Форум врачей-аспирантов

Здравствуйте, гость ( Вход | Регистрация )

 
Добавить ответ в эту темуОткрыть тему
> Логистическая регрессия, помогите понять
Felix77
сообщение 2.01.2020 - 08:23
Сообщение #1


Дух форума
*

Группа: Пользователи
Сообщений: 10
Регистрация: 30.04.2018
Пользователь №: 31313



Доброго времени суток!
help.gif понять в примере по логистической регрессии в R, как получается коэффициент вероятности 0.854 при GRE-790, GPA-3.8, rank-1. Я так понимаю это можно сделать из коэф. 'estimate'

https://towardsdatascience.com/simply-expla...-r-b919acb1d6b3
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
nokh
сообщение 2.01.2020 - 19:54
Сообщение #2


Дух форума
*

Группа: Пользователи
Сообщений: 1140
Регистрация: 13.01.2008
Из: Челябинск
Пользователь №: 4704



Цитата(Felix77 @ 2.01.2020 - 10:23) *
Доброго времени суток!
help.gif понять в примере по логистической регрессии в R, как получается коэффициент вероятности 0.854 при GRE-790, GPA-3.8, rank-1. Я так понимаю это можно сделать из коэф. 'estimate'

https://towardsdatascience.com/simply-expla...-r-b919acb1d6b3

У автора цитируемого блога в расчётах есть ошибка.
Спорно. Категориальные факторы однозначно следует вводить для номинальных предикторов, но не порядковых. Тогда все эти as.factor не нужны. Хотя так делают, если есть основания считать, что ранги не могут быть интерпретированы в линейной шкале. Покажу на имеющемся этом примере.

Логит=Свободный член + Фактор1*Коэффициент1 + Фактор2*Коэффициент2 + ...
Логит=-3,989979+790*0,002264+3,8*0,804038=0,8539254
Именно это значение выдаётся в качестве прогноза по predict(logit,x)=0.85426 (это без ошибок округления при моём ручном расчёте выше).

Ошибка. Но это не Р, а именно Логит при значениях факторов (gre=790,gpa=3.8,rank=as.factor(1)) для подогнанной модели
Р=1/(1+е^(-Логит)), где е - основание натурального логарифма. Соответственно конец нужно исправить на:

> predicted.logit<-predict(logit,x)
> predicted.logit
1
0.85426
> p=1/(1+exp(-predicted.logit))
> p
1
0.70146

Соответственно, вероятность Р=0,70146
(а если не рассматривать порядковые данные как номинальные, то P=0,6803324)

Сообщение отредактировал nokh - 2.01.2020 - 20:34
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
Felix77
сообщение 3.01.2020 - 07:59
Сообщение #3


Дух форума
*

Группа: Пользователи
Сообщений: 10
Регистрация: 30.04.2018
Пользователь №: 31313



Спасибо!
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
Игорь
сообщение 8.01.2020 - 16:59
Сообщение #4


Дух форума
*

Группа: Пользователи
Сообщений: 968
Регистрация: 10.04.2007
Из: Россия
Пользователь №: 4040



Цитата(nokh @ 2.01.2020 - 20:54) *
У автора цитируемого блога в расчётах есть ошибка.
Спорно. Категориальные факторы однозначно следует вводить для номинальных предикторов, но не порядковых. Тогда все эти as.factor не нужны. Хотя так делают, если есть основания считать, что ранги не могут быть интерпретированы в линейной шкале. Покажу на имеющемся этом примере.

Логит=Свободный член + Фактор1*Коэффициент1 + Фактор2*Коэффициент2 + ...
Логит=-3,989979+790*0,002264+3,8*0,804038=0,8539254
Именно это значение выдаётся в качестве прогноза по predict(logit,x)=0.85426 (это без ошибок округления при моём ручном расчёте выше).

Ошибка. Но это не Р, а именно Логит при значениях факторов (gre=790,gpa=3.8,rank=as.factor(1)) для подогнанной модели
Р=1/(1+е^(-Логит)), где е - основание натурального логарифма. Соответственно конец нужно исправить на:


Не могу согласиться с данным во втором и третьем абзацах определением логита.


Signature
Ebsignasnan prei wissant Deiws ainat! As gijwans! Sta ast stas arwis!
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
100$
сообщение 8.01.2020 - 17:14
Сообщение #5


Дух форума
*

Группа: Пользователи
Сообщений: 760
Регистрация: 23.08.2010
Пользователь №: 22694



Цитата(Игорь @ 8.01.2020 - 16:59) *
Не могу согласиться с данным во втором и третьем абзацах определением логита.


Ибо истинный Логит - это логарифм отношения вероятности наступления события к вероятности того, что оно не произойдет.
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
Игорь
сообщение 8.01.2020 - 20:06
Сообщение #6


Дух форума
*

Группа: Пользователи
Сообщений: 968
Регистрация: 10.04.2007
Из: Россия
Пользователь №: 4040



Цитата(100$ @ 8.01.2020 - 18:14) *
Ибо истинный Логит - это логарифм отношения вероятности наступления события к вероятности того, что оно не произойдет.

Какое отношение данное замечание имеет к обсуждаемой в теме логистической регрессии? Достаточно взять любой источник и убедиться, что выражение, называемое коллегой логитом, является множественной линейной регрессией.

Сообщение отредактировал Игорь - 8.01.2020 - 20:07


Signature
Ebsignasnan prei wissant Deiws ainat! As gijwans! Sta ast stas arwis!
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
100$
сообщение 8.01.2020 - 22:29
Сообщение #7


Дух форума
*

Группа: Пользователи
Сообщений: 760
Регистрация: 23.08.2010
Пользователь №: 22694



Цитата(Игорь @ 8.01.2020 - 20:06) *
Какое отношение данное замечание имеет к обсуждаемой в теме логистической регрессии?


Непосредственное.


Цитата
Достаточно взять любой источник и убедиться, что выражение, называемое коллегой логитом, является множественной линейной регрессией.


Которая моделирует Ln(Pi/(1-Pi))

Вы растренировались, Игорь.
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
Игорь
сообщение 10.01.2020 - 08:20
Сообщение #8


Дух форума
*

Группа: Пользователи
Сообщений: 968
Регистрация: 10.04.2007
Из: Россия
Пользователь №: 4040



Цитата(100$ @ 8.01.2020 - 23:29) *
Непосредственное.




Которая моделирует Ln(Pi/(1-Pi))

Вы растренировались, Игорь.

Понимаете, если бы это был просто троллинг (которым он и является по факту), на этом можно было закончить обсуждение. В принципе, ничего экстраординарного - так обычно развлекаются весьма подготовленные люди на специализированных форумах, отбивая у новичков желание общаться и сводя ценность опубликованной информации к нулю. Для этого применяют ряд методов, основные из которых - необоснованное расширение темы обсуждения и увод обсуждения от основной темы во второстепенные ветки. Методы обычные для "научной" дискуссии. Но человек написал "помогите понять". А начинается понимание с четкого определения понятий и заканчивая нюансами. Свое мнение я изложил в работе, где логистическая регрессия практически полностью описана на 1 странице, включая ссылки на авторитеные источники, и добавить более нечего.


Signature
Ebsignasnan prei wissant Deiws ainat! As gijwans! Sta ast stas arwis!
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
nokh
сообщение 10.01.2020 - 09:56
Сообщение #9


Дух форума
*

Группа: Пользователи
Сообщений: 1140
Регистрация: 13.01.2008
Из: Челябинск
Пользователь №: 4704



Цитата(Игорь @ 10.01.2020 - 10:20) *
... Но человек написал "помогите понять". А начинается понимание с четкого определения понятий и заканчивая нюансами. Свое мнение я изложил в работе, где логистическая регрессия практически полностью описана на 1 странице, включая ссылки на авторитеные источники, и добавить более нечего.

А вот с этим не согласен уже я)). Чёткие определения понятий следует искать в хорошей литературе, а не на форумах. И если бы топикстартер попросил дать ему определение логита, то я бы промолчал. Поэтому в моём посте определений нет, а формулы не могут считаться таковыми, поскольку взяты из контекста ответа на другой вопрос. Но топикстартер попросил другого, а именно: как получается конкретное числовое значение, полученное в конкретной программе. В принципе, если чуть копнуть литературу, то этот вопрос Felix77 мог закрыть самостоятельно. Но я посмотрел тот блог, увидел ошибку и более 300 лайков статьи и не захотел, чтобы и наш форумчанин стал жертвой плохого совета. Оставить комментарий на том ресурсе из аккаунта Гугл не получилось, а специально регистрироваться не стал. К тому же указание на ошибку автора уже есть в комменте, правда очень неуверенное. Поэтому показал расчёт вероятности P на нашем форуме здесь.
В своё время осваивал ЛР по литературе и помощи к программам. Хорошая помощь у пакета MedCalc, где есть такие-же формулы как в моём ответе: https://www.medcalc.org/manual/logistic_regression.php
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
100$
сообщение 10.01.2020 - 13:53
Сообщение #10


Дух форума
*

Группа: Пользователи
Сообщений: 760
Регистрация: 23.08.2010
Пользователь №: 22694



Цитата(Игорь @ 10.01.2020 - 08:20) *
Понимаете, если бы это был просто троллинг (которым он и является по факту), на этом можно было закончить обсуждение. В принципе, ничего экстраординарного - так обычно развлекаются весьма подготовленные люди на специализированных форумах, отбивая у новичков желание общаться и сводя ценность опубликованной информации к нулю. Для этого применяют ряд методов, основные из которых - необоснованное расширение темы обсуждения и увод обсуждения от основной темы во второстепенные ветки. Методы обычные для "научной" дискуссии. Но человек написал "помогите понять". А начинается понимание с четкого определения понятий и заканчивая нюансами. Свое мнение я изложил в работе, где логистическая регрессия практически полностью описана на 1 странице, включая ссылки на авторитеные источники, и добавить более нечего.


Игорь, дайте, пожалуйста, отдохнуть вашему фонтану.
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 

Добавить ответ в эту темуОткрыть тему