correlation 
between the two areas. A table that applies when the average area is at least .70 is given. 
However, for measures that are not continuous or nearly so, their method relies on Gaussian 
modeling assumptions for estimating the variances of the two areas. In Section 2 we present 
an alternative methodology using a more completely nonparametric approach which 
exploits the properties of the Mann-Whitney statistic. Section 3 presents an example of 
three correlated ROC curves derived from data on ovarian cancer patients undergoing 
surgery for bowel obstruction. Three different prognostic indices are evaluated and 
compared. 

2. Analysis of Areas Under Correlated ROC Curves 

Suppose a sample of N individuals undergo a test for predicting an event of interest or 
determining presence or absence of a medical condition and that the test is based on a 
continuous-valued diagnostic variable. We will follow the convention that higher values of 
the test variable are assumed to be associated with the event of interest, e.g., positive disease 
status. Also suppose it can be determined by means independent of the test that in of these 
individuals truly undergo the event or have the condition. Let this group be denoted by Cl 
and let the group of n (= N - m) individuals who do not have the condition be denoted by 
C2. Let Xi, i = 1, 2, . . ., m and Yj, j = 1, 2, . . ., n be the values of the variable on which 
the diagnostic test is based for members of Cl and C2, respectively. These outcome values 
can be used to construct an empirical ROC curve for assessing the diagnostic performance 
of the test. For any real number z, let 

1 in 

sens(z) = - E I(XI > z) 
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where I(A) = 1 if A is true and 0 otherwise. Also let 

1 * 
spec(z) = - E, If Y < z). 

n j=1 

Then sens(z) is the empirical sensitivity of a test that is derived by dichotomizing the 
variable into positive or negative results on the basis of the cutpoint z and spec(z) is the 
corresponding empirical specificity. Now, as z varies over the possible values of the variable, 
the empirical ROC curve is a plot of sens(z) versus [1 - spec(z)]. Clearly, when z is larger 
than the largest possible value, the curve passes through (0, 0) and it monotonically 
increases to the point (1, 1) as z decreases to the smallest possible value. To be informative, 
the entire curve should lie above the 450 line where sens(z) = 1 - spec(z). Selection of an 
optimal cutpoint depends on a cost function of sensitivity and specificity. 

It has been shown that the area under an empirical ROC curve, when calculated by the 
trapezoidal rule, is equal to the Mann-Whitney two-sample statistic applied to the two 
samples {Xi } and { Yj }. Because the Mann-Whitney statistic is a generalized U-statistic, 
statistical analysis regarding the performance of diagnostic tests can be performed by 
exploiting the general theory for U-statistics. 

The Mann-Whitney statistic estimates the probability, 0, that a randomly selected 
observation from the population represented by C2 will be less than or equal to a randomly 
selected observation from the population represented by Cl. It can be computed as the 
average over a kernel, A, as 

1 n m 

mn j= i =1 

where 

Il Y<X 
O(X,Y)={2 Y=X. 

0O Y>X 

In terms of probabilities, E(0) = 0 = Pr(Y< X) + 'Pr(X = Y). For continuous distributions, 
Pr(Y= X) = 0. 

Asymptotic normality and an expression for the variance of the Mann-Whitney statistic 
can be derived from theory developed for generalized U-statistics by Hoeffding (1948). 
Define 

(lo = E[I(Xi, Yj)lp(X, Yk)] - 02J j $ k; 

0oj = E[t(Xj, Yj)t(Xk, Yj)] - 02, i k; (1) 

1II = E[J(X1, Yj)J(X, Yj)] _ 02- 

Then 

(n - l) lo + (m - l)tol +i( var(6) = +- (2) 
mn mn 

Bamber (1975) provides a method of estimating the variance in the context of testing the 
significance of a single ROC curve. Bamber introduces a quantity Bxxy, which is the 
probability that two randomly chosen elements of the population C1 will both be greater 
than or less than a randomly chosen element of C2, minus the complementary probability 
that the observation from C2 will be between the two from Cl. A similar quantity Byyx is 
also defined and the variance of A is given in terms of B and B Var(6) is then 
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estimated by empirically estimating Byyx and Bxxy. Formula (2) can be shown to be 
equivalent to Bamber's formula (4), which derives from work of Noether (1967) and applies 
when X and Y are not necessarily continuous. 

Hoeffding's theory extends to a vector of U-statistics. Let 0 = (j l, . k) be a vector 
of statistics, representing the areas under the ROC curves derived from the readings 
{Xir}, {YJ)} (i = 1, . . ., m; j = 1, ..., n; 1 < r < k) of k different diagnostic measures. 
Then, similar to (1) above, define 

010 = E[A(Xr, YJ)p(Xi, Ys)] - rIs j $ k; 

01l = E [A(Xi, Yjr)(Xs, Yjs)] - 0 rs i 5 k; (3) 

rS= E[u(Xr, Yr)J(XS, Es)] - rs 

The covariance of the rth and sth statistic can then be written as 

cov(r as) A (n - 1)t s + (m - 1)rsU rs, 

mn mn 

Sen (1960) has provided a method of structural components to provide consistent estimates 
of the elements of the variance-covariance matrix of a vector of U-statistics. This approach 
turns out to be equivalent to jackknifing, but is conceptually simpler when dealing with 
U-statistics. We will exploit this methodology to compare the areas under two or more 
ROC curves. For the rth statistic, or, the X-components and Y-components are defined, 
respectively, as 

i n 
Vro(X,) =- E A(Xr, Yr) (= 1,2,...,m) 

nl j=1i 
,2 . .IM 

and 
i n 

VI' rV) =(Xi, YJ) (j= 1, 2, ...,n). m i=1 

Also define the k x k matrix S10 such that the (r, s)th element is 

r= 1 [V-r0(X) - ][V (X, ) - ] 
m - 1 i=1I 

and similarly S0l, which has (r, s)th element 

1 
501~ = n - 1 E[V61(Y1) - ][VS (Y) - ] 

n1 - 1j( 

The estimated covariance matrix for the vector of parameter estimates, 0 - 

(al O 2 ,), is thus 

S =-Sio + - Sol. 
m n 

Let g be a real-valued function of 0 that has bounded second derivatives in a neighborhood 
of 0. Combining results from Sen (1960) and Arveson (1969, Theorem 16), it follows that 
if limNO,m/n is bounded and nonzero, then N12 [g(O) - g(O)] is asymptotically normally 
distributed with mean 0 and variance o2, where 

2 N co j-k k agg a I 1 1m I 

N-c9 = 10' 6~ nl / 
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Further, 

2 k k Ogg /1I 1. 
s9 = N SE El Soldfj(ms0 

j=1 i=1 06 06' \m n 

is a consistent estimate of (2. 

When g is simply a linear function, the theory reduces considerably, because the partial 
derivatives are the constants that comprise the linear function. Thus, for any contrast 
LO', where L is a row vector of coefficients, 

LO' - LO' 

[L (--S1o + I 
Sol) L'J 

[ m n ) ] 

has a standard normal distribution. A confidence interval for LO' naturally follows. 
By a modest generalization of these results, we can also apply any set of linear contrasts 

to a vector of areas under correlated ROC curves and perform a test of significance on 
LO' . The test then takes the form 

(0 - O)L'[L (Is1 + S01) LJ L(0 0)' (5) ( ) m n ) ( )'() 

which has a chi-square distribution with degrees of freedom equal to the rank of LSL' . A 
confidence region can also be constructed. 

A computer program written in the SAS language is available from the authors for 
computing components, covariance matrices, and contrasts. However, as indicated in the 
next section, the components can be computed easily by hand or by a simple computer 
program. The components can then be input to any program which computes sums of 
squares and cross-products in order to obtain the covariance matrix S. 

3. Example 

When to perform surgical correction of intestinal obstruction in patients known to have 
ovarian carcinoma is an unresolved problem. The dilemma centers around determining 
those patients for whom surgery presents a benefit. Castelado et al. (1981), and other 
authors have proposed that patients who survive longer than 2 months postoperatively can 
be declared to have "benefited" from the surgery. Using this criterion, Krebs and Goplerud 
(1983) devised a preoperative scoring system for use as a screening test in determining 
a patient's risk for failing to benefit from surgery. The scoring algorithm is presented in 
Table 1. According to this scoring system, patients with low scores should be good candidates 
for surgery and those with higher scores should be considered at risk for failing to benefit 
from surgery. 

The following example evaluates the discriminating ability of the proposed screening 
algorithm on 49 consecutive ovarian cancer patients undergoing correction of intestinal 
obstruction at Duke University Medical Center. Of the 49 patients, 12 survived more than 
2 months postoperatively and could be considered surgical successes; the remaining 37 are 
considered failures. The Krebs-Goplerud score (K-G) is compared against two other 
preoperatively measured indices: total protein (TP) and albumin (ALB), both of which are 
positively associated with the patient's nutritional status. Because ALB is one component 
of TP, these two measures are highly correlated, with a Kendall's tau-b value of .65. 
Increasing levels of ALB and TP are associated with better nutritional status, whereas 
increasing levels of K-G are associated with poorer prognosis. Thus, to simplify computa- 
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Table 1 
Krebs-Goplerud scoring system for prognostic parameters in ovarian carcinoma 

complicated by bowel obstruction 

Assigned 
Parameter risk score 

Age (yr) 
<45 0 
45-65 1 
>65 2 

Nutritional status (deprivation) 
None or minimal 0 
Moderate 1 
Severe 2 

Tumor status 
No palpable intra-abdominal masses 0 
Palpable intra-abdominal masses 1 
Liver involvement or distant metastases 2 

Ascites 
None or mild (asymptomatic, abdomen not distended) 0 
Moderate (abdomen distended) 1 
Severe (symptomatic, requires frequent paracentesis) 2 

Previous chemotherapy 
None, or no adequate trial 0 
Failed single-drug therapy 1 
Failed combination-drug therapy 2 

Previous radiation therapy 
None 0 
Radiation therapy to pelvis 1 
Radiation therapy to whole abdomen 2 

tions, we transformed by subtracting K-G from 12, the maximum possible value, so that 
all indices would prognosticate in the same direction. 

Figure 1 displays the empirical ROC curves for the three indices. From this figure, it 
appears that K-G offers little improvement over either ALB or TP. The estimated areas 
under the curves for K-G, ALB, and TP are .69, .72, and .65, respectively. To analyze and 
compare these areas, the covariance matrix for the vector of areas is needed. The method 
of structural components easily produces this matrix. For each of the variables of interest, 
(K-G, ALB, TP), we can denote by Xr (r = 1, 2, 3) the values associated with success and 
by yr (r = 1, 2, 3) the values associated with surgical failures. Then, Or = Pr(Y' < Xr) + 
iPr( yr = X') and we compute the components individually for each of the three variables. 
If the data are first sorted by the variable of interest, it is a simple matter to calculate for 
each X the number of Y's less than X (NYLx) and the number of Y's equal to X (NYEQx). 
The component for X is then NYLx + 'NYEQx. Likewise, for each Y we calculate the 
number of X's greater than Y (NXGy) and the number of X's equal to Y (NXEQy). The 
component for Y is NXGy + 4NXEQy. 

For this example, there are 12 X's and three variables of interest, so the X-components 
form a 12 x 3 matrix, V10. The 37 Y's yield a component matrix of dimension 37 x 3, 
V0o. The 3 x 3 matrices S10 and S0l are then computed as 

So1 (Vf0V10 - 120'0) 

and 

Sol = (V1lVol - 370'0). 
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Figure 1. Receiver operating characteristic curves for Krebs-Goplerud score (0), total protein (A), 
and albumin (0). 

It is clear that S10 and Sol are the covariance matrices of V1o and Vol, respectively. They 
can readily be obtained from any computer program that computes covariance matrices. 
The covariance matrix for the vector of areas is then 

12 37 

Table 2 
Estimated covariance matrix between areas under the three ROC curves 

Covariance 
K-G score Albumin Total protein 

K-G score .0110 .0033 .0028 
Albumin .0086 .0076 
Total protein .0100 

Table 3 
Correlation coefficients of pairs of areas calculatedfrom estimated covariance matrix (ECM) and 

also from method of Hanley and McNeil (HM) 

Correlation Kendall's tau-b Kendall's tau-b Correlation 
(ECM) Survivors Nonsurvivors (HM) 

K-G, ALB .34 .20 .18 .17 
K-G, TP .27 -.01 .21 .10 
ALB, TP .82 .61 .66 .61 
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This matrix is displayed in Table 2. In Table 3, the resulting correlation coefficients are 
presented, along with Kendall's tau-b values for the group that benefited from surgery and 
for the remaining group, and finally the estimated correlations derived from the table in 
the paper by Hanley and McNeil (1983). For this set of data, our estimates tend to be 
larger. 

Now, to compare K-G to the average of ALB and TP, we use the contrast L 
(1, -.5, -.5). Evaluated at 0, the value of the contrast is .004. The standard deviation 
of this estimate is 

(LSL ' )1/2 = 1 16 

A two-sided 95% confidence interval for this contrast is thus (-.223, .231), indicating 
negligible improvement by K-G over ALB and TP. 

To determine whether the Krebs-Goplerud score is better than at least one of the other 
indices, ALB and TP, we use the contrast 

I 1 -I?) 

Then based on (5), the x2 statistic with 2 degrees of freedom can be computed as 1.51 with 
a P-value of .47. Based on this sample of 49 patients, there appears to be no advantage in 
using the Krebs-Goplerud score over other routinely collected nutritional parameters, 
although power in this situation is likely to be very small because of the small sample size. 

4. Discussion 

ROC curves are frequently being applied to the evaluation of diagnostic or prognostic tests 
and indices. In order to make comparisons between two or more such indices derived from 
the same test units or subjects, the implicit correlation between the curves should be taken 
into account. This paper has presented a totally nonparametric approach to the comparison 
of the areas under two or more ROC curves by using the theory developed for generalized 
U-statistics. A covariance matrix can be estimated using the method of structural compo- 
nents and the resulting test statistic has asymptotically a chi-square distribution. The 
covariance matrix may also be used to construct confidence regions. 
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RESUME 

L'importance des methodes d'evaluation et de comparaison de la performance des tests diagnostiques 
croit dans le meme temps que de nouveaux tests se developpent et sont lanc6s sur le marche. Quand 
un test est fonde sur une variable observee continue ou qui prend ses valeurs sur une 6chelle graduee, 
on peut faire une estimation globale de la valeur du test en utilisant la courbe caract6ristique (ROC) 
du receveur. La courbe est construite en faisant varier la coupure utilis6e pour d6terminer quelles 
valeurs de la variable observ6e sont a considerer comme anormales, et ensuite en faisant la graphe 
des sensibilit6s r6sultantes contre les ratios correspondants faussement positifs. On doit tenir compte 
de la nature corr6l6e des donn6es dans l'analyse statistique des differences entre courbes quand deux 
ou plusieurs courbes empiriques sont construites a partir de tests bas6s sur les memes individus. On 
presente dans ce papier une approche non param6trique de l'analyse des aires sous des courbes ROC 
correlees, en utilisant la theorie sur la statistique U generalisee, pour engendrer une matrice de 
covariance estim6e. 
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