Visualizing intestinal immune homeostasis:

T cells patrol independent of a mucosal dendritic cell network

Peter Velázquez, Ph.D.

IUSM-South Bend
a partnership with Notre Dame

Outline

- Background
- Mucosal Intravital Imaging Validation
- · Description of Dendritic Cell Network
 - Mucosal T cell Patrolling

Outline

- Background
- · Mucosal Intravital Imaging Validation
- · Description of Dendritic Cell Network
 - Mucosal T cell Patrolling

Immune homeostasis in gut

- 10¹⁴ Bacteria Reside in Normal Gut (approx. 2000 species)
 - Aids in fiber digestion
 - Produces some vitamin K and B
- Immune inflammation is controlled
- Protective immunity is preserved
- ~80% of total leukocytes are in the gut
- More effector lymphocytes in the gut than anywhere else (ex. Th17)

Quiescence and Protective Immunity

Enteric Flora

Inflammation Tumorgenesis

Host Genetics

Immune microanatomy of small intestine

T cell patrolling and activation

Overall hypothesis: The study of the modulation of T cell patrolling will provide basic insights into regulation of T cell activation in the intestine

Why IVM to understand gut immunobiology?

Where do the important T cell-APC interactions occur?

- What is the physical nature of T cell-APC interactions in the intestine?
 - Stable versus scanning
 - Biochemistry of TCR-pMHC and signal strength
 - Does this change during inflammation (colitis or tumor rejection)

- How does a single T cell find antigen in volume ~50,000X its own size?
 - Volume of a T cell: $\pi r^3 = 3.14 \times 5^3 \sim 400 \mu m^3$
 - Volume of a Villus: $\pi r^2 h = 3.14 \times 25^2 \times 100 \sim 200,000 \mu m^3$
 - Volume of lamina propria in intestine: Vol. of villus \times number of villi ~200,000 \times 1,000 ~ 2e8 μ m³

Application of LSM intravital microscopy

- Intact microenvironment (blood, O₂, endocrine etc.)
- Conserved microanatomy
- Identify what cellular interactions and migratory behavior are important to maintain homeostasis and immunity
- Other unpredicted insights
- Many intravital immunologic studies have focused on secondary lymphoid organs, not effector sites like the gut

Challenges in applying fluorescence IVM

- Temperature
 - <35°C, cells stop migrating
 - >39°C, cells stop migrating
- · Perfusion
 - Lack of blood flow, cells stop migrating and disrupted para/endocrine systems
- Photodamage and phototoxicity

Outline

- Background
- Mucosal Intravital Imaging Validation
- · Description of Dendritic Cell Network
 - Mucosal T cell Patrolling

Intravital Microscopic Set-up

Surgical Exposure of Small Bowel

Imaging Platform

- A. Oxygen
- B. Temperature monitoring and modulation
- C. Environmental chamber

Visualizing Gut Leukocytes via the Mucosal Surface

Olympus FV1000 Ti:Sapphire fs pulsed w/neg. chirp (MaiTai DeepSee HP) 4NDD Inverted

Typically use 25X 1.05NA, hi transmission near IR

Typical acquisition parameter ~620 x 620 pixels 2 microsecond dwell 15 z @ <30sec intervals

Playback: 5fps

Localized tissue damage

Clearance of dextran from vasculature

10KDa Dextran – FITC 70KDa Dextran – TR

Analyze small bowel blood vessel fluorescence

Permeability

Clearance

Validation Summary

 Limited tissue damage due to surgical procedure

· Tissue perfusion is intact

Blood filtration from kidney is intact

Outline

- Background
- Mucosal Intravital Imaging Validation
- · Description of Dendritic Cell Network
 - Mucosal T cell Patrolling

Small intestine villus DC activity and intact blood flow

Visualizing Gut Leukocytes

Overlapping non-hematopoetic and DC networks

DC network summary

- DCs form a continuous network in both small and large bowel
- Network spans from villi to crypt lamina propria
- Mucosal DCs express low amounts of gap junctions
- · DC network overlaps a non-hematopoetic cell network

Outline

- Background
- Mucosal Intravital Imaging Validation
- · Description of Dendritic Cell Network
 - Mucosal T cell Patrolling

Villus T cell migration

The role of DCs in homeostatic T cell patrolling

Role of dendritic cells in homeostatic T cell patrolling

Hypothesis: T cells do not require DCs for homeostatic patrolling

Homeostatic T cell patrolling

How is cell migration quantified?

This diagram represents a cell whose migration that is observed over time

- Each blue dot represents an observation
- An observation is made every 30 seconds

 Every cell in the imaging field is monitored and migration characteristics quantified

Dendritic cells in T cell patrolling

Question 1: Do T cells scan or stop-and-go on dendritic cells during homeostasis?

Scanning

If T cell scan DCs, speed and arrest coefficient will remain unaffected in the absence of DCs

Stop-and-go

If T cell stop-and-go on DCs, they will migrate faster and/or arrest less often in the absence of DCs

Dendritic cells in T cell patrolling part I

Speed – mean rate of migration per cell

Arrest coefficient – percent of time a cell is migrating <2µm/min

T cell scan DCs as they migrate through tissue during homeostasis

Dendritic cells in T cell patrolling part II

MI – displacement / track length

CI – max. displacement / track length

DCs are required for directionality in homeostatic mucosal T cell patrolling

Start

End

X₂

X₃

X₆

X₇

End

X₇

displacement

Summary and conclusion

- We established a system for studying mucosal biology
 - Tissue damage is limited to incision area
- Perfusion is intact and dextran clearance is consistent with intact kidney filtration
- Vasculature is permeable to low MW dextran
- Mucosal dendritic cells form a highly organized network
- Dendritic cell are sessile and actively probe during homeostasis, reminiscent of DCs in secondary lymphoid organs
- T cells patrol independent of mucosal DCs, scanning as they migrate through tissue
- · T cell require mucosal DCs to provide directionality

Single- and MP- Excitation IVM

Quantification

- · Cell migration
 - Chemotaxis
 - Confinement
 - Speed
 - Arrest
 - Randomness
- · Perfusion
- Vascular permeability
- · Cell viability

Application

- Homeostasis
- · Infectious Disease
- Tumor formation/rejection

<u>Organs</u>

- · Small bowel
- · Viscera (skin)
- · Parietal peritoneum
- Liver
- Footpad
- Spleen
- Inguinal Lymph Node

Labels

- Organic dye
- Soluble dye
- Antibody
- Genetic
- · SHM

Acknowledgements

Velazquez Lab

Cassie Xu

Michael L. Dustin, NYUSoM

Suzanne S. Bohlson, IUSM-SB

Ken Dunn, IUSM

Tim Sutton, IUSM

Gabby Moriel

Funding NIDDK-NRSA

IUSM - REG