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The stimulus for this volume on the historical development of permutation statistical
methods from 1920 to 2000 was a 2006 Ph.D. dissertation by the second author on
ranching in Colorado in which permutation methods were extensively employed
[695]. This was followed by an invited overview paper on permutation statistical
methods in Wiley Interdisciplinary Reviews: Computational Statistics, by all three
authors in 2011 [117]. Although a number of research monographs and textbooks
have been published on permutation statistical methods, few have included much
historical material, with the notable exception of Edgington and Onghena in the
fourth edition of their book on Randomization Tests published in 2007 [396]. In
addition, David provided a brief history of the beginnings of permutation statistical
methods in a 2008 publication [326], which was preceded by a more technical and
detailed description of the structure of permutation tests by Bell and Sen in 1984
[93]. However, none of these sources provides an extensive historical account of the
development of permutation statistical methods.

As Stephen Stigler noted in the opening paragraph of his 1999 book on Statistics
on the Table: The History of Statistical Concepts and Methods:

[s]tatistical concepts are ubiquitous in every province of human thought. they are more
likely to be noticed in the sciences, but they also underlie crucial arguments in history,
literature, and religion. As a consequence, the history of statistics is broad in scope and
rich in diversity, occasionally technical and complicated in structure, and never covered
completely [1321, p. 1].

This book emphasizes the historical and social context of permutation statistical
methods, as well as the motivation for the development of selected permutation tests.
The field is broadly interpreted and it is notable that many of the early pioneers were
major contributors to, and may be best remembered for, work in other disciplines
and areas. Many of the early contributors to the development of permutation
methods were trained for other professions such as mathematics, economics,
agriculture, the military, or chemistry. In more recent times, researchers from
atmospheric science, biology, botany, computer science, ecology, epidemiology,
environmental health, geology, medicine, psychology, and sociology have made
significant contributions to the advancement of permutation statistical methods.
Their common characteristic was an interest in, and capacity to use, quantitative
methods on problems judged to be important in their respective disciplines.
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viii Preface

The purpose of this book is to chronicle the birth and development of permutation
statistical methods over the approximately 80-year period from 1920 to 2000. As to
what the state of permutation methods will be 80 years in the future—one can only
guess. Not even our adult children will live to see the permutation methods of that
day. As for ourselves, we have to deal with the present and the past. It is our hope in
this writing that knowledge of the past will help the reader to think critically about
the present. Those who write intellectual history, as Hayden White maintained,
“do not build up knowledge that others might use, they generate a discourse about
the past” (White, quoted in Cohen [267, pp. 184—185]). Although the authors are
not historians, they are still appreciative of the responsibility historians necessarily
assume when trying to accurately, impartially, and objectively interpret the past.
Moreover, the authors are acutely aware of the 7984 Orwellian warning that “Who
controls the past...controls the future” [1073, p. 19]. The authors are also fully
cognizant that there are the records of the past, then there is the interpretation of
those records. The gap between them is a source of concern. As Appleby, Hunt,
and Jacob noted in Telling the Truth About History, “[a]t best, the past only dimly
corresponds to what the historians say about it” [28, p. 248]. In writing this book,
the authors were reminded of the memorable quote by Walter Sellar and Robert
Yeatman, the authors of 1066 and All That: A Memorable History of England:
“History is not what you thought. It is what you can remember” [1245, p. vii].! In
researching the development of permutation methods, the authors constantly dis-
covered historical events of which they were not aware, remembered events they
thought they had forgotten, and often found what they thought they remembered was
incorrect. Debates as to how to present historical information about the development
of permutation methods will likely be prompted by this volume. What is not up for
debate is the impact that permutation methods have had on contemporary statistical
methods. Finally, as researchers who have worked in the field of statistics for many
years, the authors fondly recall a sentient quote by Karl Pearson:

I do feel how wrongful it was to work for so many years at statistics and neglect its history
[1098, p. 1].

A number of books and articles detailing the history of statistics have been
written, but there is little coverage of the historical development of permutation
methods. While many of the books and articles have briefly touched on the
development of permutation methods, none has been devoted entirely to the topic.
Among the many important sources on the history of probability and statistics, a
few have served the authors well, being informative, interesting, or both. Among
these we count Natural Selection, Heredity and Eugenics: Selected Correspondence
of R.A. Fisher with Leonard Darwin and Others and Statistical Inference and
Analysis: Selected Correspondence of R.A. Fisher by J.H. Bennett [96, 97]; “A
history of statistics in the social sciences” by V. Coven [289]; A History of Inverse
Probability from Thomas Bayes to Karl Pearson by A.l. Dale [310]; Games, Gods,

'Emphasis in the original.
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and Gambling: The Origin and History of Probability and Statistical Ideas from the
Earliest Times to the Newtonian Era by EN. David [320]; “Behavioral statistics: An
historical perspective” by A.L. Dudycha and L.W. Dudycha [361]; “A brief history
of statistics in three and one-half chapters” by S.E. Fienberg [428]; The Making
of Statisticians edited by J. Gani [493]; The Empire of Chance: How Probability
Changed Science and Everyday Life by G. Gigerenzer, Z. Swijtink, T.M. Porter,
and L. Daston [512]; The Emergence of Probability and The Taming of Chance by
I. Hacking [567, 568]; History of Probability and Statistics and Their Applications
Before 1750 and A History of Mathematical Statistics from 1750 to 1930 by A. Hald
[571,572]; “The method of least squares and some alternatives: Part I,” “The method
of least squares and some alternatives: Part II,” “The method of least squares and
some alternatives: Part III,” “The method of least squares and some alternatives:
Part I'V;” “The method of least squares and some alternatives: Addendum to Part IV,”
“The method of least squares and some alternatives: Part V,” and “The method of
least squares and some alternatives: Part VI” by H.L. Harter [589-595]; Statisticians
of the Centuries edited by C.C. Heyde and E. Seneta [613]; Leading Personalities
in Statistical Sciences: From the Seventeenth Century to the Present edited by
N.L. Johnson and S. Kotz [691]; Bibliography of Statistical Literature: 1950-1958,
Bibliography of Statistical Literature: 1940-1949, and Bibliography of Statistical
Literature: Pre 1940 by M.G. Kendall and A.G. Doig [743-745].

Also, Studies in the History of Statistics and Probability edited by M.G.
Kendall and R.L. Plackett [747]; Creative Minds, Charmed Lives: Interviews at
Institute for Mathematical Sciences, National University of Singapore edited by
L.Y. Kiang [752]; “A bibliography of contingency table literature: 1900 to 1974”
by R.A. Killion and D.A. Zahn [754]; The Probabilistic Revolution edited by
L. Kriiger, L. Daston, and M. Heidelberger [775]; Reminiscences of a Statistician:
The Company I Kept and Fisher, Neyman, and the Creation of Classical Statistics by
E.L. Lehmann [814,816]; Statistics in Britain, 1865—-1930: The Social Construction
of Scientific Knowledge by D. MacKenzie [863]; The History of Statistics in the
17th and 18th Centuries Against the Changing Background of Intellectual, Scientific
and Religious Thought edited by E.S. Pearson [1098]; Studies in the History of
Statistics and Probability edited by E.S. Pearson and M.G. Kendall [1103]; The Rise
of Statistical Thinking, 18201900 by T.M. Porter [1141]; Milestones in Computer
Science and Information Technology by E.D. Reilly [1162]; The Lady Tasting Tea:
How Statistics Revolutionized Science in the Twentieth Century by D. Salsburg
[1218]; Bibliography of Nonparametric Statistics by L.R. Savage [1225]; Theory of
Probability: A Historical Essay by O.B. Sheynin [1263]; American Contributions
to Mathematical Statistics in the Nineteenth Century, Volumes 1 and 2, The History
of Statistics: The Measurement of Uncertainty Before 1900, and Statistics on the
Table: The History of Statistical Concepts and Methods by S.M. Stigler [1318-
1321], Studies in the History of Statistical Method by H.M. Walker [1409], and the
44 articles published by various authors under the title “Studies in the history of
probability and statistics” that appeared in Biometrika between 1955 and 2000.

In addition, the authors have consulted myriad addresses, anthologies, arti-
cles, autobiographies, bibliographies, biographies, books, celebrations, chronicles,
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collections, commentaries, comments, compendiums, compilations, conversations,
correspondences, dialogues, discussions, dissertations, documents, essays, eulogies,
encyclopedias, festschrifts, histories, letters, manuscripts, memoirs, memorials,
obituaries, remembrances, reports, reviews, speeches, summaries, synopses, theses,
tributes, web sites, and various other sources on the contributions of individual
statisticians to permutation methods, many of which are listed in the references at
the end of the book.

No preface to a chronicle of the development of permutation statistical methods
would be complete without acknowledging the major contributors to the field,
some of whom contributed theory, others methods and algorithms, and still others
promoted permutation methods to new audiences. At the risk of slighting someone
of importance, in the early years from 1920 to 1939 important contributions were
made by Thomas Eden, Ronald Fisher, Roy Geary, Harold Hotelling, Joseph Irwin,
Jerzy Neyman, Edwin Olds, Margaret Pabst, Edwin Pitman, Bernard Welch, and
Frank Yates. Later, the prominent names were Bernard Babington Smith, George
Box, Meyer Dwass, Eugene Edgington, Churchill Eisenhart, Alvan Feinstein, Leon
Festinger, David Finney, Gerald Freeman, Milton Friedman, Arthur Ghent, John
Haldane, John Halton, Wassily Hoeffding, Lawrence Hubert, Maurice Kendall,
Oscar Kempthorne, William Kruskal, Erich Lehmann, Patrick Leslie, Henry Mann,
M. Donal McCarthy, Cyrus Mehta, Nitin Patel, Henry Scheffé, Cedric Smith,
Charles Spearman, Charles Stein, John Tukey, Abraham Wald, Dirk van der Reyden,
W. Allen Wallis, John Whitfield, Donald Whitney, Frank Wilcoxon, Samuel Wilks,
and Jacob Wolfowitz. More recently, one should recognize Alan Agresti, Brian
Cade, Herbert David, Hugh Dudley, David Freedman, Phillip Good, Peter Kennedy,
David Lane, John Ludbrook, Bryan Manly, Patrick Onghena, Fortunato Pesarin, Jon
Richards, and Cajo ter Braak.
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Permutation statistical methods are a paradox of old and new. While permutation
methods pre-date many traditional parametric statistical methods, only recently
have permutation methods become part of the mainstream discussion regarding
statistical testing. Permutation statistical methods follow a permutation model
whereby a test statistic is computed on the observed data, then (1) the observed
data are permuted over all possible arrangements of the observations—an exact
permutation test, (2) the observed data are used for calculating the exact moments
of the underlying discrete permutation distribution and the moments are fitted
to an associated continuous distribution—a moment-approximation permutation
test, or (3) the observed data are permuted over a random subset of all possible
arrangements of the observations—a resampling-approximation permutation test
[977, pp. 216-218].

1.1 Overview of This Chapter

This first chapter begins with a brief description of the advantages of permu-
tation methods from statisticians who were, or are, advocates of permutation
tests, followed by a description of the methods of permutation tests including
exact, moment-approximation, and resampling-approximation permutation tests.
The chapter continues with an example that contrasts the well-known Student 7
test and results from exact, moment-approximation, and resampling-approximation
permutation tests using historical data. The chapter concludes with brief overviews
of the remaining chapters.

Permutation tests are often described as the gold standard against which con-
ventional parametric tests are tested and evaluated. Bakeman, Robinson, and Quera
remarked that “like Read and Cressie (1988), we think permutation tests represent
the standard against which asymptotic tests must be judged” [50, p. 6]. Edgington
and Onghena opined that “randomization tests...have come to be recognized
by many in the field of medicine as the ‘gold standard’ of statistical tests for
randomized experiments” [396, p. 9]; Friedman, in comparing tests of significance
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for m rankings, referred to an exact permutation test as “the correct one” [486,
p- 88]; Feinstein remarked that conventional statistical tests “yield reasonably reli-
able approximations of the more exact results provided by permutation procedures”
[421, p. 912]; and Good noted that Fisher himself regarded randomization as a
technique for validating tests of significance, i.e., making sure that conventional
probability values were accurate [521, p. 263].

Early statisticians understood well the value of permutation statistical tests even
during the period in which the computationally-intensive nature of the tests made
them impractical. Notably, in 1955 Kempthorne wrote that “[t]ests of significance
in the randomized experiment have frequently been presented by way of normal law
theory, whereas their validity stems from randomization theory” [719, p. 947] and

[w]hen one considers the whole problem of experimental inference, that is of tests of
significance, estimation of treatment differences and estimation of the errors of estimated
differences, there seems little point in the present state of knowledge in using method of
inference other randomization analysis [719, p. 966].

In 1966 Kempthorne re-emphasized that “the proper way to make tests of
significance in the simple randomized experiments is by way of the randomiza-
tion (or permutation) test” [720, p. 20] and “in the randomized experiment one
should, logically, make tests of significance by way of the randomization test”
[720, p. 21]." Similarly, in 1959 Scheffé stated that the conventional analysis of
variance F test “can often be regarded as a good approximation to a permutation
[randomization] test, which is an exact test under a less restrictive model” [1232,
p- 313]. In 1968 Bradley indicated that “eminent statisticians have stated that the
randomization test is the truly correct one and that the corresponding parametric
test is valid only to the extent that it results in the same statistical decision” [201,
p. 85].

With the advent of high-speed computing, permutation tests became more
practical and researchers increasingly appreciated the benefits of the randomization
model. In 1998, Ludbrook and Dudley stated that “it is our thesis that the
randomization rather than the population model applies, and that the statistical
procedures best adapted to this model are those based on permutation” [856, p. 127],
concluding that “statistical inferences from the experiments are valid only under the
randomization model of inference” [856, p. 131].

In 2000, Bergmann, Ludbrook, and Dudley, in a cogent analysis of the
Wilcoxon—Mann—Whitney two-sample rank-sum test, observed that “the only
accurate form of the Wilcoxon—-Mann—Whitney procedure is one in which the
exact permutation null distribution is compiled for the actual data” [100, p. 72] and
concluded:

[o]n theoretical grounds, it is clear that the only infallible way of executing the
[Wilcoxon—-Mann—Whitney] test is to compile the null distribution of the rank-sum statistic
by exact permutation. This was, in effect, Wilcoxon’s (1945) thesis and it provided the
theoretical basis for his [two-sample rank-sum] test [100, p. 76].

'The terms “permutation test” and “randomization test” are often used interchangeably.
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1.2 Two Models of Statistical Inference

Essentially, two models of statistical inference coexist: the population model
and the permutation model; see for further discussion, articles by Curran-Everett
[307], Hubbard [663], Kempthorne [721], Kennedy [748], Lachin [787], Ludbrook
[849, 850], and Ludbrook and Dudley [854]. The population model, formally
proposed by Jerzy Neyman and Egon Pearson in 1928 [1035, 1036], assumes
random sampling from one or more specified populations. Under the population
model, the level of statistical significance that results from applying a statistical
test to the results of an experiment or a survey corresponds to the frequency with
which the null hypothesis would be rejected in repeated random samplings from the
same specified population(s). Because repeated sampling of the true population(s) is
usually impractical, it is assumed that the sampling distribution of the test statistics
generated under repeated random sampling conforms to an assumed, conjectured,
hypothetical distribution, such as the normal distribution.

The size of a statistical test, e.g., 0.05, is the probability under a specified
null hypothesis that repeated outcomes based on random samples of the same
size are equal to or more extreme than the observed outcome. In the population
model, assignment of treatments to subjects is viewed as fixed with the stochastic
element taking the form of an error that would vary if the experiment was repeated
[748]. Probability values are then calculated based on the potential outcomes of
conceptual repeated draws of these errors. The model is sometimes referred to
as the “conditional-on-assignment” model, as the distribution used for structuring
the test is conditional on the treatment assignment of the observed sample; see for
example, a comprehensive and informative 1995 article by Peter Kennedy in Journal
of Business & Economic Statistics [748].

The permutation model was introduced by R.A. Fisher in 1925 [448] and further
developed by R.C. Geary in 1927 [500], T. Eden and F. Yates in 1933 [379], and
E.J.G. Pitman in 1937 and 1938 [1129-1131]. Permutation tests do not refer to any
particular statistical tests, but to a general method of determining probability values.
In a permutation statistical test the only assumption made is that experimental
variability has caused the observed result. That assumption, or null hypothesis,
is then tested. The smaller the probability, the stronger is the evidence against
the assumption [648]. Under the permutation model, a permutation test statistic
is computed for the observed data, then the observations are permuted over all
possible arrangements of the observations and the test statistic is computed for
each equally-likely arrangement of the observed data [307]. For clarification, an
ordered sequence of n exchangeable objects (wy, ..., w,) yields n! equally-likely
arrangements of the n objects, vide infra. The proportion of cases with test statistic
values equal to or more extreme than the observed case yields the probability of
the observed test statistic. In contrast to the population model, the assignment of
errors to subjects is viewed as fixed, with the stochastic element taking the form
of the assignment of treatments to subjects for each arrangement [748]. Probability
values are then calculated according to all outcomes associated with assignments
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of treatments to subjects for each case. This model is sometimes referred to as the
“conditional-on-errors” model, as the distribution used for structuring the test is
conditional on the individual errors drawn for the observed sample; see for example,
a 1995 article by Peter Kennedy [748].

Exchangeability

A sufficient condition for a permutation test is the exchangeability of the
random variables. Sequences that are independent and identically distributed
(i.i.d.) are always exchangeable, but so is sampling without replacement from
a finite population. However, while i.i.d. implies exchangeability, exchange-
ability does not imply i.i.d. [528, 601, 758]. Diaconis and Freedman present a
readable discussion of exchangeability using urns and colored balls [346].

More formally, variables X, X», ..., X,, are exchangeable if
P |:ﬂ(Xi < -xi)j| =P |:ﬂ(Xi < Xc,»):| ,
i=1 i=1
where xi, x5, ..., X, are n observed values and {cy, ¢, ..., ¢} is any one of

the n! equally-likely permutations of {1, 2,...,n} [1215].

1.3 Permutation Tests

Three types of permutation tests are common: exact, moment-approximation, and
resampling-approximation permutation tests. While the three types are methodolog-
ically quite different, all three approaches are based on the same specified null
hypothesis.

1.3.1 Exact Permutation Tests

Exact permutation tests enumerate all equally-likely arrangements of the observed
data. For each arrangement, the desired test statistic is calculated. The obtained
data yield the observed value of the test statistic. The probability of obtaining the
observed value of the test statistic, or a more extreme value, is the proportion of
the enumerated test statistics with values equal to or more extreme than the value
of the observed test statistic. As sample sizes increase, the number of possible
arrangements can become very large and exact methods become impractical. For
example, permuting two small samples of sizes n; = n, = 20 yields

(n1 +n2)! (20 4 20)!
nilny!  (201)2

different arrangements of the observed data.

M = = 137,846,528,820
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1.3.2 Moment-Approximation Permutation Tests

The moment-approximation of a test statistic requires computation of the exact
moments of the test statistic, assuming equally-likely arrangements of the observed
data. The moments are then used to fit a specified distribution. For example,
the first three exact moments may be used to fit a Pearson type III distribution.
Then, the Pearson type III distribution approximates the underlying discrete per-
mutation distribution and provides an approximate probability value. For many
years moment-approximation permutation tests provided an important intermediary
approximation when computers lacked both the speed and the storage for calculating
exact permutation tests. More recently, resampling-approximation permutation tests
have largely replaced moment-approximation permutation tests, except when either
the size of the data set is very large or the probability of the observed test statistic is
very small.

1.3.3 Resampling-Approximation Permutation Tests

Resampling-approximation permutation tests generate and examine a Monte Carlo
random subset of all possible equally-likely arrangements of the observed data.
In the case of a resampling-approximation permutation test, the probability of
obtaining the observed value of the test statistic, or a more extreme value, is the
proportion of the resampled test statistics with values equal to or more extreme than
the value of the observed test statistic [368, 649]. Thus, resampling permutation
probability values are computationally quite similar to exact permutation tests, but
the number of resamplings to be considered is decided upon by the researcher rather
than by considering all possible arrangements of the observed data. With sufficient
resamplings, a researcher can compute a probability value to any accuracy desired.
Read and Cressie [1157], Bakeman, Robinson, and Quera [50], and Edgington and
Onghena [396, p. 9] described permutation methods as the “gold standard” against
which asymptotic methods must be judged. Tukey took it one step further, labeling
resampling permutation methods the “platinum standard” of permutation methods
[216,1381,1382].2

1.3.4 Compared with Parametric Tests

Permutation tests differ from traditional parametric tests based on an assumed
population model in several ways.

2In a reversal Tukey could not have predicted, at the time of this writing gold was trading at $1,775
per troy ounce, while platinum was only $1,712 per troy ounce [275].
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1. Permutation tests are data dependent, in that all the information required for
analysis is contained within the observed data set; see a 2007 discussion by
Mielke and Berry [965, p. 3].3

2. Permutation tests do not assume an underlying theoretical distribution; see a
1983 article by Gabriel and Hall [489].

3. Permutation tests do not depend on the assumptions associated with traditional
parametric tests, such as normality and homogeneity; see articles by Kennedy
in 1995 [748] and Berry, Mielke, and Mielke in 2002 [162].4

4. Permutation tests provide probability values based on the discrete permutation
distribution of equally-likely test statistic values, rather than an approximate
probability value based on a conjectured theoretical distribution, such as a
normal, chi-squared, or F distribution; see a 2001 article by Berry, Johnston,
and Mielke [117].

5. Whereas permutation tests are suitable when a random sample is obtained from
a designated population, permutation tests are also appropriate for nonrandom
samples, such as are common in biomedical research; see discussions by
Kempthorne in 1977 [721], Gabriel and Hall in 1983 [489], Bear in 1995 [88],
Frick in 1998 [482], Ludbrook and Dudley in 1998 [856], and Edgington and
Onghena in 2007 [396, pp. 6-8].

6. Permutation tests are appropriate when analyzing entire populations, as permu-
tation tests are not predicated on repeated random sampling from a specified
population; see discussions by Ludbrook and Dudley in 1998 [856], Holford in
2003 [638], and Edgington and Onghena in 2007 [396, pp. 1-8].

7. Permutation tests can be defined for any selected test statistic; thus, researchers
have the option of using a wide variety of test statistics, including the
majority of statistics commonly utilized in traditional statistical approaches;
see discussions by Mielke and Berry in 2007 [965].

8. Permutation tests are ideal for very small data sets, when conjectured, hypo-
thetical distribution functions may provide very poor fits; see a 1998 article by
Ludbrook and Dudley [856].

9. Appropriate permutation tests are resistant to extreme values, such as are
common in demographic data, e.g., income, age at first marriage, number of
children, and so on; see a discussion by Mielke and Berry in 2007 [965, pp. 52—
53] and an article by Mielke, Berry, and Johnston in 2011 [978]. Consequently,
the need for any data transformation is mitigated in the permutation context
and in general is not recommended, e.g., square root, logarithmic, the use of

3Echoing Fisher’s argument that inference must be based solely on the data at hand [460], Haber
refers to data dependency as “the data at hand principle” [565, p. 148].

4Barton and David noted that it is desirable to make the minimum of assumptions, since,

witness the oft-cited Bertrand paradox [163], that the assumptions made will often prejudice the
conclusions reached [83, p. 455].
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rank-order statistics,” and the choice of a distance function, in particular, may
be very misleading [978].

10. Permutation tests provide data-dependent statistical inferences only to the
actual experiment or survey that has been performed, and are not dependent
on a contrived super population; see for example, discussions by Feinstein in
1973 [421] and Edgington and Onghena in 2007 [396, pp. 7-8].

1.3.5 The Bootstrap and the Jackknife

This chronicle is confined to permutation methods, although many researchers
consider that permutation methods, bootstrapping, and the jackknife are closely
related. Traditionally, jackknife (leave-one-out) methods have been used to reduce
bias in small samples, calculate confidence intervals around parameter estimates,
and test hypotheses [789, 876, 1376], while bootstrap methods have been used to
estimate standard errors in cases where the distribution of the data is unknown [789].
In general, permutation methods are considered to be more powerful than either the
bootstrap or (possibly) the jackknife approaches [789].

While permutation methods and bootstrapping both involve computing simula-
tions, and the rejection of the null hypothesis occurs when a common test statistic
is extreme under both bootstrapping and permutation, they are conceptually and
mechanically quite different. On the other hand, they do have some similarities,
including equivalence in an asymptotic sense [358,1189]. The two approaches differ
in their distinct sampling methods. In resampling, a “new” sample is obtained by
drawing the data without replacement, whereas in bootstrapping a “new” sample is
obtained by drawing from the data with replacement [748, 1189]. Thus, bootstrap-
ping and resampling are associated with sampling with and without replacement,
respectively. Philip Good has been reported as saying that the difference between
permutation tests and bootstrap tests is that “[p]ermutations test hypotheses con-
cerning distributions; bootstraps test hypotheses concerning parameters.”

Specifically, resampling is a data-dependent procedure, dealing with all finite
arrangements of the observed data, and based on sampling without replacement.
In contrast, bootstrapping involves repeated sampling from a finite population
that conceptually yields an induced infinite population based on sampling with
replacement. In addition, when bootstrapping is used with small samples it is
necessary to make complex adjustments to control the risk of error; see for example,
discussions by Hall and Wilson in 1991 [577], Efron and Tibshirani in 1993 [402],
and Westfall and Young, also in 1993 [1437]. Finally, the bootstrap distribution
may be viewed as an unconditional approximation to the null distribution of the

SRank-order statistics were among the earliest permutation tests, transforming the observed data
into ranks, e.g., from smallest to largest. While they were an important step in the history of
permutation tests, modern computing has superseded the need for rank-order tests in the majority
of cases.



8 1 Introduction

test statistic, while the resampling distribution may be viewed as a conditional

distribution of the test statistic [1189].

In 1991 Donegani argued that it is preferable to compute a permutation test based
on sampling without replacement (i.e., resampling) than with replacement (i.e.,
bootstrap), although, as he noted, the two techniques are asymptotically equivalent
[358]. In a thorough comparison and analysis of the two methods, he demonstrated
that (1) the bootstrap procedure is “bad” for small sample sizes or whenever the
alternative is close to the null hypothesis and (2) resampling tests should be used in
order to take advantage of their flexibility in the choice of a distance criteria [358,
p- 183].

In 1988 Tukey stated that the relationship between permutation procedures, on
the one hand, and bootstrap and jackknife procedures, on the other hand, is “far from
close” [1382]. Specifically, Tukey listed four major differences between bootstrap
and jackknife procedures, which he called “resampling,” and permutation methods,
which he called “rerandomization” [1382].

1. Bootstrap and jackknife procedures need not begin until the data is collected.
Rerandomization requires planning before the data collection is specified.

2. Bootstrap and jackknife procedures play games of omission of units with data
already collected. Rerandomization plays games of exchange of treatments,
while using all numerical results each time.

3. Bootstrap and jackknife procedures apply to experiences as well as experiments.
Rerandomization only applies to randomized experiments.

4. Bootstrap and jackknife procedures give one only a better approximation to a
desired confidence interval. Rerandomization gives one a “platinum standard”
significance test, which can be extended in simple cases—by the usual devices—
to a “platinum standard” confidence interval.

Thus, bootstrapping remains firmly in the conditional-on-assignment tradition,
assuming that the true error distribution can be approximated by a discrete distribu-
tion with equal probability attached to each of the cases [850]. On the other hand,
permutation tests view the errors as fixed in repeated samples [748]. Finally, some
researchers have tacitly conceived of permutation methods in a Bayesian context.
Specifically, this interpretation amounts to a primitive Bayesian analysis where the
prior distribution is the assumption of equally-likely arrangements associated with
the observed data, and the posterior distribution is the resulting data-dependent
distribution of the test statistic induced by the prior distribution.

1.4 Student’s t Test

Student’s pooled ¢ test [1331] for two independent samples is a convenient vehicle
to illustrate permutation tests and to compare a permutation test with its parametric
counterpart. As a historical note, Student’s 1908 publication used z for the test
statistic, and not 7. The first mention of ¢ appeared in a letter from William Sealy
Gosset (“Student”) to R.A. Fisher in November of 1922. It appears that the decision
to change from z to ¢ originated with Fisher, but the choice of the letter # was due
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to Student. Eisenhart [408] and Box [196] provide historical commentaries on the
transition from Student’s z test to Student’s 7 test.

Student’s pooled ¢ test for two independent samples is well-known, familiar
to most researchers, widely used in quantitative analyses, and elegantly simple.
The pooled ¢ test evaluates the mean difference between two independent random
samples. Under the null hypothesis, Hy: (t; = w2, Student’s pooled ¢ test statistic
is defined as

_ (X1 —X2) — (U1 — p2)

S%—%>

t

where the standard error of the sampling distribution of differences between two
independent sample means is given by

12
o (mi —1)s? + (na—1)s3 (n1 +ny
AL ny+n,—2 niny

w1 and po denote the hypothesized population means, x; and X, denote the sample
means, S12 and s% denote the sample variances, and ¢ follows Student’s ¢ distribution
with n;+n,—2 degrees of freedom, assuming the data samples are from independent
normal distributions with equal variances.

1.4.1 An Exact Permutation 7 Test

Exact permutation tests are based on all possible arrangements of the observed
data. For the two-sample ¢ test, the number of permutations of the observed data
is given by

N!

M=——,
l’ll!l’lz!

where N = ny + n,.

Let x;; denote the ith observed score in the jth independent sample, j = 1, 2
andi = 1,...,n;, let {, denote the Student ¢ statistic computed on the observed
data, and let 7, denote the Student ¢ statistic computed on each permutation of the
observed data for k = 1,..., M. For the first permutation of the observed data
set, interchange x;3 and x;,, compute #;, and compare #; with 7,. For the second
permutation, interchange x;, and x,,, compute #,, and compare ¢, with #,. Continue
the process fork = 1,..., M.

To illustrate the exact permutation procedure, consider two independent samples
of ny = n, = 3 observations and let {x;1, X1, x31} denote the n; = 3 observations
in Sample 1 and {x2, X2, x3} denote the n, = 3 observations in Sample 2.
Table 1.1 depicts the
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Table 1.1 Tllustrative Sample 1 Sample 2
M = 20 permutations of

N = 6 observations in two Permutation ! 2 3 ! 2 3 !
independent samples with 1 X Xar X31 X2 X X3 h
ny=mn, =3 2 X11 X21 X12 X31 X22 X32 1)
3 X1 Xa1 X2 X311 X2 X3 I3

4 X11 X21 X32 X31 X12 X22 Iy

5 X11 X31 X12 X21 X22 X32 Is

6 X11 X31 X22 X21 X12 X32 143

7 X1 X311 X3 Xo1 X2 X2 By

3 X1 X1 X» Xa1 X3t X Iy

9 X11 X12 X32 X21 X31 X22 Ig
10 X1 X» o X: Xa1 X3 X2 to
11 Xo1 X311 X12 X1 X» Xzmo I
12 Xa1 X311 X; X1 X1 Xt
13 Xo1 X311 X32 X1 X2 X2 t3
14 X1 X2 Xm X1 X3 X I
15 Xo1 X2 X32 X1 X311 X2 b5
16 X1 X X3 X1 X3 X2 L
17 X311 X1 X» X1 X Xn oty
18 X331 X1 X3 X1 X1 X»o big
19 X311 X X3 X1 X1 X2 b
20 X1z Xp X3 X1 Xa1 X311 Iy

6!

arrangements of n; = n, = 3 observations in each of the two independent samples
where 1, = t;, the subscripts denote the original position of each observation in
either Sample 1 or Sample 2, and the position of the observation in Table 1.1 on
either the left side of the table in Sample 1 or the right side of the table in Sample
2 indicates the placement of the observation after permutation. The exact two-sided
probability (P) value is then given by

number of |#| values > |z,|
M

P =

fork=1,....,.M .

1.4.2 A Moment-Approximation ¢ Test

Moment-approximation permutation tests filled an important gap in the develop-
ment of permutation statistical methods. Prior to the advent of modern computers,
exact tests were impossible to compute except for extremely small samples, and
even resampling-approximation permutation tests were limited in the number of
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random permutations of the data possible, thus yielding too few places of accuracy
for research purposes.

A moment-approximation permutation test is based, for example, on the first
three exact moments of the underlying discrete permutation distribution, yielding
the exact mean, variance, and skewness, i.e., (Ly, of, and y,. Computational details
for the exact moments are given in Sect. 4.15 of Chap. 4. An approximate probability
value is obtained by fitting the exact moments to the associated Pearson type III
distribution, which is completely characterized by the first three moments, and
integrating the obtained Pearson type I1I distribution.

1.4.3 A Resampling-Approximation ¢ Test

When M is very large, exact permutation tests are impractical, even with high-speed
computers, and resampling-approximation permutation tests become an important
alternative. Resampling-approximation tests provide more precise probability
values than moment-approximation tests and are similar in structure to exact tests,
except that only a random sample of size L selected from all possible permutations,
M, is generated, where L is usually a large number to guarantee accuracy to a
specified number of places. For instance, L = 1,000,000 will likely ensure three
places of accuracy [696]. The resampling two-sided approximate probability value
is then given by

P number of |tkL|ValueS > |t fork=1,....L.

1.5  An Example Data Analysis

The English poor laws, the relief expenditure act, and a comparison of two
English counties provide vehicles to illustrate exact, moment-approximation, and
resampling-approximation permutation tests.

The English Poor Laws

Up until the Reformation, it was considered a Christian duty in England to
undertake the seven corporal works of mercy. In accordance with Matthew
25:32-46, Christians were to feed the hungry, give drink to the thirsty,
welcome a stranger, clothe the naked, visit the sick, visit the prisoner, and
bury the dead. After the Reformation and the establishment of the Church of
England, many of these precepts were neglected, the poor were left without
adequate assistance, and it became necessary to regulate relief of the poor

(continued)
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by statute. The Poor Laws passed during the reign of Elizabeth I played a
determining role in England’s system of welfare, signaling a progression from
private charity to a welfare state, where care of the poor was embodied in law.
Boyer [198] provides an exhaustive description of the historical development
of the English Poor Laws.

In 1552, Parish registers of the poor were introduced to ensure a well-
documented official record, and in 1563, Justices of the Peace were empow-
ered to raise funds to support the poor. In 1572, it was made compulsory that
all people pay a poor tax, with those funds used to help the deserving poor.
In 1597, Parliament passed a law that each parish appoint an Overseer of
the Poor who calculated how much money was needed for the parish, set the
poor tax accordingly, collected the poor rate from property owners, dispensed
either food or money to the poor, and supervised the parish poor house. In
1601, the Poor Law Act was passed by Parliament, which brought together
all prior measures into one legal document. The act of 1601 endured until the
Poor Law Amendment Act was passed in 1834.

Consider an example data analysis utilizing Student’s pooled two-sample ¢
test based on historical parish-relief expenditure data from the 1800s [697]. To
investigate factors that contributed to the level of relief expenditures, Boyer [198]
assembled a data set comprised of a sample of 311 parishes in 20 counties in the
south of England in 1831. The relief expenditure data were obtained from Blaug
[172].% Table 1.2 contains the 1831 per capita relief expenditures, in shillings, for
36 parishes in two counties: Oxford and Hertford. For this example, the data were
rounded to four places.

The relief expenditure data from Oxford and Hertford counties are listed in
Table 1.2. Oxford County consisted of 24 parishes with a sample mean relief of
X1 = 20.28 shillings and a sample variance of s? = 58.37 shillings. Hertford
County consisted of 12 parishes with a sample mean relief of X, = 13.47 shillings
and a sample variance of 53 = 37.58 shillings. A conventional two-sample ¢ test
yields z, = +2.68 and, with 24 + 12 — 2 = 34 degrees of freedom, a two-sided
approximate probability value of P = 0113. Although there are

36!

= =1251,677,700
241121

possible arrangements of the observed data and an exact permutation test is therefore
not practical, it is not impossible. For the Oxford and Hertford relief expenditure

5The complete data set is available in several formats at the Cambridge University Press site: http:/
uk.cambridge.org/resources/0521806631.
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Table 1.2 Average per Oxford County Hertford County

capita relief expenditures for . . . . . .
Oxford and Hertford counties Parish Expenditure Parish Expenditure Parish Expenditure

in shillings: 1831 1 20.3619 13 25.4683 1 27.9748

2 29.0861 14 12.5632 2 6.4173
3 14.9318 15 13.2780 3 10.4841
4 24.1232 16 27.3030 4 10.0057
5 18.2075 17 29.6055 5 9.7699
6 20.7287 18 13.6132 6 15.8665
7 8.1195 19 11.3714 7 19.3424
8 14.0201 20 21.5248 8 17.1452
9 18.4248 21 20.9408 9 13.1342
10 34.5466 22 11.5952 10 10.0420
11 16.0927 23 18.2355 11 15.0838
12 24.6166 24 37.8809 12 6.3985

data in Table 1.2, an exact permutation analysis yields a two-sided probability value
of P =10,635,310/1,251,677,700 = 0.0085.

A moment-approximation permutation analysis of the Oxford and Hertford relief
expenditure data in Table 1.2 based on the Pearson type III distribution, yields a two-
sided approximate probability value of P =0.0100.

Finally, a resampling analysis of the Oxford and Hertford relief expenditure
data based on L = 1,000,000 random arrangements of the observed data in
Table 1.2, yields 8,478 calculated ¢ values equal to or more extreme than the
observed value of 7, = +2.68, and a two-sided approximate probability value of
P = 8,478/1,000,000 = 0.0085.

1.6  Overviews of Chaps. 2-6

Chapters 2—-6 describe the birth and development of statistical permutation methods.
Chapter 2 covers the period from 1920 to 1939; Chap. 3, the period from 1940 to
1959; Chap. 4, the period from 1960 to 1979; and Chap. 5, the period from 1980
to 2000. Chapter 6 looks beyond the year 2000, summarizing the development of
permutation methods from 2001 to 2010. Following Chap.6 is a brief epilogue
summarizing the attributes that distinguish permutation statistical methods from
conventional statistical methods.

Chapter 2: 1920-1939

Chapter 2 chronicles the period from 1920 to 1939 when the earliest discussions of
permutation methods appeared in the literature. In this period J. Sptawa-Neyman,
R.A. Fisher, R.C. Geary, T. Eden, E. Yates, and E.J.G. Pitman laid the foundations
of permutation methods as we know them today. As is evident in this period,
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permutation methods had their roots in agriculture and, from the beginning, were
widely recognized as the gold standard against which conventional methods could
be verified and confirmed.

In 1923 Sptawa-Neyman introduced a permutation model for the analysis of field
experiments [1312], and in 1925 Fisher calculated an exact probability using the
binomial distribution [448]. Two years later in 1927, Geary used an exact analysis
to support the use of asymptotic methods for correlation and regression [500], and
in 1933 Eden and Yates used a resampling-approximation permutation approach to
validate the assumption of normality in an agricultural experiment [379].

In 1935, Fisher’s well-known hypothesized experiment involving “the lady
tasting tea” was published in the first edition of The Design of Experiments [451].
In 1936, Fisher used a shuffling technique to demonstrate how a permutation test
works [453], and in the same year Hotelling and Pabst utilized permutation methods
to calculate exact probability values for the analysis of rank data [653].

In 1937 and 1938, Pitman published three seminal articles on permutation
methods. The first article dealt with permutation methods in general, with an
emphasis on the two-sample test; the second article with permutation methods as
applied to bivariate correlation; and the third article with permutation methods as
applied to a randomized blocks analysis of variance [1129-1131].

In addition to laying the foundations for permutation tests, the 1920s and 1930s
were also periods in which tools to ease the computation of permutation tests
were developed. Probability tables provided exact values for small samples, rank
tests simplified the calculations, and desktop calculators became more available.
Importantly, statistical laboratories began to appear in the United States in the
1920s and 1930s, notably at the University of Michigan and Iowa State College of
Agriculture (now, lowa State University). These statistical centers not only resulted
in setting the foundations for the development of the computing power that would
eventually make permutation tests feasible, they also initiated the formal study of
statistics as a stand-alone discipline.

Chapter 3: 1940-1959

Chapter 3 explores the period between 1940 and 1959 with attention to the continu-
ing development of permutation methods. This period may be considered as a bridge
between the early years where permutation methods were first conceptualized and
the next period, 1960-1979, in which gains in computer technology provided the
necessary tools to successfully employ specific permutation tests.

Between 1940 and 1959, the work on establishing permutation statistical meth-
ods that began in the 1920s continued. In the 1940s, researchers applied known
permutation techniques to create tables of exact probability values for small
samples, among them tables for 2 x 2 contingency tables; the Spearman and Kendall
rank-order correlation coefficients; the Wilcoxon, Mann—Whitney, and Festinger
two-sample rank-sum tests; and the Mann test for trend.
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Theoretical work, driven primarily by the computational challenges of
calculating exact permutation probability values, was also completed during this
period. Instead of the focus being on new permutation tests, however, attention
turned to developing more simple alternatives to do calculations by converting data
to rank-order statistics. Examples of rank tests that were developed between 1940
and 1959 include non-parametric randomization tests, exact tests for randomness
based on serial correlation, and tests of significance when the underlying probability
distribution is unknown.

While this theoretical undertaking continued, other researchers worked on
developing practical non-parametric rank tests. Key among these tests were the
Kendall rank-order correlation coefficient, the Kruskal-Wallis one-way analysis of
variance rank test, the Wilcoxon and Mann—Whitney two-sample rank-sum tests,
and the Mood median test.

Chapter 4: 1960-1979

Chapter 4 surveys the development of permutation methods in the period between
1960 and 1979 that was witness to dramatic improvements in computer technology,
a process that was integral to the further development of permutation statistical
methods. Prior to 1960, computers were based on vacuum tubes’ and were large,
slow, expensive, and availability was severely limited. Between 1960 and 1979
computers increasingly became based on transistors and were smaller, faster, more
affordable, and more readily available to researchers. As computers became more
accessible to researchers, work on permutation tests continued with much of the
focus of that work driven by computer limitations in speed and storage.

During this period, work on permutation methods fell primarily into three
categories: writing algorithms that efficiently generated permutation sequences;
designing exact permutation analogs for existing parametric statistics; and, for
the first time, developing statistics specifically designed for permutation methods.
Numerous algorithms were published in the 1960s and 1970s with a focus on
increasing the speed and efficiency of the routines for generating permutation
sequences. Other researchers focused on existing statistics, creating permutation
counterparts for well-known conventional statistics, notably the Fisher exact proba-
bility test for 2 x 2 contingency tables, the Pitman test for two independent samples,
the F test for randomized block designs, and the chi-squared test for goodness of fit.
The first procedures designed specifically for permutation methods, multi-response
permutation procedures (MRPP), appeared during this period.

"The diode and triode vacuum tubes were invented in 1906 and 1908, respectively, by Lee de
Forest.
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Chapter 5: 1980-2000

Chapter 5 details the development of permutation methods during the period 1980
to 2000. It is in this period that permutation tests may be said to have arrived.
One measure of this arrival was the expansion in the coverage of permutation
tests, branching out from the traditional coverage areas in computer technology and
statistical journals, and into such diverse subject areas as anthropology, atmospheric
science, biomedical science, psychology, and environmental health. A second
measure of the arrival of permutation statistical methods was the sheer number of
algorithms that continued to be developed in this period, including the development
of a pivotal network algorithm by Mehta and Patel in 1980 [919]. Finally, additional
procedures designed specifically for permutation methods, multivariate randomized
block permutation (MRBP) procedures, were published in 1982 by Mielke and
Iyer [984].

This period was also home to the first books that dealt specifically with permu-
tation tests, including volumes by Edgington in 1980, 1987 and 1995 [392-394],
Hubert in 1987 [666], Noreen in 1989 [1041], Good in 1994 and 1999 [522-524],
Manly in 1991 and 1997 [875, 876], and Simon in 1997 [1277], among others.
Permutation versions of known statistics continued to be developed in the 1980s
and 1990s, and work also continued on developing permutation statistical tests that
did not possess existing parametric analogs.

Chapter 6: Beyond 2000

Chapter 6 describes permutation methods after the year 2000, an era in which
permutation tests have become much more commonplace. Computer memory and
speed issues that hampered early permutation tests are no longer factors and
computers are readily available to virtually all researchers. Software packages for
permutation tests now exist for well-known statistical programs such as StatXact,
SPSS, Stata, and SAS. A number of books on permutation methods have been
published in this period, including works by Chihara and Hesterberg in 2011,
Edgington and Onghena in 2007 [396], Good in 2000 and 2001 [525-527],
Lunneborg in 2000 [858], Manly in 2007 [877], Mielke and Berry in 2001 and 2007
[961,965], and Pesarin and Salmaso in 2010 [1122].

Among the many permutation methods considered in this period are analysis
of variance, linear regression and correlation, analysis of clinical trials, measures
of agreement and concordance, rank tests, ridit analysis, power, and Bayesian
hierarchical analysis. In addition, permutation methods expanded into new fields
of inquiry, including animal research, bioinformatics, chemistry, clinical trials,
operations research, and veterinary medicine.

The growth in the field of permutations is made palpable by a search of The
Web of Science® using the key word “permutation.” Between 1915 and 1959, the
key word search reveals 43 journal articles. That number increases to 540 articles



1.6 Overviews of Chaps. 2-6 17

for the period between 1960 and 1979 and jumps to 3,792 articles for the period
between 1980 and 1999. From 2000 to 2010, the keyword search for permutation
results in 9,259 journal articles.

Epilogue

A brief coda concludes the book. Chapter 2 contains a description of the celebrated
“lady tasting tea” experiment introduced by Fisher in 1935 [451, pp. 11-29], which
is the iconic permutation test. The Epilogue returns full circle to the lady tasting
tea experiment, analyzing the original experiment to summarize the attributes that
distinguish permutation tests from conventional tests in general.

Researchers early on understood the superiority of permutation tests for
calculating exact probability values. These same researchers also well understood
the limitations of trying to calculate exact probability values. While some
researchers turned to developing asymptotic solutions for calculating probability
values, other researchers remained focused on the continued development of
permutation tests. This book chronicles the search for better methods for calculating
permutation tests, the development of permutation counterparts for existing
parametric statistical tests, and the development of separate, unique permutation
tests.



The second chapter of A Chronicle of Permutation Statistical Methods is devoted to
describing the earliest permutation tests and the statisticians that developed them.
Examples of these early tests are provided and, in many cases, include the original
data. The chapter begins with a brief overview of the development of permutation
methods in the 1920s and 1930s and is followed by an in-depth treatment of selected
contributions. The chapter concludes with a brief discussion of the early threads in
the permutation literature that proved to be important as the field progressed and
developed from the early 1920s to the present.

2.1 Overview of This Chapter

The 1920s and 1930s ushered in the field of permutation statistical methods.
Several important themes emerged in these early years. First was the use of
permutation methods to evaluate statistics based on normal theory. Second was the
considerable frustration expressed with the difficulty of the computations on which
exact permutation methods were based. Third was the widespread reluctance to
substitute permutation methods for normal-theory methods, regarding permutation
tests as a valuable device, but not as replacements for existing statistical tests. Fourth
was the use of moments to approximate the discrete permutation distribution, as
exact computations were too cumbersome except for the very smallest of samples.
Fifth was the recognition that a permutation distribution could be based on only
the variable portion of the sample statistic, thereby greatly reducing the number of
calculations required. Sixth was an early reliance on recursion methods to generate
successive values of the test statistic. And seventh was a fixation on the use of
levels of significance, such as o = 0.05, even when the exact probability value
was available from the discrete permutation distribution.

The initial contributions to permutation methods were made by J. Sptawa-
Neyman, R.A. Fisher, and R.C. Geary in the 1920s [448, 500, 1312]. Neyman’s
1923 article foreshadowed the use of permutation methods, which were developed
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by Fisher while at the Rothamsted Experimental Station. In 1927, Geary was the
first to use an exact permutation analysis to evaluate and demonstrate the utility of
asymptotic approaches. In the early 1930s T. Eden and F. Yates utilized permutation
methods to evaluate conventional parametric methods in an agricultural experiment,
using a random sample of all permutations of the observed data comprised of
measurements on heights of Yeoman II wheat shoots [379]. This was perhaps the
first example of the use of resampling techniques in an experiment. The middle
1930s witnessed three articles emphasizing permutation methods to generate exact
probability values for 2 x 2 contingency tables by R.A. Fisher, F. Yates, and
J.O. Irwin [452,674,1472]. In 1926 Fisher published an article on “The arrangement
of field experiments” [449] in which the term “randomization” was apparently used
for the first time [176, 323]. In 1935 Fisher compared the means of randomized
pairs of observations by permutation methods using data from Charles Darwin on
Zea mays plantings [451], and in 1936 Fisher described a card-shuffling procedure
for analyzing data that offered an alternative approach to permutation statistical
tests [453].

In 1936 H. Hotelling and M.R. Pabst utilized permutation methods to circumvent
the assumption of normality and for calculating exact probability values for small
samples of rank data [653], and in 1937 M. Friedman built on the work of
Hotelling and Pabst to investigate the use of rank data in the ordinary analysis
of variance [485]. In 1937 B.L. Welch compared the normal theory of Fisher’s
variance-ratio z test (later, Snedecor’s F' test) with permutation-version analyses of
randomized block and Latin square designs [1428], and in 1938 Welch used an
exact permutation test to address tests of homogeneity for the correlation ratio, n?
[1429]. Egon Pearson was highly critical of permutation methods, especially the
permutation methods of Fisher, and in 1937 Pearson published an important critique
of permutation methods with special attention to the works of Fisher on the analysis
of Darwin’s Zea mays data and Fisher’s thinly-veiled criticism of the coefficient of
racial likeness developed by Pearson’s famous father, Karl Pearson [1093].

In 1937 and 1938 E.J.G. Pitman published three seminal articles on permutation
tests in which he examined permutation versions of two-sample tests, bivariate
correlation, and randomized blocks analysis of variance [1129—1131]. Building on
the work of Hotelling and Pabst in 1936, E.G. Olds used permutation methods to
generate exact probability values for Spearman’s rank-order correlation coefficient
in 1938 [1054], and in that same year M.G. Kendall incorporated permutation
methods in the construction of a new measure of rank-order correlation based
on the difference between the sums of concordant and discordant pairs [728].
Finally, in 1939 M.D. McCarthy argued for the use of permutation methods as first
approximations before considering the data by means of an asymptotic distribution.

2.2 Neyman-Fisher-Geary and the Beginning

Although precursors to permutation methods based on discrete probability val-
ues were common prior to 1920 [396, pp. 13—15], it was not until the early
1920s that statistical tests were developed in forms that are recognized today as
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permutation methods. The 1920s and 1930s were critical to the development of
permutation methods because it was during this nascent period that permutation
methods were first conceptualized and began to develop into a legitimate statistical
approach. The beginnings are founded in three farsighted publications in the 1920s
by J. Sptawa-Neyman, R.A. Fisher, and R.C. Geary.!

2.2.1 Sptawa-Neyman and Agricultural Experiments

In 1923 Jerzy Sptawa-Neyman introduced a permutation model for the analysis
of agricultural field experiments. This early paper used permutation methods to
compare and evaluate differences among several crop varieties [1312].

J. Splawa-Neyman

Jerzy Sptawa-Neyman earned an undergraduate degree from the University
of Kharkov (later, Maxim Gorki University?) in mathematics in 1917 and
the following year was a docent at the Institute of Technology, Kharkov.
He took his first job as the only statistician at the National Institute of
Agriculture in Bydgoszcz in northern Poland and went on to receive a Ph.D.
in mathematics from the University of Warsaw in 1924 with a dissertation,
written in Bydgoszcz, on applying the theory of probability to agricultural
experiments [817, p. 161]. It was during this period that he dropped the
“Sptawa” from his surname, resulting in the more commonly-recognized
Jerzy Neyman. Constance Reid, Sptawa-Neyman’s biographer, explained that
Neyman published his early papers under the name Sptawa-Neyman, and that
the word Sptawa refers to Neyman’s family coat of arms and was a sign of
nobility [1160, p. 45]. Sptawa-Neyman is used here because the 1923 paper
was published under that name.

After a year of lecturing on statistics at the Central College of Agriculture
in Warsaw and the Universities of Warsaw and Krakow, Neyman was sent
by the Polish government to University College, London, to study statistics
with Karl Pearson [817, p. 161]. Thus it was in 1925 that Neyman moved
to England and, coincidentally, began a decade-long association with Egon
Pearson, the son of Karl Pearson. That collaboration eventually yielded

(continued)

!For an enlightened discussion of the differences and similarities between Neyman and Fisher and
their collective impact on the field of statistics, see a 1966 article by Stephen Fienberg and Judith
Tanur in International Statistical Review [430] and also E.L. Lehmann’s remarkable last book,
published posthumously in 2011, on Fisher, Neyman, and the Creation of Classical Statistics [816].

2Maxim Gorki (Maksim Gorky) is a pseudonym for Aleksei Maksimovich Peshkov (1868-1936),
Russian short-story writer, novelist, and political activist.
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the formal theory of tests of hypotheses and led to Neyman’s subsequent
invention of confidence intervals [431].

Neyman returned to his native Poland in 1927, remaining there until 1934
whereupon he returned to England to join Egon Pearson at University College,
London, as a Senior Lecturer and then Reader. In 1938 Neyman received a
letter from Griffith C. Evans, Chair of the Mathematics Department at the
University of California at Berkeley, offering Neyman a position teaching
probability and statistics in his department. Neyman accepted the offer, moved
to Berkeley, and in 1955 founded the Department of Statistics. Neyman
formally retired from Berkeley at the age of 66 but at the urging of his
colleagues, was permitted to serve as the director of the Statistical Laboratory
as Emeritus Professor, remaining an active member of the Berkeley academic
community for 40 years. In 1979 Neyman was elected Fellow of the Royal
Society.? As Lehmann and Reid related, Neyman spent the last days of his life
in the hospital with a sign on the door to his room that read, “Family members
only,” and the hospital staff were amazed at the size of Jerzy’s family [817,
p- 192]. Jerzy Sptawa-Neyman ER.S. passed away in Oakland, California, on
5 August 1981 at the age of 87 [252,431,581,727,814,816,817,1241].

A brief story will illustrate a little of Neyman’s personality and his relationship
with his graduate students, of which he had many during his many years at the
University of California at Berkeley.

A Jerzy Neyman Story

In 1939, Jerzy Neyman was teaching in the mathematics department at the
University of California, Berkeley. Famously, one of the first year doctoral
students, George B. Dantzig, arrived late to class, and observing two equations
on the chalk-board, assumed they were homework problems and wrote them
down. He turned in his homework a few days later apologizing for the delay,
noting that these problems had been more difficult than usual. Six weeks later,
Dantzig and his wife were awakened early on a Sunday morning by a knock

(continued)

3The Royal Society is a fellowship of the world’s most eminent scientists and is the oldest scientific
society in continuous existence. The society was founded on 28 November 1660 when a group
of 12 scholars met at Gresham College and decided to found “a Colledge for the Promoting of
Physico-Mathematicall Experimentall Learning” and received a Royal Charter on 5 December
1660 from Charles II. The original members included Christopher Wren, Robert Boyle, John
Wilkins, Sir Robert Moray, and William, Viscount Brouncker, who subsequently became the first
president of the Society [357,1144,1351].
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on their front door. Dantzig answered the door to find Neyman holding papers
in his hand and, as the door opened, Neyman began excitedly telling Dantzig
that he “written an introduction to one of [Dantzig’s] papers” [10, p. 301].
Dantzig had no idea as to what Neyman was referring, but Neyman explained.
Rather than being homework, the equations that Dantzig had worked out were
two famous unsolved problems in statistics, and the paper Neyman held was
the solution to the first of those two problems.

A year later, the now-solved equations were formally put together as
Dantzig’s doctoral dissertation. In 1950, Dantzig received a letter from Abra-
ham Wald that included proofs of a paper. Wald had solved the second of the
two equations not knowing about Dantzig’s solutions and when he submitted
it for publication, a reviewer informed Wald about Dantzig’s dissertation.
Wald contacted Dantzig suggesting they publish the paper together. The first
solution was published in 1940, “On the non-existence of tests of ‘Student’s’
hypothesis having power functions independent of o™’ by Dantzig [315] and
the second solution was published in 1951 “On the fundamental lemma of
Neyman and Pearson” by Dantzig and Wald [316].

G.B. Dantzig

George Bernard Dantzig went on to a distinguished career at Stanford
University in the department of Operations Research, which he founded in
1966. In 1975 President Gerald Ford awarded Dantzig a National Medal of
Science “for inventing Linear Programming and for discovering the Simplex
Algorithm that led to wide-scale scientific and technical applications to
important problems in logistics, scheduling, and network optimization, and
to the use of computers in making efficient use of the mathematical theory”
[287, 824]. George Bernard Dantzig died peacefully on 13 May 2005 at his
home in Stanford, California, at the age of 90.

The earliest discussions of permutation methods appeared in the literature when
Jerzy Sptawa-Neyman foreshadowed the use of permutation methods in a 1923
article “On the application of probability theory to agricultural experiments”;
however, there is no indication that any of those who worked to establish the field
of permutation methods were aware of the work by Splawa-Neyman, which was
not translated from its original Polish-language text until 1990 by D.M. Dabrowska
and T.P. Speed [309]. In this early article, Sptawa-Neyman introduced a permutation
model for the analysis of field experiments conducted for the purpose of comparing
a number of crop varieties [1312]. The article was part of his doctoral thesis
submitted to the University of Warsaw in 1924 and was based on research that he
had previously carried out at the Agricultural Institute of Bydgoszcz in northern
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Poland [1304]. A brief synopsis of the article by Sptawa-Neyman can be found in
Scheffé [1231, p. 269, fn. 13]. Additionally, an introduction by Speed to the 1990
translation of “On the application of probability theory to agricultural experiments”
by Dabrowska and Speed also provides a useful summary [1304], and a commentary
on the translated article by D.B. Rubin is especially helpful in understanding the
contribution made to permutation methods by Sptawa-Neyman in 1923 [1203]. See
also a 1966 article by Stephen Fienberg and Judith Tanur in International Statistical
Review [430].

Sptawa-Neyman introduced his model for the analysis of field experiments based
on the completely randomized model, a model that Joan Fisher Box, R.A. Fisher’s
daughter, described as “a novel mathematical model for field experiments” [195,
p- 263]. He described an urn model for determining the variety of seed each plot
would receive. For m plots on which v varieties might be applied, there would be
n = m/v plots exposed to each variety. Rubin contended that this article represented
“the first attempt to evaluate...the repeated-sampling properties of statistics over
their non-null randomization distributions” [1203, p. 477] and concluded that the
contribution was uniquely and distinctly Sptawa-Neyman’s [1203, p. 479]. Rubin
contrasted the contributions of Sptawa-Neyman and Fisher, which he observed, were
completely different [1203, p. 478]. As Rubin summarized, Fisher posited a null
hypothesis under which all values were known, calculated the value of a specified
statistic under the null hypothesis for each possible permutation of the data, located
the observed value in the permutation distribution, and calculated the proportion of
possible values as or more unusual than the observed value to generate a probability
value. In contrast, Sptawa-Neyman offered a more general plan for evaluating the
proposed procedures [1203]. J.F. Box, commenting on the differences between
Sptawa-Neyman and Fisher, noted that the conflict between Sptawa-Neyman and
Fisher was primarily conditioned by their two different approaches: “Fisher was
a research scientist using mathematical skills, Neyman a mathematician applying
mathematical concepts to experimentation” [195, p. 265].4

2.2.2 Fisher and the Binomial Distribution

Ronald Aylmer Fisher was arguably the greatest statistician of any century [576,
738, 1483], although it is well known that his work in genetics was of comparable
status, where geneticists know him for his part in the Wright-Fisher—Haldane theory
of the neo-Darwinian synthesis, the integration of Darwinian natural selection with
Mendelian genetics, and his 1930 publication of The Genetical Theory of Natural

“Fisher and Neyman differed in other ways as well. In general, they differed on the fundamental
approach to statistical testing, with Fisher’s ideas on significance testing and inductive inference
and Neyman’s views on hypothesis testing and inductive behavior; see an excellent summary
in a 2004 article by Hubbard [663] as well as a comprehensive account of the controversy by
Gigerenzer, Swijtink, Porter, and Daston published in 1989 [512, pp. 90-106].
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Selection [80,576]. As L.J. Savage expressed it: “[e]ven today [1976], I occasionally
meet geneticists who ask me whether it is true that the great geneticist R. A. Fisher
was also an important statistician” [401, 1226, p. 445].

R.A. Fisher

Ronald Aylmer Fisher held two chairs in genetics, but was never a professor
of statistics. Fisher was born on 17 February 1890 and even as a youth his
eyesight was very poor; therefore, he was forbidden by his doctors to work by
electric light [1477]. For example, James F. Crow, of the Genetics Department
at the University of Wisconsin, recalled his first meeting with Fisher at North
Carolina State University at Raleigh: “I...realized for the first time that in
poor light Fisher was nearly blind” [297, p. 210]. Studying in the dark gave
Fisher exceptional ability to solve mathematical problems entirely in his head,
and also a strong geometrical sense [1477]. Fisher was educated at the Harrow
School and the University of Cambridge [628]. His undergraduate degree
was in mathematics at Gonville & Caius College, University of Cambridge,
(informally known as Cambridge University or, simply, Cambridge), where
he graduated as a Wrangler in 1912.

After graduation, Fisher spent a post-graduate year studying quantum
theory and statistical mechanics under mathematician and physicist James
Hopwood Jeans and the theory of errors (i.e., the normal distribution) under
astronomer and physicist Frederick John Marrian Stratton. It should be
mentioned that while at the University of Cambridge, Fisher took only a
single course in statistics. After graduating from Cambridge, Fisher taught
mathematics and physics in a series of secondary schools and devoted his
intellectual energies almost exclusively to eugenics. As Stigler reported,
between 1914 and 1920 Fisher published 95 separate pieces; 92 in eugenics,
one in statistical genetics, and two in mathematical statistics [1323, p. 24].

In 1918, almost simultaneously, Fisher received two invitations: one for a
temporary position as a statistical analyst at the Rothamsted Experimental Sta-
tion and the second from Karl Pearson at the Galton Biometric Laboratory at
University College, London. The position at the Galton Biometric Laboratory
came with the condition that Fisher teach and publish only what Pearson
approved [778, p. 1020]; consequently, in 1919 Fisher took the position at
the Rothamsted Experimental Station. As George Box described it:

(continued)

SThose students doing best on the examinations were designated as “Wranglers.” More specifically,
the 40 top-scoring students out of the approximately 100 mathematics graduates each year were
designated as Wranglers, whereas 400450 students graduated from the University of Cambridge
annually at that time. Wranglers were rank-ordered according to scores on their final mathematics
examination, which was a 44-h test spread over 8 days [713, p. 657].
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Fisher rejected the security and prestige of working under Karl Pearson in the most
distinguished statistical laboratory in Britain and at that time certainly in the world.
Instead, he took up a temporary job as the sole statistician in a small agricultural
station in the country [191, p. 792].

Fisher left Rothamsted in 1933 after 14 years to assume the position of
Galton Professor of Eugenics at University College, London. This was an
uncomfortable arrangement for Fisher, in that the Department of Applied
Statistics at University College, London, founded by Karl Pearson, was split
into two departments upon Karl Pearson’s retirement in 1933: the Department
of Applied Statistics with Karl Pearson’s son Egon as the head, and the
Department of Eugenics with Fisher as the head and Galton Professor of
Eugenics. Consequently, Fisher was barred from teaching statistics [816, p. 2].
When World War II broke out in 1939, Fisher’s Department of Eugenics was
evacuated from London and the faculty dispersed. Fisher did not find another
position until 1943 when he returned to the University of Cambridge as the
Arthur Balfour Chair of Genetics, succeeding the geneticist R.C. Punnett
[1477]. Fisher was elected Fellow of the Royal Society in 1929 and knighted
by Queen Elizabeth II in 1952. Sir Ronald Aylmer Fisher ER.S. died in
Adelaide, Australia, following complications from surgery on 29 July 1962
at the age of 72 [197,814,816, 1497, pp. 420-421].

Although Fisher published a great deal, his writing style sometimes confounded
readers. There are numerous stories about the obscurity of Fisher’s writing. To put
it bluntly, Fisher did not always write with style and clarity. W.S. Gosset was once
quoted as saying:

[wlhen I come to Fisher’s favourite sentence —“It is therefore obvious that...”

— I know I'm in for hard work till the early hours before I get to the next line (Gosset,
quoted in Edwards and Bodmer [398, p. 29]).

Fisher’s classical work on The Genetical Theory of Natural Selection, which has
been described as the deepest book on evolution since Darwin’s On the Origin of
Species [398, p. 27], has come in for both considerable criticism and praise for his
writing style. W.F. Bodmer stated:

[m]any a terse paragraph in his classical work The Genetical Theory of Natural Selection

has been the basis for a whole new field of experimental and theoretical analysis (Bodmer,
quoted in Edwards and Bodmer [398, p. 29],

and Fred Hoyle, the English astronomer, once wrote:

I would like to recommend especially R.A. Fisher’s The Genetical Theory of Natural
Selection for its brilliant obscurity. After two or three months of investigation it will be
found possible to understand some of Fisher’s sentences (Hoyle, quoted in Edwards and
Bodmer [398, p. 29]).
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Fisher’s 1925 textbook Statistical Methods for Research Workers has also come
under fire for its difficulty. M.G. Kendall has been quoted as saying:

[sJomebody once said that no student should attempt to read [Statistical Methods for
Research Workers] unless he had read it before (Kendall, quoted in Edwards and Bodmer
[398, p. 29]).

While chemistry had its Mendeleev, mathematics its Gauss, physics its Einstein,
and biology its Darwin, statistics had its Fisher. None of these scientists did all
the work, but they did the most work, and they did it more eloquently than others.
When simplifying history it is tempting to give each of these scientists too much
credit as they did the important work in building the foundation on which to develop
future works. On the other hand, the contributions of R.A. Fisher to the field of
statistics cannot be overstated. There are few achievements in the history of statistics
to compare—in number, impact, or scope—with Fisher’s output of books and
papers. In fact, Fisher was not trained as a statistician; he was a Cambridge-trained
mathematician, with an extraordinary command of special functions, combinatorics,
and n-dimensional geometry [1226].

In 1952, when presenting Fisher for the Honorary degree of Doctor of Science at
the University of Chicago, W. Allen Wallis described Fisher in these words:

[h]e has made contributions to many areas of science; among them are agronomy, anthro-
pology, astronomy, bacteriology, botany, economics, forestry, meteorology, psychology,
public health, and — above all — genetics, in which he is recognized as one of the leaders.
Out of this varied scientific research and his skill in mathematics, he has evolved systematic
principles for the interpretation of empirical data; and he has founded a science of
experimental design. On the foundations he has laid down, there has been erected a structure
of statistical techniques that are used whenever men attempt to learn about nature from
experiment and observation (Wallis, quoted in Box [191, p. 791]).

In 1922 Fisher published a paper titled “On the mathematical foundations
of theoretical statistics” that Stigler has called “the most influential article
on...[theoretical statistics] in the twentieth century,” describing the article as
“an astonishing work” [1322, p. 32]. It is in this paper that the phrase “testing for
significance” appears in print for the first time [816, p. 11]. However, as Bartlett
explained in the first Fisher Memorial Lecture in 1965, while it is customary for
statisticians to concentrate on Fisher’s publications in statistics, his work in genetics
was of comparable status [80, p. 395]. Fisher’s interest in statistics began with a
paper in 1912 [441] and his subsequent contributions can be divided into three main
lines: exact sampling distribution problems, a general set of principles of statistical
inference, and precise techniques of experimental design and analysis [80, p. 396].
In the present context, Fisher’s contributions to permutation methods is the focus,
especially his development of exact probability analysis.®

5The standard biography of R.A. Fisher is that written by his daughter in 1978, Joan Fisher Box
[195], but others have provided more specialized biographies, including those by P.C. Mahalanobis
[868], F. Yates [1474], F. Yates and K. Mather [1477], M..S. Bartlett [80], S.M. Stigler [1322,1323],
C.R. Rao [1155], W.H. Kruskal [778], M.J.R. Healy [607], N.S. Hall [575], E.L. Lehmann [816],
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“Student” and Sampling Distributions

In 1925 R.A. Fisher published his first book, titled Statistical Methods for
Research Workers [448]. It was in this book that Fisher acknowledged that
“[t]he study of the exact distributions of statistics commences in 1908 with
‘Student’s’ paper The Probable Error of a Mean” [448, p. 23]. In neither
of Student’s 1908 papers, “The probable error of a mean” [1331] or “The
probable error of a correlation coefficient” [1330] does Student make any
reference to a previous use of the method and Egon Pearson stated in 1939
that Student’s 1908 paper was the first instance of the use of exact distributions
that was known to him [1094, p. 223].

The story of Student and the problem of finding the distribution of
the standard deviation and the ratio of the mean to the standard deviation
(the ¢ statistic) is common knowledge. “Student” was born, as is well known,
William Sealy Gosset on 13 June 1876 in Canterbury, England. He attended
Winchester College and New College, University of Oxford (informally
known as Oxford University or, simply, Oxford), graduating in 1899 with
degrees in mathematics and chemistry. That same year he joined the Dublin
Brewery of Messrs. Arthur Guinness Son & Company, Ltd. at St. James’ Gate.
In 1906-1907 Student was on leave from Guinness for a year’s specialized
study on probability theory. He spent the greater part of the year working at
or in close contact with Karl Pearson’s Biometric Laboratory at University
College, London, where he first tackled the problem of inference from small
samples empirically through a sampling experiment [177].

Student used as his study population a series of 3,000 pairs of measure-
ments that had been published in an article on criminal anthropometry by
William Robert Macdonell in Biometrika in 1902 [862]. The data consisted
of measurements obtained by Macdonell of the height and length of the left
middle finger of 3,000 criminals over 20 years of age and serving sentences in
the chief prisons of England and Wales [862, p. 216]. (Student [1331, p. 13]
lists page 219 for the Macdonell data, but the data used actually appear on
page 216.) For the sampling experiment, Student recorded the data on 3,000
pieces of cardboard that were constantly shuffled and a card drawn at random,
resulting in the 3,000 paired measurements arranged in random order. Then,
each consecutive set of four measurements was selected as a sample—750 in
all—and the mean, standard deviation, and correlation of each sample was
calculated [see 1344]. He plotted the empirical distributions of the statistics
and compared them to the theoretical ones he had derived. Using chi-squared

(continued)

L.J. Savage [1226], and G.E.P. Box [191]. The collected papers of R.A. Fisher are posted at
http://www.adelaide.edu.au/library/special/digital/fisherj/. In addition, two large volumes of the
selected correspondence of R.A Fisher were published in 1983 and 1990 by J.H. Bennett [96,97].
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tests for goodness of fit between the empirical and theoretical distributions,
Student deemed the results to be satisfactory, noting “if the distribution
is approximately normal our theory gives us a satisfactory measure of the
certainty to be derived from a small sample” [1331, p. 19].
Egon Pearson had this to say of the 1908 paper of Student on small
samples:
[i]t is probably true to say that this investigation published in 1908 has done more
than any other single paper to bring these subjects within the range of statistical
inquiry; as it stands it has provided an essential tool for the practical worker, while

on the theoretical side it has proved to contain the seed of new ideas which have
since grown and multiplied an hundredfold [1094, p. 224].

During his 30 years of scientific activity, Student published all of his work
under the pseudonym ‘“‘Student” with only one exception, when reading a
paper before the Industrial and Agricultural Research Section of the Royal
Statistical Society in the Spring of 1936 [1034]. The reason for the pseudonym
was a policy by Guinness against work done for the firm being made public.
Allowing Gosset to publish under a pseudonym was a concession by Guinness
that resulted in the birth of the statistician “Student” [813]. William Sealy
Gosset died on 16 October 1937 at the age of 61 while still employed at
Guinness.

In 1925, 2 years after Sptawa-Neyman introduced a permutation model for the
analysis of field experiments, Fisher calculated an exact probability value using the
binomial probability distribution in his first book: Statistical Methods for Research
Workers [448, Sect. 18]. Although the use of the binomial distribution to obtain
a probability value is not usually considered to be a permutation test per se,
Scheffé considered it the first application in the literature of a permutation test
[1230, p. 318]. Also, the binomial distribution does yield an exact probability value
and Fisher found it useful in calculating the exact expected values for experimental
data. Fisher wrote that the utility of any statistic depends on the original distribution
and “appropriate and exact methods,” which he noted have been worked out for only
a few cases. He explained that the application is greatly extended as many statistics
tend to the normal distribution as the sample size increases, acknowledging that it is
therefore customary to assume normality and to limit consideration of statistical
variability to calculations of the standard error or probable error.” That said, in

Early on, the probable error was an important concept in statistical analysis and was defined as
one-half the interquartile range. In terms of the normal distribution, the probable error is 0.6745
times the standard error. Therefore, as a test of significance a deviation of three times the probable
error is effectively equivalent to one of twice the standard error [292, 448, pp. 47-48]. “Probable
error” instead of “standard error” was still being used in the English-speaking countries in the
1920s and far into the 1930s; however, “probable error” was rarely used in Scandinavia or in the
German-speaking countries [859, p. 214].
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Table 2.1 Weldon’s data on dice cast 26,306 times with a face showing five or six pips considered
a success

Number of dice Observed Expected Difference
witha5ora6 frequency frequency frequency
0 185 202.75 —17.75
1 1,149 1,216.50 —67.50
2 3,265 3,345.37 —80.37
3 5,475 5,575.61 —100.61
4 6,114 6,272.56 —158.56
5 5,194 5,018.05 +175.95
6 3,067 2,927.20 +139.80
7 1,331 1,254.51 +76.49
8 403 392.04 +10.96
9 105 87.12 +17.88
10 14 13.07 +0.93
11 4 1.19 +2.81
12 0 0.05 —0.05
Total 26,306 26,306 —0.02

Chap. I1II, Sect. 18 of Statistical Methods for Research Workers, Fisher considered
the binomial distribution and provided two examples.

The first example utilized data from the evolutionary biologist Walter Frank
Raphael Weldon. Weldon threw 12 dice 26,306 times for a total of 315,672
observations, recording the number of times a 5 or a 6 occurred. Fisher did not
provide a reference for the Weldon data, but the source was a letter from Weldon
to Francis Galton dated 2 February 1894 in which Weldon enclosed the data for
all 26,306 throws and asked Galton his opinion as to the validity of the data
[717, pp. 216-217]. Fisher used the binomial distribution to obtain the exact
expected value for each of the possible outcomes of 0, 1,...,12. For example, the
binomial probability for six of 12 dice showing either a 5 or a 6 is given as

6 12—6
p(6]12) = (162) (%) (%) = (924)(0.0014)(0.0878) = 0.1113 .

Multiplying 0.1113 by n = 26,306 gives an expectation of 2,927.20. Table 2.1
summarizes the Weldon dice data; see also Fisher [448, p. 67] and Pearson [1107,
p. 167]. Fisher concluded the dice example by calculating a chi-squared goodness-
of-fit test and a normal approximation to the discrete binomial distribution.

For the second example, Fisher analyzed data from Arthur Geissler on the sex
ratio at birth in German families. Here again, Fisher did not provide a reference to
the Geissler data, but it was taken from the sex-ratio data obtained by Geissler from
hospital records in Saxony and published in Zeitschrift des Koniglich Scichsischen
Statistischen Bureaus in 1889 [504]. The data consisted of the number of males in
53,680 families, ranging from O to 8 males. Geissler’s estimate of the sex ratio for



2.2 Neyman-Fisher-Geary and the Beginning 31

Table 2.2 Geissler’s data on the sex ratio in German families with expected values and differ-
ences, and Fisher’s expected values and differences

Geissler’s data and expected values Fisher’s expected values

Number Observed  Expected Difference Expected Difference
of males  sibships sibships (Obs —Exp)  sibships (Obs — Exp)
8 342 264.64 +77.36 264.30 +77.70
7 2,092 1,995.88 +96.12 1,993.78 +98.22
6 6,678 6,584.71 +93.29 6,580.24 +97.76
5 11,929 12.413.82 —484.82 12,409.87 —480.87
4 14,959 14,626.99  +332.01 14,627.60 +331.40
3 10,649 11,030.22 —381.22 11,034.65 —385.65
2 5,331 5,198.69  +132.31 5,202.65 +128.35
1 1,485 1,400.08 +84.92 1,401.69 +83.31
0 215 164.96 +50.04 165.22 +49.78
Total 53,680 53,679.99 +0.01 53,680.00 0.00

the population in Saxony was obtained by simply calculating the mean proportion
of males in his data. Table 2.2 summarizes the Geissler sex-ratio data [793, p. 154].
In this second example, Fisher never specified a value for p, but H.O. Lancaster,
in a reanalysis of Geissler’s data, gave the value as p = 0.5147676 [793], which
translates to a sex ratio of 1.061.% Working backwards from Fisher’s analysis, it is
apparent that he used p = 0.5146772. Thus, for example, the binomial probability
for five males is actually given by

p(518) = (i) (0.5146772)°(0.4853228)% > = (56)(0.0361)(0.1143) = 0.2312..

Multiplying 0.2312 by n = 53,680 gives an expectation of 12,409.87, which agrees
with Fisher’s expected value.

In both these early examples Fisher demonstrated a preference for exact solu-
tions, eschewing the normal approximation to the discrete binomial distribution even
though the sample sizes were very large. While exact binomial probability values
are perhaps not to be considered as permutation tests, Fisher was to go on to develop
many permutation methods and this early work provides a glimpse into how Fisher
advanced exact solutions for statistical problems.

2.2.3 Geary and Correlation

In 1927, R.C. Geary was the first to use an exact analysis to demonstrate the utility
of asymptotic approaches for data analysis in an investigation of the properties of
correlation and regression in finite populations [500].

8For comparison, the sex ratio at birth in Germany in 2013 was 1.055.



32 2 1920-1939

R.C. Geary

Robert Charles (Roy) Geary was a renowned Irish economist and statistician
who earned his B.Sc. degree from University College, Dublin, in 1916 and
pursued graduate work at the Sorbonne in Paris where he studied under Henri
Lebesgue, Emile Borel, Elie Cartan, and Paul Langevin [1307]. Geary’s early
contributions in statistics were greatly influenced by the work of R.A. Fisher,
although in later years Geary’s attention turned towards more social issues,
e.g., poverty and inequality [1306]. Geary did work on permutation tests early
in his career and was an early critic of reliance on the normal distribution.
In 1947, for example, he considered the problem of statistics and normal
theory, calling for future statistics textbooks to include the phrase, “Normality
is a myth; there never was, and never will be, a normal distribution” [501,
p- 241].

Geary founded the Central Statistics Office of Ireland in 1960 and the Eco-
nomic Research Institute (later, the Economic and Social Research Institute)
in 1949, and was head of the National Accounts Branch of the United Nations
from 1957 to 1960. Interestingly, more than half of Geary’s 127 publications
were written in the 1960s after Geary had reached 65 years of age. Robert
Charles Geary retired in 1966 and passed away on 8 February 1983 at the age
of 86 [1305, 1306].

In 1927 Geary devoted a paper to “an examination of the mathematical principles
underlying a method for indicating the correlation . . . between two variates,” arguing
that “the formal theory of correlation. .. makes too great demands upon the slender
mathematical equipment of even the intelligent public” [500, p. 83]. Geary provided
a number of example analyses noting “[w]e are not dealing with a sample drawn
from a larger universe” [500, p. 87] and addressed the problem of deciding
significance when calculating from a known limited universe. One example that
Geary provided was based on the assertion that cancer may be caused by the over
consumption of “animal food.” Geary investigated the ways that cancer mortality
rates varied with the consumption of potatoes in Ireland, drawing up a contingency
table showing 151 poor-law unions in Ireland arranged according to their percentage
of deaths from cancer during the years 1901-1910 and the acreage of potatoes per
100 total population.” Table 2.3 summarizes Geary’s data on cancer and potato
consumption [500, p. 94].

In this investigation, Geary considered potato consumption and the incidence
of cancer deaths in Ireland. Geary categorized each of the 151 poor law unions

9The Trish Poor Law of 1838 was an attempt to ameliorate some of the problems arising out of
widespread poverty in the early 1800s in Ireland. Influenced by the Great Reform Act of 1834
in England (q.v. page 11), Ireland was originally divided into 131 poor law unions, each with a
workhouse at its center.
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Table 2.3 Percentage of deaths from cancer to all deaths during the 10 years 1901-1910 cross
classified by acreage of potatoes per 100 total population

Number of poor law unions in which

Cancer deaths as acreage of potatoes per 100 persons

percentage of total in 1911 was

deaths 1901-1910 Under 15.5 15.5-20.5 Over 20.5 Number of unions
Under 3.5 % 12 24 12 48

3.5-4.5% 18 14 16 48

Over 4.5 % 20 17 18 55

Number of unions 50 55 46 151

as a percentage of cancer deaths to overall deaths in the union; cancer deaths less
than 3.5 % of total deaths (48 poor law unions), cancer deaths 3.5-4.5 % of total
deaths (48 poor law unions) and cancer deaths greater than 4.5 % of total deaths
(55 poor law unions). Table 2.3 illustrates the marginal distribution of 48, 48, and
55 poor law unions. He repeated the experiment holding the marginal frequency
totals constant, and found that cell arrangements greater than those of the actual
experiment occurred in 231 of 1,000 repetitions, concluding that the relationship
between potato consumption and cancer was not statistically significant.

2.3 Fisher and the Variance-Ratio Statistic

Because of its importance, some historical perspective on Fisher’s variance-ratio z
test and the analysis of variance is appropriate. Fisher’s variance-ratio z test statistic

is given by
1
2=~ log, (ﬂ) , @.1)
2 Vo

where vi = MSgetween = MSTreatment and Vo = MSwithin = MSgnor in modern
notation, and which Fisher termed, for obvious reasons, the “variance-ratio” statis-
tic. In a 1921 article on grain yields from Broadbalk wheat from the Rothamsted
Experimental Station (q.v. page 57) in The Journal of Agricultural Science,
Fisher partitioned the total sum of squares of deviations from the mean into a
number of independent components and made estimates of the component variances
by associating each sum of squares with its appropriate degrees of freedom [445].
Fisher made the analysis of variance source table explicit in 1923 in a second
article on “Studies in crop variation II,” subtitled “The manurial response of
different potato varieties,” in The Journal of Agricultural Science with his assistant
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Winifred A. Mackenzie [462].%!" The analysis of variance appears in this article
with Mackenzie for the first time in its entirety, although it is not reflected in the
title [191, p. 795].'> Experimental randomization is also firmly established in this
article.'> After the algebraic identity between the total sum of squares and the
within- and between-treatments sum of squares had been presented, Fisher and
Mackenzie stated:

[i]f all the plots were undifferentiated, as if the numbers had been mixed up and written
down in random order, the average value of each of the two parts is proportional to the
number of degrees of freedom in the variation of which it is compared [462, p. 315], quoted
in [191, p. 795].

However, as Joan Fisher Box explained, the analysis was incorrect because the
trial was actually a split-plot design as it incorporated a third factor: potassium.
At the time of the writing of the article, 1923, Fisher did not fully understand
the rules of the analysis of variance, nor the role of randomization [261]. Fisher
quickly corrected this in the first edition of Statistical Methods for Research Workers
published in 1925 [448, p. 238].

In Statistical Methods for Research Workers Fisher detailed the analysis of
variance in Chap. VII on “Intraclass correlations and the analysis of variance” [448].
An important observation by J.F. Box, is that it tends to be forgotten that prior
to 1920, problems that would later be dealt with by the analysis of variance were
thought of as problems in correlation [195, p. 100]; thus, R.A. Fisher introduced the
subject of analysis of variance in terms of its relation to the intraclass correlation
coefficient. The relationship between the intraclass correlation coefficient, r;, and
Fisher’s z is given by

_11 k 1+r;(n—1)
Z_E(’ge{(k—l)[ > }} ’

where n is the number of observations in each of k treatments.
By way of example, consider two samples of n; and 1, observations, each sample
drawn from one of two populations consisting of normally distributed variates with

10Mackenzie is sometimes spelled “Mackenzie” [195] and other times “MacKenzie” [191, 576,
720]. In the original article, Mackenzie is all in upper-case letters.

"'The experiment on potatoes had been conducted by Thomas Eden at the Rothamsted Experi-
mental Station, wherein each of twelve varieties of potatoes had been treated with six different
combinations of manure [191].

lzPreviously, in 1918 in an article on Mendelian inheritance in Eugenics Review, Fisher had coined
the term “analysis of variance” [443]; see also a 2012 article by Edwards and Bodmer on this topic
[398, p. 29].

13This 1923 article by Fisher and Mackenzie is often cited as the first randomized trial experiment
[484,517,893,925]. However, the first documented publication of a randomized trial experiment
was by the American philosopher Charles Sanders Peirce and his colleague at Johns Hopkins
University, Joseph Jastrow, in 1885 [1113]; see also, in this regard, discussions by Neuhauser and
Diaz [1030, pp. 192-195], Stigler [1321], and an autobiography by Jastrow [682].
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equal population variances. It can be shown that the distribution of z approaches
normality as min(n, n,) — 0o, with mean and variance given by

-1 1 1
Z_Z n,—1 n;—1

PR VAR .
2T 2\np—1 n—-1)"

respectively [36, p. 439]. These results stimulated Fisher to prefer the designation
z for the analysis of variance test statistic over the F proposed by Snedecor in
1934 [1289].

and

2.3.1 Snedecor and the F Distribution

G.W. Snedecor was the director of the Statistical Laboratory at Iowa State College
(technically, Iowa Agricultural College and Model Farm) and was instrumental in
introducing R.A. Fisher and his statistical methods to American researchers.

G.W. Snedecor

George Waddle Snedecor earned his B.S. degree in mathematics and physics
from the University of Alabama in 1905 and his A.M. degree in physics
from the University of Michigan in 1913, whereupon Snedecor accepted
a position as Assistant Professor of mathematics at Iowa State College of
Agriculture (now, lowa State University). Snedecor’s interest in statistics led
him to offer the first course in statistics in 1915 on the Mathematical Theory of
Statistics at lowa State College of Agriculture. In 1933, Snedecor became the
Director of the Statistical Laboratory, remaining there until 1947. Snedecor
was responsible for inviting R.A. Fisher to Iowa State College during the
summers of 1931 and 1936 to introduce statistical methods to faculty and
research workers [295].

In 1937, Snedecor published a textbook on Statistical Methods, subtitled
Applied to Experiments in Agriculture and Biology, which was a phenomenal
success selling more than 200,000 copies in eight editions. The first five
editions were authored by Snedecor alone and the next three editions were
co-authored with William Gemmell Cochran. Snedecor’s Statistical Meth-
ods roughly covered the same material as Fisher’s Statistical Methods for
Research Workers, but also included material from Fisher’s book on The
Design of Experiments, such as factorial experiments, randomized blocks,

(continued)
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Latin squares and confounding [816, p. 27]. Joan Fisher Box wrote in her
biography of her father that “[i]t was George W. Snedecor, working with
agricultural applications, who was to act as midwife in delivering the new
statistics in the United States” [195, p. 313]. George Waddle Snedecor died
on 15 February 1974 at the age of 92 [59,243,611].

Fisher had, in the first edition of Statistical Methods for Research Workers, pro-
vided a brief tabulation of critical values for z—Table VI in [448]—corresponding
to a 5% level of significance, noting “I can only beg the reader’s indulgence
for the inadequacy of the present table” [448, p. 24]. In 1934, apparently in an
attempt to eliminate the natural logarithms required for calculating z, Snedecor
[1289] published tabled values in a small monograph for Fisher’s variance-ratio
z statistic and rechristened the statistic, ' [1289, p. 15]. Snedecor’s F-ratio statistic
was comprised of

F — MS Between _ MS Treatment
MS Within MS Error

3

whereas Fisher had used

1 Vi 1
=-1 — ) ==log (F) .
z 2°g"(v0) zoge()

In terms of the intraclass correlation coefficient,

Fe k I1+r;(n—1)
k—1 1—7‘1

and, conversely,

_ (k=DF—k
S k=DF+n-1k’

rr

It has often been reported that Fisher was displeased when the variance-ratio
Z statistic was renamed the F-ratio by Snedecor, presumably in honor of Fisher;
see also discussions by Box [195, p. 325] and Hall on this topic [575, p. 295].
Fisher recounted in a letter to H.W. Heckstall-Smith in 1956 that “I think it was
only an afterthought that led Snedecor to say that the capital letter " he had used
was intended as a compliment to myself” [97, p. 319].'* In this same letter, Fisher
also wrote that he had added a short historical note in the 12th edition of Statistical

141 W. Heckstall-Smith, Headmaster, Chippenham Grammar School, had written to Fisher
requesting permission to quote from Fisher in an article he was preparing for a medical journal.
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Methods for Research Workers published in 1954 that he “hoped [would] prevent
expositors from representing the F-test. . . with the z-test” [97, p. 319]. On this topic,
in a 1938 letter to Snedecor, Fisher objected to the assignment of the symbol F to the
variance-ratio z statistic, and used the letter to point out that P.C. Mahalanobis had
previously published tabled values of the variance-ratio z statistic using a different
symbol, although Snedecor apparently produced his F-ratio with no knowledge of
the Mahalanobis tables [195, p. 325].

Indeed, in 1932 Mahalanobis, responding to complaints from field workers who
were not familiar with the use of natural logarithms and had difficulty with Fisher’s
variance-ratio z statistic as given in Eq. (2.1), published six tables in Indian Journal
of Agricultural Science. Two tables were designed for working with ordinary
logarithms (base 10 instead of base ¢e), two tables were designed for working directly
with the ratio of standard deviations instead of variances, and two tables were
designed for the ratio of variances without recourse to natural logarithms, with one
table in each set corresponding to the 5 % level of significance and the other set to
the 1 % level of significance [867]. Fisher avoided using the symbol F in Statistical
Tables for Biological, Agricultural and Medical Research published with Yates in
1938, as Fisher felt that the tabulation of Mahalanobis had priority [195, p. 325].

24 Eden-Yates and Non-normal Data

In 1933 Frank Yates succeeded R.A. Fisher as head of the Statistics Department at
the Rothamsted Experimental Station, a post he held for a quarter of a century.

F. Yates

Frank Yates graduated from St. John’s College, University of Cambridge, with
a B.A. degree in mathematics in 1924 and earned his D.Sc. in mathematics
from Cambridge in 1938. His first important job was as research officer and
mathematical advisor to the Geodetic Survey of the Gold Coast (presently,
Ghana). In August 1931, Yates joined Fisher at the Rothamsted Experimental
Station as an Assistant Statistician. Within 2 years, Fisher had left Rothamsted
and Yates became head of the Statistics Department, a post which he held
for 25 years until 1958. From 1958 until his retirement in 1968, Yates was
Deputy Director of Rothamsted [437]. Although retired, Yates maintained an
office at Rothamsted as an “Honorary Scientist” in the Computing Department
and all told, was at Rothamsted for a total of 60 years. Perhaps Frank Yates’
greatest contribution to statistics was his embrace of the use of computing to

(continued)

The article, with M.G. Ellis, was eventually published in the journal Tubercle in December of 1955
under the title “Fun with statistics” [409].
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solve statistical problems [633, p. 4]. In 1948 Yates was elected Fellow of the
Royal Society. Frank Yates FR.S. passed away on 17 June 1994 at the age of
92 [369,436,605, 606, 1028].

T. Eden

Little is known about Thomas Eden, except that he was at the Rothamsted
Experimental Station as a crop ecologist in the Field Experiments Department
from 1921 to 1927 and published several papers with Fisher on experimental
design [377,378]. Upon leaving Rothamsted, Eden was employed as a chemist
at the Tea Research Institute of Ceylon [575, p. 318]. Eden published a
number of books in his lifetime, including Soil Erosion in 1933 [374],
Elements of Tropical Soil Science in 1947 [375], and Tea in 1958 [376].

Like Geary in 1927 [500], Thomas Eden and Frank Yates utilized permutation
methods in 1933 to compare a theoretical distribution to an empirical distribution
[379]. Eden and Yates questioned the use of Fisher’s variance-ratio z test in
applications to non-normal data. Citing articles by Shewhart and Winters [1262]
and Pearson and Adyanthaya [1100] in which small samples from non-normal and
skewed populations had been investigated, Eden and Yates declared the results
“inconclusive” [379, p. 7], despite an affirmation by “Student” that “ ‘Student’s’
distribution will be found to be very little affected by the sort of small departures
from normality which obtain in most biological and experimental work” [1332,
p- 93] and Fisher’s contention that he had “never known difficulty to arise in
biological work from imperfect normality of variation” [440, p. 267]. Eden and
Yates noted that from the perspective of the investigator who is using statistics as
a tool “the theoretical distributions from which the samples were drawn bear no
relationship to those he is likely to encounter” [379, p. 7] and listed three conditions
which must be observed to compare a theoretical distribution with an empirical
distribution:

1. Samples must be taken from one or more actual distribution(s).

2. The experimental procedure must correspond with what would be used on actual
investigational data.

3. The departure of the distribution of the statistical tests from expectation must
itself be tested for significance, and the sampling must be sufficiently extensive
to give reliable evidence of the distribution in the neighborhood of the 0.05 and
0.01 levels of significance.
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Some Historical Perspective

A little historical background will shed some light on the exchange between
Fisher and Eden and Yates. In 1929, in the 8 June issue of Nature, Egon
Pearson reviewed the second edition of Fisher’s Statistical Methods for
Research Workers that had been published in 1928. In that review, Pearson
criticized Fisher’s approach, noting:

[a] large number of the tests developed are based upon the assumption that the
population sampled is of the ‘normal’ form. ... It does not appear reasonable to lay
stress on the ‘exactness’ of tests, when no means whatever are given of appreci-
ating how rapidly they become inexact as the population diverges from normality
[1099, p. 867].

Fisher was deeply offended and he wrote a blistering reply to Nature that
has not been preserved [816, p. 23]. Eventually, Fisher asked W.S. Gosset to
reply for him, which Gosset did under his pseudonym “Student” in Nature on
20 July 1929, stating:

[plersonally, I have always believed. .. that in point of fact ‘Student’s distribution
will be found to be very little affected by the sort of small departures from normality
which obtain in most biological and experimental work, and recent work on small
samples confirms me in this belief. We should all of us, however, be grateful to
Dr. Fisher if he would show us elsewhere on theoretical grounds what sort of
modification of his tables we require to make when the samples with which we are
working are drawn from populations which are neither symmetrical nor mesokurtic
[1332, p. 93].

This was followed by a letter in Nature by Fisher on 17 August 1929, in
which he rejected Gosset’s suggestion that he should give some guidance on
how to modify the ¢ test for data from non-normal populations [440]. How-
ever, he did hint in this letter at the possibility of developing distribution-free
tests. Finally, a rejoinder by E.S. Pearson appeared in Nature on 19 October
1929 [1092].

In hindsight, E.S. Pearson was probably correct in questioning the ¢
test established by “Student” and proved by Fisher under the assumption
of normality. Interestingly, the same argument also holds for the Neyman—
Pearson statistical approach that requires the use of conjectured theoretical
distributions such as the normal and gamma distributions. On a related note,
Fisher seemed to have eventually accepted Pearson’s normality concern since
he introduced the notion of an exact permutation test a short time later.

In 1933 Eden and Yates observed that if evidence could be adduced showing
that the distribution of z for treatments versus residuals was statistically identical
to that expected from normal data, then the variance-ratio z statistic could be used
with confidence when establishing significance to data of this type. Eden and Yates
went on to examine height measurements of Yeoman II wheat shoots grown in eight
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blocks, each consisting of four sub-blocks of eight plots.'> For the experiment, the
observations were collapsed into four treatments randomly applied to four sub-
blocks in each block. Thus, the experimental data consisted of g = 4 treatment
groups and b = 8 treatment blocks for a total of

(g~ = (43! = 4,586,471,424

possible arrangements of the observed data.'® Eden and Yates chose a sample of
1,000 of these arrangements at random (now termed resampling) and generated a
table listing the simulated probability values generated by the random sample and
the theoretical counterparts to those probability values based on the normality
assumption.'’

Eden and Yates were able to reduce the considerable computations of the analysis
by introducing “certain modifications” [379, p. 11]. Specifically, they observed that
the block sum of squares and the total sum of squares would be constant for all 1,000
samples; consequently, the value of z for each sample would be uniquely defined by
the value for the treatment sum of squares. This observation became increasingly
valuable in later decades as researchers developed permutation versions of other
statistical tests and increased the speed of computing by ignoring the components
of equations that are invariant over permutation.

The simulated and theoretical probability values based on the normality assump-
tion were compared by a chi-squared goodness-of-fit test and were found to be in
close agreement, supporting the assumption of normality [379]. Eden and Yates
therefore contended that Fisher’s variance-ratio z statistic could be applied to data
of this type with confidence. Specifically, Eden and Yates concluded:

[t]he results of this investigation, which deals with an actual experimental distribution of a
definitely skew nature and with a population extending over a wide range of values, show
that in actual practice there is little to fear in the employment of the analysis of variance and
the z test to data of a similar type [379, p. 16].

In 1935 Yates had one more opportunity to comment on this experiment,
emphasizing once again reliance on the information contained in the sample
alone. On March 28th, 1935, Neyman presented a paper before the Industrial and
Agricultural Research Section of the Royal Statistical Society, later published in
Supplement to the Journal of the Royal Statistical Society [1033], where Yates

15Yeoman wheat is a hybrid variety that resists wheat rust. It was developed and released in 1916
by Sir Rowland Biffen, Director of the Plant Breeding Institute at the University of Cambridge
School of Agriculture.

16Because it is possible to hold one block constant and to randomize the remaining blocks with
respect to the fixed block, it is only necessary to randomize b —1 blocks, thereby greatly decreasing
the total number of possible arrangements. In this case, (4!)7 = 4,586,471,424 instead of (4!)® =
110,075,314,176 randomizations.

7H.A. David has written that the 1933 Eden—Yates paper “may be regarded as introducing
randomization [permutation] theory” [326, p. 70].
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was a discussant. Referring back to the Yeoman II wheat shoot experiment, Yates
commented:

[w]hat the experiment does show is that the randomisation process effectively generates the
distribution of z, and the need for the postulation of any parent population from which the
thirty-two values are to be regarded as a sample is entirely avoided [1473, p. 165].

2.5 Fisherand 2 x 2 Contingency Tables

On 18 December 1934, R.A. Fisher (q.v. page 25) presented a paper describing the
logic of permutation tests to the Royal Statistical Society, a paper that appeared in
Journal of the Royal Statistical Society the following year [452].'% Fisher did not
expressly discuss permutation tests, but instead used the product of two binomial
distributions to arrive at an exact probability value for a 2 x 2 contingency table.
Here, Fisher described data on criminal same-sex twins from a study originally
conducted by Lange [801, pp. 41-45]. Dr. Johannes Lange was Chief Physician
at the Munich—Schwabing Hospital and Department Director of the German
Experimental Station for Psychiatry (Kaiser Wilhelm Institute) in Munich. Lange
had access to data on 37 pairs of criminal same-sex twins, including 15 monozygotic
(identical) and 22 dizygotic (fraternal) twins, but in two cases of the monozygotic
twins and five of the dizygotic twins, neither twin had been convicted, thus reducing
the overall number of twin pairs to 30.

The data analyzed by Fisher consisted of 13 pairs of monozygotic twins and 17
pairs of dizygotic twins. For each of the 30 pairs of twins, one twin was known to
be a convict. The study considered whether the twin brother of the known convict
was himself “convicted” or “not convicted.” Fisher observed that in 10 of the 13
cases of monozygotic twins, the twin brother was convicted, while in the remaining
three cases, the twin was not convicted. Among the 17 pairs of dizygotic twins,
two of the twins were convicted and 15 of the twins were not convicted. The data
from Lange are summarized in Table 2.4. Fisher considered the many methods
available for the analysis of a 2 x 2 table and suggested a new method based on
the concept of ancillary information [816, p. 48—49]. Fisher explained: [i]f one
blocked out the cell frequencies of Table 2.4 leaving only the marginal frequency
totals, which provide no information by themselves, then the information supplied

18As was customary in scientific societies at the time, these special research papers were printed
in advance and circulated to the membership of the society. Then, only a brief introduction was
made by the author at the meeting and the remaining time was devoted to discussion. By tradition,
the “proposer of the vote of thanks” said what was he thought was good about the paper, and
the seconder said what he thought was not so good. Subsequently, there was a general discussion
by the Fellows of the Society and often a number of prominent statisticians offered comments,
suggestions, or criticisms [192, p. 41]. In this instance the discussants were Arthur Bowley, Leon
Isserlis, Joseph Irwin, Julius Wolf, Egon Pearson, Major Greenwood, Harold Jeffreys, Maurice
Bartlett, and Jerzy Neyman. As might be evident from the list of names, not all comments were
constructive.
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Table 2.4 Convictions of Twin type Convicted Not convicted Total
like-sex twins of criminals .
Monozygotic 10 3 13
Dizygotic 2 15 17
Total 12 18 30

by the marginal frequency totals is “wholly ancillary” [452, p. 48].!° Fisher was
then concerned with the number of different ways the four cell frequencies could be
filled, subject to the fixed marginal frequency totals. For these data, the maximum
value of the convicted dizygotic cell is the minimum of the corresponding marginal
frequency totals, and the minimum value of the convicted dizygotic cell is the
greater of zero and the sum of the corresponding marginal frequency totals minus
the total sample size. Thus, the number of possible configurations of cell frequencies
completely specified by the number of dizygotic convicts is 13, ranging from O,
given by max(0, 17 + 12 —30) = 0, to 12, given by min(12,17) = 12.

The approach is clever and deserves consideration. Fisher posited that if the
probability of a twin brother of a convict of monozygotic origin is denoted by p,
then the probability that of 13 monozygotic twins 12 —x have been convicted, while
x 4+ 1 monozygotic twins have escaped conviction, is given by the binomial

13!
(12— ) (1 + x)!

pIZ—X(l _p)l+x .

The probability of the brother of a criminal known to be dizygotic being convicted
is also p and the probability that 17 of these x have been convicted and (17 — x)
have never been convicted, is given by the binomial

17!

: X 17—x
x!(17—x)!p (1=p) '

The probability of the simultaneous occurrence of the two events, given by the

product of the respective probabilities, is therefore

131171
2= A+l x (17—0?

12(1 _ p)IS .

Fisher noted that the probability of any value of x occurring is proportional to

1
(2= (IT+x)!x!'(A7=x)!"

19 According to Lehmann [816, p. 48, fn. 1], this statement is in fact not completely true, although
very nearly so. See also a 1977 article by Plackett in this regard [1137].
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and on summing the series obtained over x, the absolute probability values are found
to be

13117! 12! 18! 8 1
30! 12—=x)!' (1 +x)! x! A7 — x)!

[452, p. 49]. Thus, it is only necessary to compute the probability of one of the
four cells; Fisher chose the dizygotic convicts, the lower-left cell in Table 2.4 with a
frequency of 2. Computing the discrepancies from proportionality as great or greater
than the observed configuration in Table 2.4, subject to the conditions specified
by the ancillary information, yields for 2, 1, and O dizygotic convicts, a one-tailed
probability of

P{2|17,12,30} + P{1]17,12,30} + P{0|17, 12,30}
_ 13UI7t12tIst 131171120181 13117012t 18!
T 3001013120150 3001112111160 T 301 121 110! 17!
= 0.000449699 + 0.000015331 + 0.000000150 ,

which sums to approximately 0.0005.

The point of the twin example—that for small samples exact tests are possible,
thereby eliminating the need for estimation—indicates an early understanding of the
superiority of exact probability values computed from known discrete distributions
over approximations based on assumed theoretical distributions. As Fisher pointed
out, “[t]he test of significance is therefore direct, and exact for small samples. No
process of estimation is involved” [451, p. 50]. In this regard, see also the fifth
edition of Statistical Methods for Research Workers published in 1934 where Fisher
added a small section on “The exact treatment of a 2 x 2 table” [450, Sect.21.02].
The exact binomial solution proposed by Fisher was not without controversy
[1197]. Indeed, Stephen Senn observed in 2012 that “statisticians have caused the
destruction of whole forests to provide paper to print their disputes regarding the
analysis of 2 x 2 tables” [1251, p. 33].

2.6 Yates and the Chi-Squared Test for Small Samples

In 1934 Frank Yates (q.v. page 37) published an article on contingency tables
involving small frequencies and the chi-squared (y?) test of independence in
Supplement to the Journal of the Royal Statistical Society [1472]. The stated purpose
of the article was twofold: first, to introduce statisticians to Fisher’s exact probability
test, which was very new at the time, and to use Fisher’s exact probability test as
a gold standard against which the small-sample performance of the Pearson chi-
squared test might be judged; and second, present the correction for continuity to
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the chi-squared test of independence, resulting in a better approximation to Fisher’s
exact probability test [633]. Yates motivated the discussion by asserting:

[tlhe x? test is admittedly approximate, for in order to establish the test it is necessary
to regard each cell value as normally distributed with a variance equal to the expected
value, the whole set of values being subject to certain restrictions. The accuracy of this
approximation depends on the numbers in the various cells, and in practice it has been
customary to regard y? as sufficiently accurate if no cell has an expectancy of less than 5
[1472, p. 217]1.2°

The 1934 article by Yates soon became elevated to a classic as it introduced
Yates’ correction for continuity to chi-squared for 2 x 2 contingency tables.
However, the article contained much more than the continuity correction for 2 x 2
contingency tables. In this 1934 article Yates referred to Fisher’s calculation of the
exact probability of any observed set of values in a 2 x 2 contingency table with
given marginal frequency totals and compared chi-squared probability values, with
and without the correction for continuity, with exact probability values for small
2 x 2 contingency tables. Yates used the exact probability values obtained from
the discrete hypergeometric probability distribution to evaluate the corresponding
probability values obtained from the continuous chi-squared distribution. It is
notable that Yates referred to the exact probability values as the “true” probability
values [1472, p. 222] and the exact probability values were used in this article as
a benchmark against which to compare and validate the approximate probability
values obtained from the chi-squared distribution.?!

While there is much of importance in this classic paper, it is the generation of
the exact probability values that is germane to a discussion of permutation methods.
Although Yates only summarized the procedure by which he obtained the exact
permutation values, the process is not difficult to reconstruct. Yates described the
process:

[i]n cases where N is not too large the distribution with any particular numerical values of

the marginal totals can be computed quite quickly, using a table of factorials to determine

some convenient term, and working out the rest of the distribution term by term, by simple

multiplications and divisions. If a table of factorials is not available we may start with any
convenient term as unity, and divide by the sum of the terms so obtained [1472, p. 219].

Note that N denotes the total number of observations. Here, in the last sentence
of the quote, Yates identified a procedure that was to assume great importance
in exact permutation methods; viz., probability values obtained from discrete
distributions using recursion with an arbitrary initial value. The importance of this
approach for the future of permutation methods should not be underestimated.

20As Hitchcock has noted, the variance equals the mean in the archetypical count model of the
Poisson, and the normal approximates the Poisson when the mean is large [633, p. 2].

211t should be mentioned that because Yates was primarily interested in 2 X 2 contingency tables

and, therefore, y? was distributed as chi-squared with 1 degree of freedom, he obtained the requisite
probability values from tables of the normal distribution since )(% =72
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Fig. 2.1 Notation fora 2 x 2

contingency table as used by a Z ‘ N-—n
Yates [1472] ¢ "
N —n' n’ |

Next, Yates defined a 2 x 2 contingency table using the notation in Fig. 2.1, where
n<n < %N .

Giving due credit to Fisher, Yates showed that the probability value cor-
responding to any set of cell frequencies, a, b, ¢, d, was the hypergeometric
point-probability value given by

n!'n’t (N —n)! (N —n')!
Nla!b!c!d!

Since the exact probability value of a 2 x 2 contingency table with fixed marginal

frequency totals is equivalent to the probability value of any one cell (because
there is only one degree of freedom in a 2 x 2 contingency table), determining the
probability value of cell g is sufficient. If

P{a+1|N—-n,N—n',N} = P{a|[N —n,N —n',N} x f(a)
then, solving for f(a) produces

P{a+1|N —n,N —n’,N}
J@ = = N NN}
albl el d)
T @r DG -Dlc—DI(d+1)!

and, after cancelling, yields

_ (b)(c)
(@a+D(d+1)°

Yates provided an example analysis based on data from Milo Hellman on bottle
feeding and malocclusion that had been published in Dental Cosmos in 1914 [609];
the data are summarized in Table 2.5 and the six exhaustive 2 x 2 contingency
tables from the data in Table 2.5 are listed in Table 2.6. Yates generated the entire
exact probability distribution as follows. The probability of obtaining zero normal
breastfed babies for cell arrangement (1) in Table 2.6 was given by

fla)

51371201 22!
P{a =0[20,5,42} = — """ — (.030957
42101 20! 5! 17!
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Table 2.5 Hellman’s data

- Feeding type Normal teeth ~ Malocclusion  Total
on breast feeding and
malocclusion. Breast-fed baby 4 16 20
Bottle-fed baby 1 21 22
Total 5 37 42

Table 2.6 Six possible arrangements of cell frequencies with n = 42 and marginal frequency
totals of 20, 22, 5, and 37

€)) @ 3 (C)) ® 0
0 20 1 19 2 18 3 17 4 16 5 15
5 17 4 18 3 19 2 20 1 21 0 22

and calculated utilizing a table of factorials. Then, the probability values for a =
1,2,3,4, and 5 in Table 2.6 were recursively given by

20)(5

P{a = 1]20,5,42} = 0.030957 x (20)(5) =0.171982,
(1H)(18)
19)(4

P{a = 2]20,5,42} = 0.171982 x (19)(4) = 0.343965 ,
(2)(19)
18)(3

P{a = 3]20,5,42} = 0.343964 x (18)(3) = 0.309568 ,
(3)(20)
172

P{a = 4]20, 5,42} = 0.309568 x ane) = 0.125301,
421

and

16)(1

P{a = 5]20,5,42} = 0.125301 x (16)(1) =0.018226,
(5)(22)

respectively. In this manner, Yates was able to recursively generate the entire dis-
crete permutation distribution from min(a¢) = max(0, N—n—n') = max(0,—17) =
0 to max(a) = min(N —n, N —n’) = min(20, 5) = 5.

2.6.1 Calculation with an Arbitrary Initial Value
To illustrate the use of an arbitrary origin in a recursion procedure, consider

arrangement (1) in Table 2.6 and set C{a = 0|20, 5, 42} to some small arbitrarily-
chosen value, say 5.00; thus, C {a = 0|20, 5,42} = 5.00. Then,
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(20)(5)

C{a = 1]20,5,42} = 5.000000 =27.777778 ,
ta=1] } s
19)(4

Cia = 2)20,5,42} = 27.777778 x E2) ()1(91 = 55.555556
18)(3

C{a = 3|20,5,42} = 55.555556 x 23)()2((); = 50.000000 ,
17)(2

Cla = 4]20,5,42} = 50.000000 x E4)()2(1; = 20.238095 ,

and

16)(1

Cla = 5]20, 5,42} = 20.238095 x 25)22(2; = 2.943723,

for a total of C{0,...,5|20,5,42} = 161.515152. The desired probability values
are then obtained by dividing each relative probability value by the recursively-
obtained total 161.515152;e.g.,

5.000000

P{a =0]20,5,42} = ———— = 0.030957 ,
161.515152
27.777778

P{a =1]20,5,42} = ———— = 0.171982,
161.515152
55.555556

P{a =2]20,5,42} = ——— = 0.343965 ,
161.515152
50.000000

P{a = 3]20,5,42} = —— = 0.309568 ,
161.515152
20.238095

P{a = 4]20,5,42} = ——— = 0.125301,
161.515152

and

2.943723

P{a = 5|20,5,42} = ——— = 0.018226.
161.515152

In this manner, the entire analysis could be conducted utilizing an arbitrary initial
value and a recursion procedure, thereby eliminating all factorial expressions. When
max(a) — min(a) + 1 is large, the computational savings can be substantial.

The historical significance of Yates’ 1934 article has surely been underrated.
It not only provided one the earliest and clearest explanations of Fisher’s exact
probability test, but also formally proposed the continuity correction to the chi-
squared test for the first time. In addition, Yates’ numerical studies in the paper
were the first in a long and often contentious series of investigations into the best
methods of testing for association in contingency tables [633, p. 17].
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2.7 Irwin and Fourfold Contingency Tables

Fisher’s exact probability test for 2 x 2 contingency tables was independently
developed R.A. Fisher in 1935 [452], Frank Yates in 1934 [1472] and Joseph Irwin
in 1935 [674]. Thus, the test is variously referred to as the Fisher exact probability
test (FEPT), the Fisher—Yates exact probability test, and the Fisher—Irwin exact
probability test.??

J.O. Irwin

It is not uncommon to find Fisher’s exact probability test referred to as the
Fisher—Irwin test, e.g., [33, 239,281, 897, 1349]. Joseph Oscar Irwin earned
his undergraduate degree from Christ’s College, University of Cambridge,
in 1921, whereupon he was offered a position with Karl Pearson at the
Galton Biometric Laboratory, University College, London, with whom he had
worked prior to entering Cambridge. While at University College, Irwin was
in contact not only with Karl Pearson, but also with Egon Pearson and with
Jerzy Neyman who was at University College, London, from 1925 to 1927
and again from 1934 to 1938. Irwin’s academic degrees continued with a
M.Sc. degree from the University of London in 1923, an M.A. degree from
the University of Cambridge in 1924, a D.Sc. degree from the University of
London in 1929 and the D.Sc. degree from the University of Cambridge in
1937 [31,32,550].

In 1928 Irwin joined R.A. Fisher’s Statistical Laboratory at the Rothamsted
Experimental Station, thereby becoming one of the few people to have studied
with both Pearson and Fisher [81]. In 1931 Irwin joined the staff of the
Medical Research Council at the London School of Hygiene & Tropical
Medicine, where he remained for the next 30 years, except for the war years
(1940-1945) when the staff of the London School of Hygiene & Tropical
Medicine was evacuated from London and Irwin was temporarily attached
to the Faculty of Mathematics at Queen’s College, University of Cambridge,
where he taught statistics to mathematicians. In his later years, Irwin was a
visiting professor at the University of North Carolina at Chapel Hill during
the academic years 1958-1959 and 1961-1962, and for one semester in 1965
[31]. Joseph Oscar Irwin retired in 1965 and passed away on 27 July 1982 at
the age of 83 [81].

22Good has argued that the test should more properly be referred to as the Fisher—Yates—Irwin—
Mood test [519, p. 318].
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Table 2.7 Irwin’s data on 2 X 2 contingency tables with equal marginal totals.

Table with 2 marked items Table with r marked items

Sample Marked Unmarked Total Sample Marked Unmarked Total

1 2 4 6 1 r 6—r 6
2 6 0 6 2 8—r r—>2 6
Total 8 4 12 Total 8 4 12

In 1935 Irwin published an exact probability test for 2 x 2 contingency tables
in the Italian journal Metron [674].2* The publication was original and independent
of the results published by Yates in 1934 [1472] and Fisher in 1935 [452] on the
same theme.?* In fact, Irwin noted in this paper that the paper was actually finished
in May of 1933, but publication was “unavoidably delayed” until 1935.%° In a
footnote to this article Irwin acknowledged that a paper dealing with the same
subject, “in some respects more completely” had previously been published by
F. Yates in 1934.%° In this 1935 paper Irwin described the difficulty in analyzing
2 x 2 contingency tables with Pearson’s chi-squared statistic when the expected
frequency in any cell was less than 5. In response to this difficulty, Irwin developed
three approaches to analyze 2 x 2 contingency tables, in addition to the usual chi-
squared analysis. He dismissed the first two approaches as impractical or inaccurate
and advocated the third approach based on fixed marginal frequency totals [674].
An example will serve to illustrate Irwin’s approach.

Consider the 2 x 2 contingency table on the left side of Table 2.7. Irwin observed
that, given the marginal frequency totals, the cell frequency for the Marked items
in Sample 1 could not be smaller than max(0,6 + 8 — 12) = 2 nor larger than
min(6, 8) = 6. He suggested taking samples of size 6 from a universe in which p
is the probability of a Marked item. Then, the chance of getting eight Marked and

four Unmarked items was
12 _
(4)p8(1_p)12 8

23 Although Metron Rivista Internazionale di Statistica was published in Italy, the article by Irwin
was in English.

24For the early history of Fisher, Yates, Irwin, and the exact analysis of 2 X 2 contingency tables,
see articles by Barnard [71] and Good [519-521].

ZIrwin suffered from chronic poor health from early childhood and it is possible that was what
delayed publication.

26Irwin joined the Rothamsted Experimental Station in 1928 and remained there until 1931,
which was when Yates joined Rothamsted. Since they were both employed in Fisher’s Statistical
Laboratory at Rothamsted and both overlapped as undergraduates at the University of Cambridge,
it is likely they were well acquainted.
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and he could easily enumerate the 2 x 2 contingency tables which satisfied this
condition by supposing r items in Sample 1 to be Marked, as illustrated on the right

side of Table 2.7. Irwin calculated that the chance of obtaining the 2 x 2 table on the
right side of Table 2.7 was

(f) pr(1—=p)" x (8 i r)pg_’(l -p) = (f) (8 E r)pg(l -p

and he then generated the probability values for all possible tables with r =
2,...,6;viz.,

PP —p)*t = 15081 - p)*,

PP —p)*% =120p%(1 — p)*,

=)}
@)}

pi(1—p)*% =225p%(1 — p)*,

~

=)}
=)}

pi(1—p)*7 =120p%(1 — p)*,

(2) (g) PP —p)* = 15081 - p)*,

thus yielding a total of

[9)]

N N
BN w N
/\/\m/_\

and

12 _
(4)178(1 —p)P¥ =495p%(1 - p)*.

Thus, as Irwin illustrated, if » = 2 the exact chance of a contingency table
arising with a number of Marked items as small or smaller than in Sample 1 was
15/495 = 0.0303 and the exact chance of an equally probable or less probable
table arising was 15/495 + 15/495 = 0.0606. Irwin then compared these results
to a conventional chi-squared probability value where y*> = 6.00, y = 2.4495,
and the corresponding probability values, obtained from a N (0, 1) distribution, were
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Table 2.8 Irwin’s data on 2 X 2 contingency tables with unequal marginal totals.

Table with 3 unmarked items Table with s unmarked items

Sample Marked Unmarked Total Sample Marked Unmarked Total

1 79 3 82 1 82— s 82
2 56 7 63 2 53+ 10— 63
Total 135 10 145 Total 135 10 145
Fig. 2.2 Probability values .
fo?the unmarked itcyms on the 5 Probability
right side of Table 2.8 0 0.0002
1 0.0024
2 0.0156
3 0.0594
4 0.1442
5 0.2327
6 0.2530
7 0.1831
8 0.0844
9 0.0224
10 0.0026

0.0072 and 0.0143, respectively.?’ Irwin concluded that the chi-squared test would
“considerably overestimate the significance” [674, p. 86] and recommended that
when the numbers in all cells were small the exact method should be used, but if
samples were of reasonable size and there were small cell frequencies in only one
or two cells yielding expected frequencies less than five, then the researcher “shall
seldom be misled by applying the usual [chi-squared] test” [674, p. 94].

Irwin concluded the article with a number of examples. In several of the
examples, the row marginal frequency totals were not equal, as they are in Table 2.7
where the marginal row totals for Samples 1 and 2 are both 6. Here Irwin did
something interesting and somewhat controversial, even today. A second example
will illustrate that procedure.

Irwin noted that s Unmarked items in Sample 1 on the right side of Table 2.8
could take on the values 0, 1, ..., 10 and he found the corresponding probability
values listed in Fig. 2.2. In calculating the two-tailed probability value, Irwin noted
that the observed cell frequency of 3 with a point-probability value of 0.0594
appeared in the lower tail of the distribution. He therefore accumulated all the
probability values in the lower tail that were equal to or less than the observed
probability value of 0.0594 to get the one-tail cumulative probability value, e.g.,

?To clarify, Irwin took the positive square root of 2, i.e., y, which with one degree of freedom
is a normal deviate, and thus obtained the probability values from a standard unit-normal table of
probability values.
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0.0002 4 0.0024 +0.0156 4 0.0594 = 0.0776. Then Irwin calculated the upper-tail
probability value as the sum of the probability values in the upper tail that were less
than or equal to the observed probability value of 0.0594, e.g., 0.0224 4 0.0026 =
0.0250. Following that, he combined the two cumulative probability values to
compute 0.0776 + 0.0250 = 0.1026 as the two-tailed probability value, whereas
it was customary at the time to simply double the lower-tail probability value, i.e.,
0.07764-0.0776 = 0.1552. This became known as “Irwin’s rule” and is still referred
to today as such; see for example, Armitage and Berry [33, pp. 131-132] and
Campbell [239].? Incidentally, Irwin’s rule extends to any r-way contingency table.

2.8 The Rothamsted Manorial Estate

The Rothamsted Experimental Station began as the Rothamsted manorial estate,
which can be dated from the early 1300s, when it was held by the Cressy family for
about 200 years.

Manorial Estates

The manorial or seignorial system was a social and economic system of
medieval Europe under which serfs and peasants tilled the arable land of
a manorial estate in return for dues in kind, money, or services. A typical
manorial estate was comprised of the manor house of the Lord of the Manor;
the demesne, or land held and controlled by the Lord of the Manor usually
consisting of arable lands, meadows, woodlands, and fish ponds; the serf
holdings that were usually strips of arable land, not necessarily adjacent,
which passed down through generations of serf families; and free peasants
who farmed land on the estate and paid rent to the Lord of the Manor.

The meadows were usually held in common, but the woodlands and fish
ponds belonged to the Lord. Serfs were expected to recompense the Lord for
hunting in the woods, fishing in the ponds, and cutting wood for fuel. The
Lord of the Manor collected payments from the serfs and peasants and in turn
rendered protection, administered justice, and provided for the serfs in times
of poor harvest [1278].

28The controversy as to whether to use the doubling rule or Trwin’s rule to obtain a two-tailed
probability value persisted for many years; see for example, articles by Cormack [279, 280] in
1984 and 1986, Cormack and Mantel in 1991 [281], Healy in 1984 [604], Jagger in 1984 [678],
Mantel in 1984 and 1990 [884, 885], Yates in 1984 [1476], and Neuhiduser in 2004 [1031].
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Like many other English manorial estates, Rothamsted Manor goes back to a
remote antiquity [1209, p. 161].%° Around the first century BC, the Celts occupied
the Rothamsted area, leaving some archaeological evidence consisting of hearths,
pot boilers, and broken pottery (i.e., shards). Under Roman rule, from about 55
BC to AD 450, Rothamsted flourished with a shrine, a flint wall around a square
enclosure, and burial sites; see, for this historical period, a report by Lowther
[848, p. 108—114]. The Romans left in the fifth century and were replaced by the
Saxons, who left no building at the site, but gave the place its name, “Rochamstede,”
meaning “rook-frequented homestead” [860, 1209].

The first recorded mention of Rothamsted was in 1212 when Richard de Merston
held lands there. A house with a chapel and garden are referred to in 1221 when
Henry Gubion granted some land to Richard de Merston. At this time the house
was a simple timber-framed building. At the beginning of the fourteenth century,
Rothamsted was held by the Noels (or Nowells) who passed it to the Cressy
(or Cressey) family in 1355 [542, 1352]. The Cressy family held the estate until
1525, but the male lineage died out. The Cressy’s daughter, Elizabeth, remained
in possession, marrying Edmund Bardolph who improved the manor house and
extended the estate, purchasing the adjoining Hoos manor, among others. By the
end of the sixteenth century, Rothamsted Manor was a substantial dwelling of at
least 16 rooms [1352].

The Wittewronges*® were Flemish Calvinists who, led by Jacques Wittewronge
(1531-1593), emigrated from Ghent in 1564 owing to the religious persecution
of Protestants by Philip II in the Spanish Netherlands at the time [574]. Jacques
Wittewronges had two sons: Abraham and Jacob. Jacob Wittewronge (1558-1622)
was a successful businessman and in 1611 he obtained a mortgage on Rothamsted
Manor by means of a loan to Edmund Bardolph. Jacob Wittewronge married twice;
his second wife was Anne Vanacker, the daughter and co-heiress of another Flemish
refugee, Gerard (or Gerrard) van Acker (or Vanacker) a merchant from Antwerp
who had settled in England. Anne bore Jacob Wittewronge a daughter. Anne, in
1616 and a son, John, in 1618. Jacob Wittewronge died on 22 July 1622. After
Jacob’s death, Anne Wittewronge married Sir Thomas Myddleton,?! Lord Mayor of
London, and in 1623 Dame Anne Myddleton procured the Rothamsted estate for
her son John.

Upon the passing of Dame Anne Myddleton in 1649, John Wittewronge inherited
the estate and made many improvements, especially to the manor house, holding
the estate until his death on 23 June 1693. John had graduated from Trinity College,
Oxford, in 1634 and by the time he was 18 had taken up his duties as Lord of the
Manor [1352]. In 1640 he was knighted by Charles I. The Wittewronge descendants
held the estate until male descendants ceased in 1763 and the estate then passed to

2 For this section of the book, the authors are indebted to Sir E. John Russell (q.v. page 57) who,
in 1942, compiled the early history of the Rothamsted Manor.

300riginally, Wittewronghele.
31Sometimes spelled Midleton or Middleton.
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the Bennet family by the marriage of Elizabeth Wittewronge to Thomas Bennet, and
finally to the Lawes family by the marriage of Mary Bennet, great-granddaughter
of James Wittewronge, son of John and Elizabeth Myddleton Wittewronge, to
Thomas Lawes. His son, John Bennet Lawes, was the father of John Bennet Lawes
[1211, 1228, 1415]. John Bennet Lawes was born in 1814 and educated at Eton
and the University of Oxford. Somehow, as a youth, he had acquired a proclivity
for conducting chemical experiments, which he did at home. His early experiments
were with drugs and he grew many medicinal plants on the estate, including poppies,
hemlock, henbane, colchicum, and belladonna. He soon began to apply chemistry
to agriculture and discovered the value of superphosphate of lime as a fertilizer and
established a factory to produce the first mineral fertilizer.”> In the 1830s Lawes
established the Rothamsted Experimental Station on the estate.

Lawes died on 31 August 1900 at the age of 85 and was succeeded by his son,
Charles Bennet Lawes, then aged 57, who assumed the ancestral name of Wit-
tewronge. Unfortunately, Charles died in 1911 after a brief illness and the income
had been sufficiently reduced that the family could no longer live at Rothamsted.
The estate was leased to and carefully tended by Major R.B. Sidebottom and
his wife, the Honorable Mrs. Sidebottom [1209, p. 166]. The Rothamsted estate
was sold by the Wittewronge—Lawes family to the Rothamsted Agricultural Trust
in 1934.

J.B. Lawes

John Bennet Lawes, 1st Baronet, F.R.S., Lord of Rothamsted Manor, was born
on 28 December 1814 and in 1822 at the age of eight inherited his father’s
sixteenth century estate of somewhat more than 1,000 acres (approximately
1.7 square miles). Lawes was educated at Eton and at Brasenose College,
University of Oxford, leaving in 1835 without taking a degree, whereupon
he entered into the personal management of the home farm at Rothamsted of
about 250 acres. In the 1830s Lawes created the Rothamsted Experimental
Station on the family estate to investigate the effects on the soil of different
combinations of bonemeal, burnt bones, and various types of mineral phos-
phate treated with sulphate or muriate of ammonia. Initially, Lawes created
superphosphate from sulphuric acid and ground-up bones, then graduated to
mineral phosphates, such as coprolites, and finally used imported apatite, i.e.,
calcium phosphate. As related by A.D. Hall, the application of sulphuric acid

(continued)

32Today, phosphate-based fertilizers are used throughout the world and there is presently concern
that the world will eventually run out of easily accessible sources of phosphate rock [278, 784].
On the other hand, heavy spring rains generate runoff from farmer’s fields into ponds and lakes,
spawning growth of toxic blue-green algae, such as Microsystis aeurginosa, which are fed by the
phosphorus from the fields [1463].
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to calcium phosphate yields a mixture of monocalcic phosphate, phosphoric
acid, and gypsum. The phosphates in this compound are soluble in water and
produce an efficacious fertilizer [574, p. xxii].

On 23 May 1842 Lawes was granted a patent for the development and
manufacture of superphosphate-bone meal—calcium phosphate treated with
sulfuric acid—as an artificial agricultural fertilizer, and in 1843 Lawes was
joined by the English chemist Sir Joseph Henry Gilbert in what began a
lifelong collaboration on over 100 published articles, including papers on
turnip culture, the amount of water given off by plants, the fattening qualities
of different breeds of sheep, the relative advantages of malted and unmalted
barley as food for stock, the valuations of unexhausted manures, nitrification,
experiments on the mixed herbage of permanent meadow, climate and wheat
crops, composition of rain and drainage waters, nitrogen in soils, the growth
of root crops for many years in succession on the same land, the rotation
of crops, and many other similar agricultural topics [331]. A full account
with detailed descriptions of the major Rothamsted agricultural experiments
is given is The Book of the Rothamsted Experiments by A.D. Hall [574]. In
addition, Hall lists the publications issued from the Rothamsted Experimental
Station between 1843 and 1905 [574, pp. 273-285].

A factory to manufacture superphosphate of lime was established by Lawes
on 1 July 1843 at Deptford Creek, London. Lawes was elected Fellow of the
Royal Society in 1854, in 1877 the University of Edinburgh conferred upon
Lawes the honorary degree of LL.D., in 1882 Lawes was made a baronet, and
in 1894 the University of Cambridge awarded Lawes the degree of D.Sc. Sir
John Bennet Lawes ER.S. passed away on 31 August 1900 at Rothamsted
Manor at the age of 86 [331].

J.H. Gilbert

Joseph Henry Gilbert was born at Kingston-upon-Hull on 1 August 1817. He
was educated at Glasgow University where he worked in the laboratory of
Professor Thomas Thomson. He moved to University College, London, in the
autumn of 1839 and worked briefly in the laboratory of Professor Anthony
Todd Thomson. It was in Thomson’s laboratory that Gilbert and Lawes first
met. He received his Ph.D. in 1840 from the University of Giessen in Germany
where he studied under the renowned chemist, Professor Justus van Liebig,
who had established the world’s first major school of chemistry. Another
famous student of von Liebig was August Kekulé, the discover of the benzene
ring [1180, pp. 133-135].

(continued)
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Gilbert, at the age of 26, was invited by Lawes on 1 June 1843 to
oversee the Rothamsted experiments. Thus began a partnership in research
that lasted for 58 years. Lawes possessed an originating mind and had a
thorough knowledge of practical agriculture. Gilbert, on the other hand, was
possessed of indomitable perseverance, combined with extreme patience. In
his research he united scrupulous accuracy with attention to detail. In general,
Lawes directed the agricultural operations in the experimental fields and the
execution of the experiments was in the hands of Gilbert [574, pp. xxii—xl].
Gilbert was elected Fellow of the Royal Society in 1860 and knighted by
Queen Victoria in 1893. Sir Joseph Henry Gilbert ER.S. died at his home
in Harpenden on 23 December 1901 in his 85th year and is buried in the
churchyard of St. Nicholas Church, next to his long-time friend, John Bennet
Lawes [184, 1416].

The Experimental Station

The Rothamsted Experimental Station, now Rothamsted Research, in Harp-
enden, Hertfordshire, England, about 25 miles northeast of London, had its
beginnings in the 1830s, vide supra. Together Lawes and Gilbert established
the Rothamsted Experimental Station on the family estate, the first agricul-
tural research station in the world, and in 1889 Lawes established the Lawes
Agricultural Trust, setting aside £100,000, one-third of the proceeds from the
sale of his fertilizer business in 1872, to ensure the continued existence of the
Rothamsted Experimental Station [184,331,1280] (According to the Rotham-
sted Research website, the equivalent amount today would be approximately
£5,000,000 or $7,800,000 [341].) In 1911 David Lloyd George, Chancellor of
the Exchequer set up the Development Fund for the rehabilitation of British
farming, making £1,000,000 available for research funding. In 1867 Lawes
and Gilbert received the Royal Society’s Royal Medal, also called the Queen’s
medal, awarded for important contributions in the applied biological and
physical sciences.

Expansions beginning in 1902 provided new facilities and added chemists,
bacteriologists, and botanists to the staff at Rothamsted. Researchers at
Rothamsted have made many significant contributions to science over the
years, including the discovery and development of the pyrethroid insecticides,
as well as pioneering contributions in the fields of virology, nematology, soil
science, and pesticide resistance. In 2012 Rothamsted Research supported 350
scientists, 150 administrative staff, and 60 Ph.D. students [341].
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Sir John Russell, who came from Wye Agricultural College® in 1907 and
assumed the directorship of the Rothamsted Experimental Station in 1912,
appointed R.A. Fisher to the Rothamsted Experimental Station in October, 1919 and
commissioned him to study yield data on 67 years of Broadbalk wheat,** for which
trials had begun as far back as 1843. Sir Russell initially hired Fisher on a temporary
basis, as he had only £200 appropriated for the appointment, but he soon recognized
the genius of Fisher and set about securing the necessary funds to hire him on a
permanent basis; however, not before Fisher had spent twice the £200 [191, p. 792].
Fisher made Rothamsted into a major center for research in statistics and genetics,
remaining at Rothamsted as the head of the Statistical Laboratory until 1933 when
he left to assume the post of Galton Professor of Eugenics at University College,
London. Fisher was succeeded by Frank Yates who had come to Rothamsted in 1931
as Assistant Statistician. Regular afternoon tea had been instituted at Rothamsted in
1906, 13 years prior to Fisher’s arrival, when Dr. Winifred E. Brenchley joined the
scientific staff as its first woman member [1354].3 Sir John Russell recalled:

[n]o one in those days knew what to do with a woman worker in a laboratory; it was felt,
however, that she must have tea, and so from the day of her arrival a tray of tea and a tin
of Bath Oliver biscuits appeared each afternoon at four o’clock precisely; and the scientific
staff, then numbering five, was invited to partake thereof [1210, p. 235] (Russell, quoted in
Box [195, p. 132]).

This tea service ended up being an important part of the story of Fisher and the
beginnings of permutation methods.

E.J. Russell

Edward John Russell was born on 31 October 1872 and was educated
at Carmarthen Presbyterian College, Aberystwyth University College, and
Owen’s College, Manchester, graduating with a B.Sc. and First Class Honors
in Chemistry in 1896. Russell was awarded the degree of D.Sc. by the
University of London for his researches at Manchester [1195, 1361].

In January 1901 Russell, who preferred the name John Russell, obtained a
Lectureship in Chemistry at Wye Agricultural College, at which the Principal

(continued)

33The College of St. Gregory and St. Martin at Wye, more commonly known as Wye College, was
an educational institution in the small village of Wye, Kent, about 60 miles east of London.

34Broadbalk refers to the fields at Rothamsted on which winter wheat was cultivated, not a strain
of wheat.

35 Afternoon tea had been a British tradition since one of Queen Victoria’s (1819-1901) ladies-
in-waiting, Anna Maria Russell (née Stanhope) (1783-1857), the seventh Duchess of Bedford,
introduced it at Belvoir (pronounced Beaver) Castle in the summer of 1840, the idea being a
light repast around 4 p.m. would bridge the lengthy gap between luncheon and dinner, which
in fashionable circles at that time was not taken until 8 p.m.
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was Alfred Daniel Hall. Hall left Wye shortly after Russell joined the staff
to become Director of Rothamsted Experimental Station. Meanwhile, the
Goldsmith’s Company had given a capital grant of £10,000 to endow a
position in soil research at Rothamsted, which allowed Hall and the Lawes
Agricultural Trust to offer Russell a post as the first Goldsmith’s Company
Soil Chemist. Russell accepted the offer and moved from Wye College to
Rothamsted in July of 1907. At that time the scientific staff was comprised of
Hall and Russell and, in addition, Winifred Elsie Brenchley as botanist, Henry
Brougham Hutchinson as bacteriologist, and Norman H.J. Miller as chemist
[1361,1404].

Hall left Rothamsted in October of 1912 and Russell was appointed
Director of the Rothamsted Experimental Station in 1912 and served as
Director until 1943. He was elected Fellow of the Royal Society in 1917,
received the Order of the British Empire in 1918, and was knighted by King
George V in 1922. In 1943, Russell, now 70, retired from Rothamsted and was
succeeded by William Gammie Ogg. Sir E. John Russell O.B.E. ER.S. died
on 12 July 1965 at the age of 92. A complete bibliography of his writings and
publications is contained in a biography by Thornton [1361, pp. 474—477].

In The Design of Experiments (familiarly known as DOE), first published in
1935, Fisher (q.v. page 25) again intimated at the utility of a permutation approach
to obtain exact probability values [451, Sect. 11], and it is this formative text that
many researchers refer to as setting the idea of permutation tests into motion,
e.g., Conover [272], Kempthorne [719], Kruskal and Wallis [779], and Wald and
Wolfowitz [1407]. Fisher’s description of the “lady tasting tea” is often referenced
to describe the underlying logic of permutation tests. It appears that the story has
never been told in its entirety in a single place and is worth relating. While several
versions of the story exist, the account here relies primarily on the description by
Joan Fisher Box [195, pp. 131-132].

2.8.1 The Rothamsted Lady Tasting Tea Experiment
The “lady tasting tea” experiment at the Rothamsted Experimental Station in the

early 1920s has become one of the most referenced experiments in the statistical lit-
erature. A search of the Internet in February of 2013 produced 25,600 citations.*®

36For a detailed explanation as to why it matters whether the tea or the milk is poured into the
teacup first, see a 2012 article by Stephen Senn in Significance [1251].



2.8 The Rothamsted Manorial Estate 59

The Lady Tasting Tea

At Rothamsted in the 1920s, afternoon tea was served at 4 o’clock in the
sample house in inclement weather or, otherwise, outside the sample house
on a table set with an urn of tea and cups. One afternoon in the early 1920s,
Fisher drew a cup of tea from the urn, added milk, and proffered it to the lady
beside him, Dr. Blanche Muriel Bristol, an algologist. She declined the cup of
tea offered by Fisher, stating that she preferred a cup into which the milk had
been poured first. Fisher’s quick response was, “[n]onsense, surely it makes
no difference” [195, p. 134].

Dr. William A. Roach, a chemist at the laboratory who was soon to marry
Dr. Bristol, suggested a test, to which Dr. Bristol agreed. Consequently, eight
cups of tea were prepared, four with the tea added after the milk and four
with the milk added after the tea, and presented to Dr. Bristol in random
order [195, p. 134]. Dr. Bristol’s personal triumph was never recorded and
Fisher does not describe the outcome of the experiment; however, H. Fairfield
Smith was present at the experiment and he later reported that Dr. Bristol had
identified all eight cups of tea correctly [1218, p. 8]. William Roach, however,
apparently reported that Dr. Bristol “made nearly every choice correctly”
[191, p. 793]. Incidentally, the probability of correctly dividing the eight cups
into two sets of four by chance alone is only 1 in 70 or 0.0143. It should
be noted that another version of the story has the event taking place at the
University of Cambridge in the late 1920s [1218], but it seems unlikely that
this version of the story is correct. In addition, according to Dr. Roach, Dr.
Bristol was correct on enough of the cups to prove her point [575, 1251].%’

For additional descriptions of the tea tasting experiment, see Fisher [451,
pp- 11-29], Fisher [459, Chap.6], Box [191], Box [195, pp. 134-135],
Gridgeman [555], Salsburg [1218, pp. 1-2], Lehmann [816, pp. 63—64], Hall
[575, p. 315], Okamoto [1053], Senn [1250-1252], and Springate [1313]. For
a decidedly different (Baysian) take on the lady tasting tea experiment, see a
1984 paper on “A Bayesian lady tasting tea” by Dennis Lindley [829] and a
1992 paper on “Further comments concerning the lady tasting tea or beer:
P-values and restricted randomization” by Irving (I.J.) Good [521].

37For a biography of Dr. B. Muriel Bristol and a picture, see a 2012 article by Stephen Senn in
Significance [1251].
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Table 2.9 Five possible arrangements of cell frequencies with n = 8 and identical marginal
frequency totals of 4, 4, 4, and 4

)] @ 3) “ (&)

4 0 3 1 2 2 1 3 0 4
0 4 1 3 2 2 3 1 4 0

2.8.2 Analysis of The Lady Tasting Tea Experiment

A dozen years later, in 1935, Fisher provided a detailed discussion of the tea tasting
experiment [451].3% In what Fisher termed a hypothetical experiment in Chap.II,
Sect. 5 of The Design of Experiments, Fisher described a woman who claimed to be
able to tell the difference between tea with milk added first and tea with milk added
second [451]. He concocted an experiment, without mentioning the Rothamsted
experiment or Dr. Bristol, whereby a woman sampled eight cups of tea, four of each
type, and identified the point at which the milk had been added—before the tea,
or after.’” Fisher then outlined the chances of the woman being correct merely by
guessing, based on the number of trials; in this case, eight cups of tea [646]. The
five possible 2 x 2 tables are listed in Table 2.9.

The null hypothesis in this experiment was that the judgments of the lady were
in no way influenced by the order in which the ingredients were added. Fisher
explained that the probability of correctly classifying all eight cups of tea was one
in 70, i.e., the hypergeometric point-probability value for cell arrangement (1) in
Table 2.9 is given by

Pl g g o Aaaa 24 1
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Fisher went on to note that only if every cup was correctly classified would the
lady be judged successful; a single mistake would reduce her performance below
the level of significance. For example, with one misclassification the one-tailed
probability for cell arrangements (1) and (2) in Table 2.9 is given by

P(314.4.8) + P{4]44.8) = 4141 41 41 N 4141 41 41 —16+ 117
o T TTRI3 131 8141014100 70 0 70 70

and 17/70 = 0.2429 is much greater than 0.05, whereas 1/70 = 0.0143 is
considerably less than 0.05.

3In 1956 Fisher published a lengthy discussion of the lady tasting tea experiment titled
“Mathematics of a lady tasting tea” in J.R. Newman’s book titled The World of Mathematics [459,
pp. 1512-1521].

31t should be noted that Francis Galton, after much experimentation, always chose to put the milk
into the teacup first [1251, p. 32].
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Table 2.10 Seven possible arrangements of cell frequencies with n = 36 and identical marginal
frequency totals of 6, 6, 6 and 6

()] @ 3) “ ® © Q)
0 6 1 5 2 4 3 3 4 2 5 1 6 0
6 0 5 1 4 3 3 3 2 4 1 5 0 6

To increase the sensitivity of the experiment, Fisher suggested a new experiment
with 12 cups of tea, six with the milk added first and six with the milk added
second. Table 2.10 lists the seven possible 2 x 2 tables. Here the hypergeometric
probability of correctly classifying all 12 cups of tea as listed in cell arrangement
(1) of Table 2.10 is one in 924 and is given by

6! 6! 6! 6! 720 1
P{0]6,6,12} = = -
ol "= Taror6r6l0l — 665280 ~ 924

and for one misclassification the one-tailed probability for cell arrangements (1) and
(2) in Table 2.10 is given by

P{1]6.6,12} + P{0]6.6,12}
6! 6! 6! 6! 6! 6! 6! 6! 36 1 37

S 1SS 12066000 924 T 924 904

Fisher determined that since 37/924 = 0.04 was less than 0.05, the experiment
would be considered significant even with one misclassification. This additional
configuration led Fisher to observe that increasing the size of the experiment
rendered it more sensitive and he concluded that the value of an experiment is
increased whenever it permits the null hypothesis to be more readily disproved.
It should be noted that in this example Fisher simply assumed 0.05 as the level of
significance, without explicitly identifying the level of significance.*’

2.9 Fisher and the Analysis of Darwin’s Zea mays Data

In 1935 Fisher (q.v. page 25) provided a second hypothetical discussion of
permutation tests in The Design of Experiments, describing a way to compare
the means of randomized pairs of observations by permutation [451, Sect.21].

401t is generally understood that the conventional use of the 5% level of significance as the
maximum acceptable probability for determining statistical significance was established by Fisher
when he developed his procedures for the analysis of variance in 1925 [292]. Fisher also
recommended 0.05 as a level of significance in relation to chi-squared in the first edition of
Statistical Methods for Research Workers [448, pp. 79-80]. Today, p = 0.05 is regarded as
sacred by many researchers [1281]. However, Fisher readily acknowledged that other levels of
significance could be used [449, p. 504]. In this regard, see discussions by Cowles and Davis [292]
and Lehmann [816, pp. 51-53].
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Table 2.11 Heights of crossed- and self-fertilized Zea mays plants in inches

Crossed- Self- Difference Difference
Pot fertilized fertilized (inches) (eighths)
4 3 1
I 23% 172 +63 +49
12 203 —83 —67
21 20 +1 +8
11 22 20 +2 +16
194 1832 408 +6
21% 183 +2% +23
1 5 4
I 221 182 +33 +28
3 2 1
203 152 +53% +41
2 4 6
182 163 +1¢ +14
212 18 +32 +29
232 163 +7 +56
v 21 18 +3 +24
1 6 3
221 128 +93 +75
23 15% +7% +60
12 18 —6 —48
Total 302 2633 +392 +314

In this case Fisher carried the example through for the first time, calculating test
statistics for all possible pairs of the observed data [646]. For this example analysis,
Fisher considered data from Charles Darwin on 15 pairs of planters containing
Zea mays (“maize” in the United States) seeds in similar soils and locations, with
heights to be measured when the plants reached a given age [318]. As Darwin
described the experiment, Zea mays is monoecious and was selected for trial on
this account.*! Some of the plants were raised in a greenhouse and crossed with
pollen taken from a separate plant; and other plants, grown separately in another
part of the greenhouse, were allowed to fertilize spontaneously. The seeds obtained
were placed in damp sand and allowed to germinate. As they developed, plant pairs
of equal age were planted on opposite sides of four very large pots, which were
kept in the greenhouse. The plants were measured to the tips of their leaves when
between 1 and 2 ft in height. The data from the experiment are given in the first two
columns of Table 2.11 and are from Table XCVII in Darwin’s The Effects of Cross
and Self Fertilisation in the Vegetable Kingdom [318, p. 234].

Using the data in the last column of Table 2.11 where the differences between the
heights of the crossed- and self-fertilized plants were recorded in eighths of an inch,

#1For a concise summary of the Zea mays experiment, see a discussion by Erich Lehmann in his
posthumously published 2011 book on Fisher, Neyman, and the Creation of Classical Statistics
[816, pp. 65-66].
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Fisher first calculated a matched-pairs ¢ test. He found the mean difference between
the crossed- and self-fertilized Zea mays plants to be

N 314
d=-) d ==— =20.933
nZ 15

i=1

and the standard error to be

26,518 — (20.933)(314)
15(15— 1)

i=1 i=1

=9.746 .

n n
Y dr-dY d

nn—1) - \/
Then, Student’s matched-pairs ¢ test yielded an observed statistic of

20.933
9.746

=2.148.

d
= = =
Fisher pointed out that the 5 % ¢ value with 14 degrees of freedom was 2.145 and
concluded since 2.148 just exceeded 2.145, the result was “significant” at the 5 %
level.

Fisher then turned his attention to an exact permutation test, calculating sums of
the differences for the 2!° = 32,768 possible arrangements of the data, based on
the null hypothesis of no difference between self-fertilized and cross-fertilized Zea
mays plants. The exact probability value was calculated as the proportion of values
with differences as, or more extreme, than the observed value. Fisher found that in
835 out of 32,768 cases the deviations were greater than the observed value of 314;
in an equal number of cases, less than 314; and in 28 cases, exactly equal to 314.
Fisher explained that in just 835428 = 863 out of a possible 32,768 cases, the total
deviation would have a positive value as great or greater than the observed value of
314, and in an equal number of cases it would have as great a negative value. The two
groups together constituted 1,726/32,768 = 5.267 % of the possibilities available,
a result very nearly equivalent to that obtained using Student’s ¢ test, where the
two-tailed probability value for t = 2.148 with 14 degrees of freedom is 4.970 %
[461, p. 47]. Fisher additionally noted that the example served to demonstrate that an
“independent check” existed for the “more expeditious methods” that were typically
in use, such as Student’s 7 test [451, pp. 45-46].

Finally, Fisher argued that, because the ¢ distribution is continuous and the
permutation distribution is discrete, the ¢ distribution was counting only half of
the 28 cases that corresponded exactly with the observed total of 314. He went
on to show that making an adjustment corresponding to a correction for continuity
provided a ¢ probability value more in line with the exact probability value. The
corrected value of ¢ was 2.139, yielding a probability value of 5.054 % which is
closer to the exact value of 5.267 % than the unadjusted value of 4.970 %. For
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excellent synopses of the Zea mays experiment, see discussions by Kempthorne
[719, p. 947], Holschuh [646], Lehmann [816, pp. 65-66], McHugh [914], and E.S.
Pearson [1093].

One of the benefits Fisher attributed to permutation methods was its utility in
validating normal-theory analyses [451, Chaps. 20 and 21]. Here Fisher argued that,
when testing the hypothesis of no treatment effect in an agricultural experiment,
the normal-theory significance level usually approximates the corresponding per-
mutation significance level. As noted by Hooper [647], this tendency for agreement
between normal-theory and permutation tests has also been examined using both
real and simulated data by Eden and Yates [379] and Kempthorne and Doerfler
[725]; moment calculations by Bailey [49], Pitman [1131], and Welch [1428];
Edgeworth expansions by Davis and Speed [329]; and limit theorems by Ho and
Chen [634], Hoeffding [636], and Robinson [1178]. In this regard, Fisher was fond
of referring to a 1931 article by Olof Tedin [1343] in which Tedin demonstrated that
when the assumptions of the classical analysis of variance test are met in practice,
the classical test and the corresponding randomization test yielded essentially the
same probability values [1126].

O. Tedin

Olof Tedin (1898-1966) was a Swedish geneticist who spent most of his
professional career as a plant breeder with the Swedish Seed Association,
Svalof, where he was in charge of the breeding of barley and fodder roots
in the Weibullsholm Plant Breeding Station, Landskrona. In 1931, with the
help of Fisher, he published a paper on the influence of systematic plot
arrangements on the estimate of error in field experiments [1343]. Fisher
had previously shown that of the numerous possible arrangements of plots
subject to the condition that each treatment should appear once in each row
and once in each column (an Euler Latin Square), it was possible to choose
at random one to be used in the field that would be statistically valid. Tedin
fashioned 12 blocks of 5 x 5 plots with five treatments distributed according
to different plans.

Two of the 12 arrangements were knight’s moves (Knut Vik), Latin
Squares in which all cells containing any one of the treatment values can
be visited by a succession of knight’s moves (as in chess) and where no
two diagonally adjacent cells have the same treatment value; two of the
arrangements were diagonal Latin Squares in which each of the treatment
values appears once in one of the diagonals and the other diagonal is
composed of the same treatment value, e.g., all 1s; seven of the arrangements
were random arrangement Latin Squares, as recommended by Fisher [449];
and one was a specially constructed Latin Square to evaluate ‘“spread,”
wherein arrangements in which adjacent plots never have the same treatment.

(continued)
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Examples of the knight’s move, diagonal, and random Latin Square arrange-
ments used by Tedin are:

34512 23451 43152
51234 34512 15234
23451 45123 52413
45123 51234 21345
12345 12345 34521
Knight’s Move Diagonal Random

Tedin found that systematic arrangements introduced bias in the estimate
of the error of the experiment, with the knight’s move arrangements over-
estimating the error and the diagonal arrangements under-estimating the error.
He concluded that “the present study confirms the views of Fisher, not only
in the one special case, but in all other cases of systematic plot arrangements
as well” [1343, p. 207].

2.10 Fisher and the Coefficient of Racial Likeness

Fisher’s 1936 article on ““The coefficient of racial likeness’ and the future of cran-
iometry” provided an alternative explanation of how permutation tests work [453].
Without explicitly labeling the technique a permutation test, Fisher described a
shuffling procedure for analyzing data. His description began with two hypothetical
groups of n; = 100 Frenchmen and n, = 100 Englishmen with a measurement of
stature on each member of the two groups. After recording the differences in height
between the two groups in the observed data, the measurements were recorded on
200 cards, shuffled, and divided at random into two groups of 100 each, a division
that could be repeated in an enormous, but finite and conceptually calculable number
of ways. *> A consideration of all possible arrangements of the pairs of cards
would provide an answer to the question, “Could these samples have been drawn at
random from the same population?” [453, p. 486]. Fisher explained that a statistician
usually does not carry out this tedious process, but explained that the statistician’s
conclusions “have no justification beyond the fact that they agree with those which
could have been arrived at by this elementary method” [453, p. 58]. Fisher went
on to stress that the test of significance calculates a probability value and does not

42 Authors’ note: actually, 90,548,514,656,103,281,165,404,177,077,484,163,874,504,589,675,413,
336,841,320 ways.
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calculate a metrical difference [453, pp. 59—60], anticipating perhaps the current
emphasis on calculating effect sizes as well as tests of significance.

Finally, it should be noted that while Fisher never referenced nor provided a
footnote to Karl Pearson in this article, it is abundantly evident that this article is a
thinly-veiled criticism of Pearson’s coefficient of racial likeness published in 1926
[1110], as the formula for the coefficient of racial likeness on page 60 of Fisher’s
article is taken directly from Pearson’s 1926 article. For a concise description of the
card shuffling experiment and a critical retort to Fisher’s analyses of Darwin’s Zea
mays data and the racial craniometry data see E.S. Pearson [1093], a summary of
which is provided on page 76.

Continuing the theme of shuffling cards to obtain permutations of observed data
sets, in 1938 Fisher and Yates described in considerable detail an algorithm for
generating a random permutation of a finite set, i.e., shuffling the entire set [463,
p- 20]. The basic method proposed by Fisher and Yates consisted of four steps and
resulted in a random permutation of the original numbers [463, p. 20]:

1. Write down all the numbers from 1 to n, where n is the size of the finite set.

2. Pick a number k between 1 and n and cross out that number.

3. Pick a number k between 1 and n — 1, then counting from the low end, cross out
the kth number not yet crossed out.

4. Repeat step 3, reducing n by one each time.*?

2.11 Hotelling-Pabst and Simple Bivariate Correlation

While at Columbia University, Harold Hotelling was a charter member of the
Statistical Research Group (q.v. page 69) along with Jacob Wolfowitz and W. Allen
Wallis. This elite membership brought him into contact with a number of talented
and influential statisticians of the day.

H. Hotelling

Harold Hotelling entered the University of Washington in Seattle in 1913 but
his education was interrupted when he was called up for military service in
World War 1. Hotelling recalled that he, “having studied mathematics, science
and classics at school and college, was considered by [the] Army authorities
competent to care for mules. The result was [that] a temperamental mule
named Dynamite temporarily broke my leg and thereby saved his life, as

(continued)

43The Fisher—Yates shuffle, with little change, became the basis for more sophisticated computer
shuffling techniques by Richard Durstenfeld in 1964 [367], Donald Knuth in 1969 [762], and
Sandra Sattolo in 1986 [1222]. N. John Castellan [245] and Timothy J. Rolfe [1188] urged caution
in choosing a shuffling routine as many widely-used shuffling algorithms are incorrect.
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the rest of the division was sent to France and [was] wiped out” (Hotelling,
quoted in Darnell [317, p. 57]). Hotelling was discharged from the Army on 4
February 1919, and returned to the University of Washington to continue his
studies.

Hotelling earned his B.A. degree in journalism from the University of
Washington in 1919, his M.S. degree in mathematics from the University of
Washington in 1921, and his Ph.D. in mathematics (topology) from Princeton
University under Oswald Veblen in 1924. The topic of the thesis was “Three-
dimensional Manifolds of States of Motion.” He began his career at Stanford
University, first as a research associate with the Food Research Institute
from 1924 to 1927, and then as an Associate Professor in the Department
of Mathematics from 1927 to 1931. It was during this time that Hotelling
began corresponding with Fisher in England. This correspondence eventually
led to Hotelling traveling to the Rothamsted Experimental Station to study
with Fisher in 1929. In his unsolicited review of Fisher’s Statistical Methods
for Research Workers, first published in 1925, Hotelling wrote:

[m]ost books on statistics consist of pedagogic rehashes of identical material. This
comfortably orthodox subject matter is absent from the volume under review, which
summarizes for the mathematical reader the author’s independent codification of
statistical theory and some of his brilliant contributions to the subject, not all of
which have previously been published [651, p. 412].

Despite the fact that the book did not receive even one other single
positive review [576, p. 219], Hotelling concluded that Fisher’s “work is of
revolutionary importance and should be far better known in this country”
[651, p. 412]. Hotelling was so impressed with Statistical Methods for
Research Workers that he volunteered a review for the second edition in
1928. Hotelling subsequently volunteered a review for the third, fourth, fifth,
sixth, and seventh editions [816, p. 22]. Eventually, 14 editions of Statistical
Methods for Research Workers were published, the last in 1970, and it has
been translated into six languages [192, p. 153].

Hotelling was recruited to Columbia University in 1931 as Professor of
Economics and to initiate a Mathematical Statistics program. Columbia long
had a reputation for incorporating statistical methods into the social sciences,
especially economics under the leadership of Henry Ludwell Moore, but
also in psychology with James McKeen Cattell, anthropology with Franz
Boas, and sociology with Franklin Henry Giddings [238]. While at Columbia,
Hotelling was a charter member of the Statistical Research Group (q.v. page
69). In 1946 Hotelling left Columbia University for the University of North
Carolina at Chapel Hill at the urging of Gertrude Mary Cox to establish what
would become a renowned Department of Mathematical Statistics. Harold
Hotelling retired in 1966 and died on 26 December 1973 at the age of 78

(continued)
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from injuries sustained after falling on a patch of ice outside his home at
Chapel Hill, North Carolina [37,814, 1058, 1288].

M.R. Pabst

Margaret Hayes Pabst (née Richards) graduated with an A.B. degree from
Vassar College in 1931 [1076, p. 3], received her A.M. degree from the Uni-
versity of Chicago in mathematics in 1932, and earned her Ph.D. in economics
from Columbia University in 1944, where she studied with Hotelling.** In
1935 Margaret Hayes Richards married William Richard Pabst, Jr., who
was at that time teaching economics at Cornell University [826, p. 752]. In
that same year, Margaret Pabst was hired as an assistant in the College of
Agriculture at Cornell University [826, p. 752]. In the fall of 1936 William
Pabst returned to his alma mater, Amherst College, as an Assistant Professor,
and from 1936 to 1938 Margaret Pabst was employed as a researcher with
the Council of Industrial Studies at Smith College in nearby Northampton,
Massachusetts. Her major work for the Council was a report titled “Agricul-
tural Trends in the Connecticut Valley Region of Massachusetts, 1800-1900,”
which was her dissertation at Columbia University and was later published in
Smith Studies in History [1079]. Margaret Pabst also published a small volume
in 1932 on Properties of Bilinear Transformations in Unimodular Form that
was the title of her Master’s thesis at the University of Chicago [1077],
and another small volume in 1933 on The Public Welfare Administration of
Dutchess County, New York that was the Norris Fellowship Report of 1932—
1933 [1078].

In 1938 William Pabst accepted a position as Associate Professor of
Economics at Tulane University in New Orleans, Louisiana [1080, p. 876]
and in 1941 William and Margaret Pabst moved to Washington, DC, where he
worked for the War Production Board and the Office of Price Administration
until 1944, when he went into the Navy and was stationed at the Bureau of

(continued)

# Authors’ note: special thanks to Nanci A. Young, College Archivist, William A. Neilson
Library at Smith College, Northampton, Massachusetts, for retrieving the information on Margaret
Richards Pabst, and to Nancy Lyons, Program Analyst, United States Department of Agriculture,
Food and Nutrition Service, for contacting Archivist Nanci Young at Smith College on our behalf.
Special thanks also to Sarah Jane Pabst Hogenauer and Dr. Margaret Pabst Battin, Distinguished
Professor of Philosophy and Adjunct Professor of Internal Medicine, Division of Medical Ethics at
the University of Utah, who are the daughters of Margaret Richards Pabst and who graciously
shared details of their mother’s life, including having Muriel Hotelling, Harold Hotelling’s
daughter, as a babysitter and, as girls of 10 or 11, having lunch with R.A. Fisher.
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Ordnance in Washington, DC [1284, p. C4]. In 1946 he left active duty and
became Chief Statistician in the Navy’s Bureau of Ordnance as a civilian.
Margaret Pabst also worked for the United States government during the war,
and after the war, taught piano and published two books on music, co-authored
with Laura Pendleton MacCartney. Margaret Hayes Richards Pabst died on 15
April 1962 in Washington, DC.

While at Columbia University, on 1 July 1942, Harold Hotelling along with
W. Allen Wallis and Jacob Wolfowitz, became charter members of the renowned
Statistical Research Group which was based at Columbia during World War II and
remained in existence until 30 September 1945. The SRG attracted an extraordinary
group of research statisticians to Columbia and brought Hotelling into contact with
many of the foremost mathematical statisticians of the time [1219].

The SRG at Columbia

The Statistical Research Group (SRG) was based at Columbia University
during the Second World War from 1942 to 1945 and was supported by the
Applied Mathematics Panel of the National Defense Research Committee,
which was part of the Office of Scientific Research and Development (OSRD).
In addition to Harold Hotelling, Wilson Allen Wallis, and Jacob Wolfowitz,
the membership of the SRG included Edward Paulson, Julian Bigelow, Milton
Friedman, Abraham Wald, Albert Bowker, Harold Freeman, Rollin Bennett,
Leonard Jimmie Savage, Kenneth Arnold, Millard Hastay, Abraham Meyer
Girshick, Frederick Mosteller, Churchill Eisenhart, Herbert Solomon, and
George Stigler [1412]. For concise histories of the SRG, see articles by
W. Allen Wallis [1412] and Ingram Olkin [1056, pp. 123—125].

In 1936 Hotelling and Pabst used permutation methods for calculating exact
probability values for small samples of rank data in their research on simple
bivariate correlation [653]. Noting that tests of significance are primarily based on
the assumption of a normal distribution in a hypothetical population from which
the observations are assumed to be a random sample, Hotelling and Pabst set out to
develop methods of statistical inference without assuming any particular distribution
of the variates in the population from which the sample had been drawn. Hotelling
and Pabst noted that a false assumption of normality usually does not give rise to
serious error in the interpretation of simple means due to the central limit theorem,
but cautioned that the sampling distribution of second-order statistics are more
seriously disturbed by the lack of normality and pointed to “the grave dangers
in using even those distributions which for normal populations are accurate, in
the absence of definite evidence of normality” [653, p. 30]. Hotelling and Pabst
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also cautioned researchers about the pitfalls of using Pearson’s standard error to
provide probability values, noting that in order to use the standard error it was
necessary to assume that (1) the underlying population must be distributed as
bivariate normal—a more stringent assumption than requiring that each variate be
normally distributed, (2) only the first few terms of Pearson’s infinite series are
sufficient,¥ (3) the distribution of Spearman’s rank-order correlation coefficient
is normal, and (4) sample values can be substituted for population values in the
formula for the standard error.

Consider n individuals arranged in two orders with respect to two differ-
ent attributes. If X; denotes the rank of the ith individual with respect to one
attribute and Y; the rank with respect to the other attribute so that Xi,..., X,
and Yj,...,Y, are two permutations of the n natural integers 1, ..., n, then define
xi =X, —Xandy; = Y; —Y where X = Y = (n + 1)/2.%° The rank-order
correlation coefficient is then defined as

inYi

. E— (2.2)

Hotelling and Pabst showed that
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and Y_7_, »? have the same value. Denote by d; the difference between the two
ranks for the ith individual, so that d; = X; — Y; = x; — y;, then
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Substituting into Eq. (2.2) and simplifying yields

4In 1907, Pearson derived the standard error of Spearman’s rank-order correlation coefficient.
Assuming normality, Pearson generated the first four terms of an infinite series to provide an
approximate standard error [1109].

“°In the early years of statistics it was common to denote raw scores with upper-case letters, e.g.,
X and Y, and deviations from the mean scores with lower-case letters, e.g., x and y.
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which is Spearman’s rank-order correlation coefficient, first published by Charles
Spearman in 1904 in American Journal of Psychology [1300].

The article by Hotelling and Pabst utilized the calculation of a probability value
that incorporated all n! permutations of the data, under the null hypothesis that all
permutations were equally-likely (q.v. page 4).*” The probability for any particular
value was calculated as the proportion of the number of permutations equal to or
more extreme than the value obtained from the observed data. Following on the work
of Charles Spearman and Karl Pearson who had provided rough standard deviations
for a measure of rank-order correlation, Hotelling and Pabst provided a thorough
and accurate analysis that allowed for small samples. Although Hotelling and Pabst
did not produce tables for tests of significance, they did provide exact probability
values for small samples of n = 2, 3, and 4 [653, p. 35]. Finally, reflecting the
frustration of many statisticians in the 1930s, Hotelling and Pabst observed that for
large samples the calculation of exact probability values was very laborious, forcing
researchers to use approximations.

It is notable that while earlier works contained the essence of permutation tests,
the article by Hotelling and Pabst included a much more explicit description of
permutation procedures, including notation and specific examples for small data
sets. Thus, this 1936 article may well be the first example that detailed the method
of calculating a permutation test using all possible arrangements of the observed
data. It is interesting to note, however, that the work by Hotelling and Pabst became
important in the discussion of distribution-free procedures involving rank data, but
did not have a noticeable impact in the furthering of permutation tests.

2.12 Friedman and Analysis of Variance for Ranks
Trained as an economist, Milton Friedman became one of the most celebrated

statisticians of his time. In addition to his contributions as an academic at the
University of Chicago, he was also a public servant at the national level.

M. Friedman

(continued)

4TThis is an area of some controversy. Some researchers hold that, if and only if generalizing from
a sample to a population, permutations are equally likely in controlled experimentation, but may
not be equally likely in non-experimental research; see for example Zieffler, Harring, and Long
[1493, pp. 132-134].
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Milton Friedman graduated from Rutgers University in 1932 with an under-
graduate degree in mathematics and economics, earned his M. A. degree from
the University of Chicago in economics in 1933, and his Ph.D. in economics
from Columbia University in 1946, where he worked with Harold Hotelling.
During World War II, Friedman worked in Columbia’s Statistical Research
Group as a mathematical statistician (q.v. page 69). After the war, Friedman
spent 1 year at the University of Minnesota where his good friend George
Stigler was employed, but then accepted an appointment at the University
of Chicago, where he taught for the next 30 years, while simultaneously
maintaining a position with the National Bureau of Economic Research in
New York City. Friedman was an academic who also spent much of his
life in public service, but considered these part time activities, noting that
his primary interest was his “scientific work™ [487]. He was a member
of President Ronald Reagan’s Economic Policy Advisory Board and was
awarded the Nobel Prize in Economic Sciences in 1976. Milton Friedman
passed away on 16 November 2006 at the advanced age of 94 [483,487].

Noting the contribution by Hotelling and Pabst on using rank data to overcome
the assumption of normality in simple bivariate correlation, in 1937 Friedman
outlined a similar procedure employing rank data in place of the ordinary analysis
of variance [485].*8 If p denotes the number of ranks, Friedman utilized known
results such as sums of natural integers, squared natural integers, and cubed natural
integers from 1 to p givenby p(p +1)/2, p(p +1)(2p +1)/6,and p*(p —1)*/4,
respectively.

Friedman went on to show that the sampling distribution of the mean of ranks,
where 7; denotes the mean rank of the jth of p columns, would have a mean
value p = (p + 1)/2 and a variance of 6> = (p? — 1)/(12n), where n is the
number of ranks averaged over the jth column. The hypothesis that the means come
from a single homogeneous normal universe could then be tested by computing a
statistic, )(,2,, which Friedman noted tends to be distributed as the usual chi-squared
distribution with p — 1 degrees of freedom when the ranks are, in fact, random, i.e.,
when the factor tested has no influence [485, p. 676]. Friedman defined )(,2, as

1 2
5= L) = p(p+1)z( )

j=1 =1

which for calculation purposes reduces to

48 A clear and concise explanation of the Friedman analysis of variance for ranks test was given by
Lincoln Moses in a 1952 publication on “Non-parametric statistics for psychological research” in
Psychological Bulletin [1010].
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P n 2
X = ﬁZ(ZW) —3n(p+1),

j=1 \i=1

where r; denotes the rank in the ith of n rows and jth of p columns.

Friedman emphasized that the proposed method of ranks did not utilize all of the
information provided by the observed data, as the method relied solely on the order
of the variate and thus made no use of the quantitative magnitude of the variate.
The consequences of that, he explained, were that (1) the method of ranks makes
no assumption whatsoever as to the similarity of the distribution of the variate for
the different rows, (2) the method of ranks does not provide for interaction because
without quantitative measurements interaction is meaningless, and (3) the method
of ranks is independent of the assumption of normality.

Friedman demonstrated that for n = 2, )(f tends to normality as p increases,
and when 7 is large the discrete distribution of Xf approaches the continuous y?
distribution and the latter approaches normality as the degrees of freedom increases.
For small samples, Friedman presented, in Tables V and VI in [485], the exact
distribution of )(f in the case of p = 3 forn = 2,...,9 and in the case of p = 4,
forn = 2, 3, and 4 [485, pp. 688—689]. Finally, returning to the work of Hotelling
and Pabst, Friedman showed that the Spearman rank-order correlation coefficient
investigated by Hotelling and Pabst was related to Xf whenn = 2 as

xE=(p-Dl-r),

where r’ denotes the Spearman rank-order correlation coefficient. In 1997 Réhmel
published an algorithm for computing the exact permutation distribution of the
Friedman analysis of variance for ranks test [1186].

2.13 Welch’s Randomized Blocks and Latin Squares

In 1937 B.L. Welch published an article in Biometrika that described permutation
versions of randomized block and Latin square analysis of variance designs [1428].
He then compared the permutation versions of the two designs with the existing
normal-theory versions.

B.L. Welch
Bernard Lewis Welch graduated with a degree in mathematics from Brasenose
College, University of Oxford, in 1933. He then pursued a study of mathe-
matical statistics at University College, London, where Pearson and Fisher
had created a center for studies in statistical inference and biostatistics.
Welch received an appointment to a Readership in Statistics in the University

(continued)
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of Leeds, was appointed to the Chair in Statistics in 1968, and in the same year
was appointed head of the newly created Department of Statistics. Bernard
Lewis Welch suffered a stroke in June 1989 and died on 29 December of that
same year; he was 78 years old [8§92].

In an article on randomized block and Latin square analysis of variance designs
in Biometrika in 1937, Welch described Fisher’s inference to an exact probability,
referencing The Design of Experiments, and noted that although the calculations
would be lengthy, the result would be a hypothesis test that was free of assumptions
about the data [1428]. In this seminal article, Welch compared the normal-theory
version of Fisher’s variance-ratio z test with a permutation version in analyses of
randomized block and Latin square designs.

Welch found it convenient to consider, instead of z, a monotonically increasing
function of z given by

v=_"
S+ S

where S = SSgetween = SSTreatment aNd So = SSwithin = SSEmor in modern notation,
although Jerzy Neyman had previously pointed out the advisability of considering
the z-distribution directly [1033]. Like Eden and Yates in 1933 [379] and Pitman in
1937 [1129], Welch was able to reduce the amount of computation by considering
only the variable portions of z. Welch explained that the convenience of U over z
lies in the fact that in the permutation procedure (Sy + S1) is constant, thus only the
variation of S; = SSgetween N€ed be considered.

Utilizing the first two moments of the distribution of U, Welch analyzed a
number of small published data sets in investigations of randomized block and Latin
square designs. For randomized block designs, Welch found the expectations of
differences and of mean squares based on permutations of the data generally to agree
with those based on normal-theory methods. However, for Latin square designs
Welch found that the permutation variance was considerably smaller than that of the
normal-theory variance. Anticipating a debate that would appear and reappear in the
permutation literature, Welch considered two possibilities for statistical inference.
The first alternative considered a statistical inference about only the particular
experimental data being analyzed; in Welch’s case, a statistical inference only about
the agricultural yields of a particular experimental field [1428, p. 48]. The second
alternative considered the statistical inference drawn from the experimental data to
a defined population, thus regarding the permutation distribution of z as a random

= [(n — D exp(—2z) + 1]_1 ,
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sample from a set of similar distributions hypothetically obtained from other similar
experiments [1428, p. 48].4°

2.14 Egon Pearson on Randomization

E.S. Pearson, the son of Karl Pearson, had a distinguished career as a statistician in
his own right. He collaborated extensively with Neyman and H.O. Hartley, among
others, producing some of the most important and enduring statistical inference
procedures of his time. His partnership with H.O. Hartley led to the two volume
work on Biometrika Tables for Statisticians and his association with Jerzy Neyman
led, of course, to the classical Neyman—Pearson approach to statistical inference,
testing hypotheses, and confidence intervals.

E.S. Pearson

Egon Sharpe Pearson was the only son of Karl Pearson, who also had two
daughters, and the two shared a deep interest in the history of probability and
statistics [76]. E.S. Pearson was educated at Winchester College and Trinity
College, University of Cambridge, but his education was interrupted by World
War I. In 1920, Pearson was awarded a B.A. degree in mathematics after
taking the Military Special Examination, set up by the British Government for
those whose studies were delayed by the onset of the war. Pearson joined the
Department of Applied Statistics, University College, London in 1920, where
he attended lectures given by his father [814]. When Karl Pearson retired in
1933, the Department of Applied Statistics was divided into two departments.
E.S. Pearson was appointed head of the Department of Applied Statistics and
R.A. Fisher was appointed head of the Department of Eugenics.

Egon Pearson collaborated extensively with Jerzy Neyman (q.v. page 21)
researching statistical inference [1035, 1036], an account of which is given by
Pearson [1097], Reid [1160], and Lehmann [816, Chap. 3]. Pearson continued
work begun by his father on editing the two volumes of Tables for Statisticians
and Biometricians, collaborating with H.O. Hartley to compile and edit the
tables that were eventually published as Biometrika Tables for Statisticians,
Volume I in 1954 and Biometrika Tables for Statisticians, Volume II in 1972
[1101,1102]. Pearson was elected Fellow of the Royal Society in 1966. Egon
Sharpe Pearson FR.S. died on 12 June 1980 at the age of 84.

“For a concise summary of the 1937 Welch paper, see a 2008 article by H.A. David on “The
beginnings of randomization tests” in The American Statistician [326].
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H.O. Hartley

Herman Otto Hartley (née Hirschfeld) fled Germany in 1934 shortly after
completing his Ph.D. in mathematics at the University of Berlin to begin post-
graduate work at the University of Cambridge. It was while in England that
Hartley met E.S. Pearson at University College, London. In 1953, Hartley
emigrated from England to the United States, joining the department of
statistics at Iowa State University. In 1969, Hartley accepted a position as
distinguished professor at Texas A&M University, and in 1979 Hartley was
elected the 74th president of the American Statistical Association [321,1287].
Herman Otto Hartley passed away on 30 December 1980 in Durham, North
Carolina, from complications following open heart surgery [321, 1286, 1287].

In 1937 E.S. Pearson referenced the Fisher text on The Design of Experiments in
his consideration of randomizations in “Some aspects of the problem of randomiza-
tion” [1093]. Pearson discussed the principle of randomization (i.e., permutation)
and noted that most statistical tests used were developed on the assumption that
the variables were normally distributed, but permutation tests, as developed by
Fisher, were claimed to be independent of the assumption of normality. Pearson
then asked “how far can tests be constructed which are completely independent of
any assumption of normality?” [1093, p. 56].

Pearson provided concise summaries of several studies utilizing permutation
methods, questioning whether the studies were truly independent of normality. The
first study examined by Pearson was Fisher’s investigation into Darwin’s data on
the heights of crossed- and self-fertilized Zea mays plants (q.v. page 62). Pearson
noted that Fisher’s study of the Zea mays plants found that 1,722 out of 32,768
possible values of the mean heights of plants were greater than the mean height of
the observed plants, which was 20.933 in. (although the value given by Pearson of
1,722 appears to be a slight misprint) and that this was in no way unique. Pearson
explained that Fisher could have used the geometric mean, for example, instead
of the arithmetic mean and possibly found different results. The point being not
that the geometric mean was a rational choice, but that “if variation is normal, a
criterion based on the observed mean difference in samples [would] be most efficient
in determining a real population difference” [1093, p. 58] and therefore using the
arithmetic mean implied that the researcher believed a priori that the characteristics
measured were likely to be normally distributed.

A second study examined by Pearson was Fisher’s investigation into the coef-
ficient of racial likeness [453]. As noted on page 65, Fisher considered measures
of the statures of a random sample of n = 100 Frenchmen and » = 100
Englishmen to test the hypothesis that the mean heights of the sampled populations
of Frenchmen and Englishmen were identical. Recall that Fisher conjectured writing
the 2n measurements on cards, then shuffling the cards without regard to nationality.
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Thus, it would be possible to divide the cards into two groups, each containing
n cards, in (2n)!/(n!)?> ways. The test statistic suggested was the difference
between the means of the two groups. Again, Pearson questioned whether there
was something fundamental about the form of the test “so it [could] be used as a
standard against which to compare other more expeditious tests, such as Student’s”
[1093, p. 59].

Pearson continued with a hypothetical study based on two samples of seven
observations each. The data for Samples 1 and 2 were: {45, 21, 69, 82, 79, 93,
34} and {120, 122, 107, 127, 124, 41, 37}, respectively. Sample 1 had a mean of
X; = 60.43 and a midpoint, defined as the arithmetic average of the lowest and
highest scores in the sample, of m; = 57; Sample 2 had a mean of X, = 96.86
and a midpoint of m, = 82. He showed that after pooling the fourteen numbers,
they could be divided into two groups of seven each in (14!)/(7!)> = 3,432
ways. Pearson found that the differences in means of the two samples had an
equal or greater negative value than the observed mean difference of x; — X, =
60.43 — 96.86 = —36.43 in 126 out of 3,432 possible divisions, or 3.67 %. On
the other hand, he found that the differences in midpoints of the two samples
had an equal or greater negative value than the observed midpoint difference of
my; —my = 57 — 82 = —25 in 45 of the 3,432 divisions or, 1.31 %.

Pearson explained that random assignments of the 14 numbers into two groups
of seven would give numerical values as large or larger than that observed to the
difference in means on 2 x 3.67 = 7.34 % of occasions, and numerical values as
large or larger than that observed to the difference in midpointson2x1.31 = 2.62 %
of occasions. Pearson concluded that “applying this form of test to the midpoints, we
would be more likely to suspect a difference in populations sampled than in applying
the test to the means” [1093, p. 60]. Later in the article, Pearson confessed that he
structured the data to favor the midpoints. Specifically, Pearson used Tippett’s tables
of uniform random numbers to draw the two samples from a rectangular distribution
[1362]. Pearson showed that the standard error of the midpoint in samples of size n
from a rectangular population with standard deviation o, was

/ 6 / 6
Oy = Oy ngx m20.2890)(,

while for the mean the standard error was considerably larger at

O _ % _ 03780, .
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On this basis, Pearson argued “we should expect on theoretical grounds that
the difference in sample midpoints, rather than in sample means, would be more
efficient in detecting real differences” [1093, p. 61]. Pearson acknowledged that
very few variables actually possess a rectangular distribution, but that he introduced
these examples because they suggested that it is impossible to make a rational choice

Oy =
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among alternative tests unless some information beyond that contained in the sample
data is introduced. Pearson concluded the article with the acknowledgment that
Fisher’s randomization test was both exceedingly suggestive and often useful, but
should be described as a valuable device rather than a fundamental principle.

As with Fisher, neither Welch nor Pearson fully explained the permutation
technique. It was not until 1937 and 1938 that a series of articles by E.J.G. Pitman
[1129-1131] explicitly discussed the permutation approach for statistical analysis.
These three articles extended permutation methods to include data that were not
amenable to ranking.

2.15 Pitman and Three Seminal Articles

E.J.G. Pitman, trained as a mathematician and isolated by distance from the
centers of statistics in England due to his teaching duties at the University of
Tasmania for 36 years, nonetheless contributed extensively to the early development
of permutation methods. Some insight into Pitman the mathematician/statistician
can be gleaned from a 1982 publication by Pitman titled “Reminiscences of a
mathematician who strayed into statistics” in The Making of Statisticians edited
by Joseph (Joe) Gani [1133].

E.J.G. Pitman

Edwin James George Pitman graduated from the University of Melbourne
with a B.A. degree in mathematics in 1921, a B.Sc. degree in mathematics in
1922, and an M. A. degree in mathematics in 1923 [1458]. In 1926 Pitman was
appointed Professor of Mathematics at the University of Tasmania, a position
he held from 1926 to 1962. Like many contributors to statistical methods of
this era, Pitman had no formal training in statistics, but was intrigued by the
work of R.A. Fisher on statistical inference and randomization.

Pitman produced three formative papers on permutation methods in 1937
and 1938 [814, 1133, 1457]. In the introduction to the first paper on “Signif-
icance tests which may be applied to samples from any populations,” Pitman
first stated the object of the paper was to “devise valid tests of significance
which involve no assumptions about the forms of the population sampled,”
and second, noted that the idea underlying permutation tests “seem[ed] to
be implicit in all of Fisher’s writings” [1129, p. 119]. Eugene Edgington,
however, recounted that in 1986 Pitman expressed dissatisfaction with the
introduction to his paper, writing “I [Pitman] was always dissatisfied with
the sentence I wrote...I wanted to say I really was doing something new”
(Pitman, quoted in Edgington [394, p. 18]). Edwin James George Pitman
retired from the University of Tasmania in 1962 and died on 21 July 1993
at the age of 95.
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2.15.1 Permutation Analysis of Two Samples

In the first of three seminal papers, Pitman demonstrated how researchers could
devise valid tests of significance between two independent samples that made no
assumptions about the distributions of the sampled populations. In addition, Pitman
showed how precise limits could be determined for the difference between two inde-
pendent means, again without making any assumptions about the populations from
which the samples were obtained. An example will serve to illustrate Pitman’s two-
sample permutation test of significance. Consider two independent samples with m
and n observations, respectively, and let m < n. Denote the observations in the first

sample as x1, X»,..., X, with mean X, and denote the observations in the second
sample as y;, ya,..., Yy, withmean y. Let the grand mean of the m +n observations
be given by
_  mX+ny
1= —
m+n

and note that z is invariant over all

v=(")

permutations of the m + n observations with m and n held constant. Then

j:’%[(m—i-n)i—mfc]

and the spread of the separation between X and y is given by

_ 1 _ _
|x —y| = ‘x—;[(m—i-n)z—mx”
m+n _

=1 g

m
_|m+n
= in—mz .
mn

i=1

Since m, n, and z are invariant over the permutations of the observed data,
each arrangement of the observed data is a simple function of ) 7, x; for a one-
sided probability value and | ) /L, x; — mz| for a two-sided probability value;
consequently, the computation required for each arrangement of the data is reduced
considerably.

In contrast to contemporary permutation methods that compute the probability
of an observed result as the proportion of simulated results as or more extreme
than the observed result, Pitman devised a test of significance as follows. Let M
be a fixed integer less than N and consider any particular mean difference denoted
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Table 2.12 Eight groups of m = 4 with the largest values of | Y/ x; — 68|

Group Groups of m = 4 > [ >0, x; — 68|
1 0 11 12 16 39 29
2 0 11 12 19 42 26
3 0 11 12 20 43 25
4 0 11 12 22 45 23
5 29 24 22 20 95 27
6 29 24 22 19 94 26
7 29 24 20 19 92 24
8 29 24 22 16 91 23

by R. If there are not more than M arrangements with a mean difference equal to or
greater than that of R, the result is considered significant, and if there are M or more
mean differences greater than that of R, the result is considered non-significant. As
Pitman observed, in practice M is typically chosen to correspond with one of the
usual working values, i.e., 5 or 1 %.

Pitman provided the following example, asking “Are the following samples
significantly different?” {1.2, 2.3, 2.4, 3.2} and {2.8, 3.1, 3.4, 3.6, 4.1}. To
simplify calculation, Pitman subtracted 1.2 from each sample value, multiplied each
difference by 10 to eliminate the decimal points, and re-arranged the nine values
in order of magnitude, yielding {0, 11, 12, 16, 19, 20, 22, 24, 29}. He found the
overall mean value to be 7 = 17, so mz = 68. Pitman explained that there were
N = (44 5)1/(4!5!) = 126 of m 4+ n = 9 values divided into samples of m = 4
and n = 5. The eight groups of m = 4 that gave the largest values of | Y 7| x; —68|
are listed in Table 2.12. Pitman observed that the third group of {0, 11, 12, 20} gave
the fifth largest value of | ) 7, x; — 68| = 25 and was therefore significant at any
level exceeding 5/126 = 0.0397.

Importantly, Pitman noted that while only one test based on differences between
two means was presented in this initial paper, the principle was applicable to all
tests [1129, p. 119]. Pitman went on to mention that other tests of significance
could be developed along the same lines, in particular an analysis of variance test,
and commented that “the author hopes to deal with this in a further paper” [1129,
p. 130].%°

2.15.2 Permutation Analysis of Correlation
In the second of the three papers, Pitman began to fulfill his promise in the

first paper and developed the permutation approach for the Pearson product-
moment correlation coefficient “which makes no assumptions about the population

S0H.A. David provides a concise summary of the 1937 Pitman paper in his 2008 article in The
American Statistician on “The beginnings of randomization tests” [326].
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sampled” [1130, p. 232]. Consider bivariate observations on n objects consisting
of x, x2,...,x, and yy, y2,..., yn, with means X and y, respectively. Pitman
showed that the observations of one set (x) may be paired with the observations
of the other set (y) in n! ways. Pitman’s test of significance then paralleled the test
of significance in the first paper. Pitman explained as follows. Let M be a fixed
integer less than N = n! and consider any particular pairing R. If there are not
more than M pairings with a correlation coefficient equal to or greater than that of
R in absolute value, then R is considered significant, and if there are M or more
pairings with a correlation coefficient greater in absolute value than R, then R is
considered non-significant.

Pitman summarized the results of his investigation by stating that the proposed
test of significance for the correlation of a sample made no assumptions about
the sampled population and concluded that some modification of the analysis
of variance procedure would free it from its present assumptions, “but further
discussion must be reserved for another paper” [1130, p. 232].

2.15.3 Permutation Analysis of Variance

True to form, Pitman followed up on this second promise in the third of his three
papers, although this paper deviated somewhat from the presentations in the earlier
two papers. In this third paper, Pitman proposed a permutation test for the analysis
of variance “which involves no assumptions of normality” [1131, p. 335]. In this
case, however, Pitman did not calculate a permutation test on actual data. Rather,
Pitman detailed the mechanics and advantages of such a permutation test without
carrying through the actual permutation analysis of experimental data, as he had
in the previous two papers. Instead, Pitman noted that in the form of analysis of
variance test discussed in the paper (randomized blocks) the observed numbers were
not regarded as a sample from a larger population. Pitman went on to describe an
experiment consisting of m batches, each batch composed of n individuals with the
individuals of each batch subjected to n different treatments, and defined

SS Treatment
bl
SS Treatment T SS Error

which is a monotonic increasing function of SStreatment/ SSEror.-! Pitman explained
that the problem of testing the null hypothesis that the treatments are equal is
undertaken without making any assumptions. He went on to say that if the null
hypothesis is true, then the observed value of W is the result of the chance allocation
of the treatments to the individuals in the batches. He imagined repetitions of the
same experiment with the same batches and the same individuals, but with different
allocations of the treatments to the individuals in the various batches. Pitman also

W =

S1Pitman’s use of SStreatment aNd SSgror is equivalent to SSgeween and SSwimin, respectively, as used
by others.
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noted that there were N = (n!)"~! ways in which the numbers may be grouped
into n groups, so that W may take on N values, and that all values of W are
equally-likely. However, Pitman stopped short of actually calculating a permutation
test based on W. Instead he focused on deriving the first four moments of W and,
based on the beta distribution, concluded that when both m and n are not too small,
“the usual test may be safely applied” [1131, p. 335].”%

2.16 Welch and the Correlation Ratio

In a 1938 article, “On tests for homogeneity,” B.L. Welch (q.v. page 73) addressed
tests of homogeneity for the correlation ratio, . Assuming a set of k samples,
Welch questioned whether they could reasonably be regarded as having all been
drawn from the same population [1429]. Welch noted that n*> depends on the
observations having been drawn as random samples from an infinite hypothetical
population and suggested that it may be better to consider the observations as
samples from a limited population. Welch advocated calculating exact values on a
limited population before moving into an examination of the moments of an infinite

population [1429].
Welch explained that if there are N total observations with n; observations in
each treatment, i = 1,...,k, then the N observations may be assigned to the k

treatments in

N!

ny!ny! -eony!

ways and a discrete distribution of n?> values may be constructed to which the
observed value of > may be referred [1429]. Welch continued with an example
of an exact calculation and further concluded that if the variances of different
samples were markedly different, normal-theory methods could badly underestimate
significant differences that might exist. An exact permutation test, however, being
free from the assumptions usually associated with asymptotic statistical tests,
had no such limitation. Welch argued for the limited population approach on the
grounds that it assumes nothing not obtained directly from the observed sample
values.’> However, Welch also noted that a limited population is only a mental
construct. As an example, he pointed to a population of unemployed workers. This
population definitely existed and could be sampled, but a population generated by
shuffling the observed observations “does not correspond to anything concrete”
other than the observed sample [1429, p. 154].

52The method of moments was first proposed by Karl Pearson in 1894 [1105].
33Today, this approach is termed “data-dependent” analysis.
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2.17 Olds and Rank-Order Correlation

E.G. Olds, trained as a mathematician, nonetheless achieved substantial recognition
in the fields of statistical assurance and quality control. In addition, Olds contributed
to the growing literature on rank-order correlation methods begun by Spearman in
1904 [1300] and continued by Hotelling and Pabst in 1936 [653].

E.G. Olds

Edwin Glenn Olds graduated with a B.A. degree from Cornell University in
1918 and, at that point, went to Watkins (New York) High School as vice-
principal and athletic coach, then became principal of Beeman Academy
and the New Haven graded schools at New Haven, Vermont [284]. In 1923,
Olds was appointed as instructor in mathematics at the Carnegie Institute of
Technology [282].>* Olds received his M.A. degree in mathematics from the
University of Pittsburgh in 1925 [283] and his Ph.D. in mathematics from the
University of Pittsburgh in 1931 [285], remaining at the Carnegie Institute of
Technology for nearly 40 years [296]. Olds achieved considerable prominence
in the fields of statistical assurance and quality control. Edwin Glenn Olds
died following a heart attack on 10 October 1961 in his Pittsburgh home at
the age of 61.

In 1938 Olds [1054], following up on the work by Hotelling and Pabst on rank-
order correlation methods [653], calculated probability values up to n = 10 for
Spearman’s rank-order correlation coefficient [1300]. The probability values were
based on the relative frequencies in the n! permutations of one ranking against the
other (q.v. page 4). The probability values for n = 2,...,7 were computed from
exact frequencies, however those forn = §, 9, and 10 were computed from Pearson
type II curves.”> Commenting on the difficulty of computing exact probability
values, even for ranks, Olds echoed the frustration of many statisticians with the
lack of computing power of the day, lamenting: “[f]lor sums greater than § the
[asymptotic] method becomes quite inviting” [1054, p. 141], and “[f]or # as small as
8, [an exact test] means the requirement of 42 formulas. It is fairly evident that these
formulas will comprise polynomials ranging in degree from 0 to 41” [1054, p. 141].
Despite this, some 11 years later in 1949 Olds was able to extend the probability
values forn = 11, 12,...,30, again employing Pearson type II curves [1055].

In 1967, the Carnegie Institute of Technology merged with the Mellon Institute of Industrial
Research to form Carnegie Mellon University, which abuts the campus of the University of
Pittsburgh. The Carnegie Institute of Technology is now the school of engineering at Carnegie
Mellon University.

33There was an error in the denominator of the variance in the 1938 paper. It was first noticed by
Scheffé in 1943 [1230] and corrected by Olds in 1949 [1055].
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2.18 Kendall and Rank Correlation

M.G. Kendall is probably best remembered as the author of seminal books on
rank-order correlation methods, advanced statistical methods, and a dictionary of
statistical terms [729, 731, 734, 742]. However, he was also instrumental in the
development and promotion of permutation statistical methods.

M.G. Kendall

Maurice George Kendall received his B.A. degree in mathematics from St.
John’s College, University of Cambridge, in 1929. In 1930, Kendall joined
the British Civil Service in the Ministry of Agriculture, where he first became
involved in statistical work. In 1949, Kendall accepted the second chair of
statistics at the London School of Economics, which he held until 1961.
Kendall spent the rest of his career in industry and in 1972 became Director of
the World Fertility Study where he remained until 1980 when illness forced
him to step down [1064]. Kendall is perhaps best remembered today for his
revision of George Udny Yule’s textbook An Introduction to the Theory of
Statistics in 1937 [1482], first published in 1911 and continuing through 14
editions; Kendall’s two volume work on The Advanced Theory of Statistics,
with Volume I on “Distribution Theory” appearing in 1943 [729] and Volume
IT on “Inference and Relationship” in 1946 [73 1];°° Kendall’s definitive Rank
Correlation Methods, first published in 1948; and Kendall’s Dictionary of
Statistical Terms with William R. Buckland, published in 1957 [742]. Kendall
was knighted by Queen Elizabeth II in 1974 [73, 1328]. Sir Maurice George
Kendall died on 29 March 1983 at the age of 75.

Kendall incorporated exact probability values utilizing the “entire universe” of
permutations in the construction of 7, a new measure of rank-order correlation in
1938 [728].%7 The new measure of rank correlation was based on the difference
between the sums of the concordant and discordant pairs of observations. The
actual score for any given ranking of the data was denoted as £ by Kendall. For
example, consider the data of two sets (A and B) of ten ranks in Fig.2.3. There are
n(n —1)/2 = 10(10 — 1)/2 = 45 possible pairs, divisible into concordant and

S6While The Advanced Theory of Statistics began as a two-volume work, in 1966 Alan Stuart
joined with Maurice Kendall and The Advanced Theory was rewritten in three volumes. Keith Ord
joined in the early eighties and a new volume on Bayesian Inference was published in 1994. More
recently, Steven Arnold was invited to join with Keith Ord.

57 As Kendall explained in a later publication, the coefficient T was considered earlier by Greiner
[554] and Esscher [414] as a method of estimating correlations in a normal population, and was
rediscovered by Kendall [728] who considered it purely as a measure of rank-order correlation
[734].
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Fig. 2.3 Sets A and B of ten

" n A: 1 2 3 4 5 6 7 8 9 10
ranks eac B: 4 7 2 10 3 6 8 1 5 9
Fig. 2.4 Successive arrays of —
¥ values as delineated by Arrays of & values forn=1,...,5
Kendall [728] 1

1
1 1
1 1
1 1
1 2 2 1
1 2 2 1
1 2 2 1
1 2 2 1
1 3 5 6 5 3 1
1 3 5 6 5 3 1
1 3 5 6 5 3 1
1 3 5 6 5 3 1
1 3 5 6 5 3 1
1 4 9 15 20 22 20 15 9 4 1

discordant pairs of observations. A concordant pair has the same order and sign and
a discordant pair has a different order and sign. For example, the first pair, starting
from the left,is A = {1, 2} and B = {4, 7}.Since | —2 = —l and 4 — 7 = -3,
the first pair is concordant as both signs are negative. The second pairis A = {1, 3}
and B = {4, 2} and since 1 —3 = —2 and 4 —2 = +2, the second pair is discordant
as the signs do not agree, with one being negative and the other positive. The last
pairis A = {9, 10} and B = {5, 9} and since 9 — 10 = —1 and 5 — 9 = —4, the
last pair is concordant as the signs agree. For these data, the number of concordant
pairs is 25 and the number of discordant pairs is 20. Thus, ¥ = 25 — 20 = 45 for
these data.

Kendall considered the entire universe of values of X obtained from the observed
rankings 1, 2,...,n and the n! possible permutations of the n ranks (q.v. page 4).
A clever recursive procedure permitted the calculation of the frequency array of X,
yielding a figurate triangle similar to Pascal’s triangle.”®

As Kendall explained, the successive arrays of £ were constituted by the process
illustrated in Fig.2.4. For each row, to find the array for (n + 1), write down the
nth array (n + 1) times, one under the other and moving one place to the right each

3 A recursive process is one in which items are defined in terms of items of similar kind. Using
a recurrence relation, a class of items can be constructed from a few initial values (a base) and a
small number of relationships (rules). For example, given the base, Fy = 0O and F| = F, = 1,
the Fibonacci series {0, 1, 1, 2, 3, 5, 8, 13, 21, ... } can be constructed by the recursive rule F,, =
F,—+ F,—, forn > 2.
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Sell?l.lezs.f)f glil; ir:}llte triangle for n | Figurate triangle
n=1,...,5 1 1

2 11

3 1 2 2 1

4 135 6 5 3 1

5 1 4 9 15 20 22 20 15 9 4 1

time, and then sum the (n + 1) arrays. The process may be condensed by forming
a figurate triangle as in Fig.2.5. Here, a number in the nth row is the sum of the
number immediately above it and the n — 1 (or fewer) numbers to the immediate left
of that number.

Consider row n = 5 in the figurate triangle in Fig. 2.5 where the value of 4 in the
second position from the left in row 5 is the sum of the number above it (3) in row 4
and all the numbers to the left of 3 in row 4 (1), since there are fewer thann —1 = 4
numbers to the left of 3; the value of 9 in the third position from the left in row 5 is
the sum of the number above it (5) in row 4 and all the numbers to the left of 5 in
row 4 (3 and 1), since there are fewer than n — 1 = 4 numbers to the left of 3; the
value of 15 in the fourth position from the left in row 5 is the sum of the number
above it (6) in row 4 and all the numbers to the left of 3 in row 4 (5, 3, and 1), since
there are fewer than n — 1 = 4 numbers to the left of 6; the value of 20 in the fifth
position from the left in row 5 is the sum of the number above it (5) in row 4 and
all the numbers to the left of 5 in row 4 (6, 5, 3, and 1), since there aren — 1 = 4
numbers to the left of 5; and the value of 22 in the sixth position from the left in row
5 is the sum of the number above it (3) in row 4 and the n — 1 = 4 numbers to the
left of 3 in row 4 (5, 6, 5, and 3), since there are more than # — 1 = 4 numbers to
the left of 3. The terms to the right of the last number are filled in from the left, as
each array is symmetrical. A check is provided by the fact that the total in the nth
row is equal to n!. Utilizing this technique, Kendall was able to construct a table of
the distribution of X for values of n from 1 to 10 [728, p. 88].

This accomplishment was further extended in a 1939 publication in which
Kendall and Bernard Babington Smith considered “The problem of m rankings,”
developing the well-known coefficient of concordance [739].>°'%° Let n and m
denote the number of ranks and the number of judges, respectively, then Kendall
and Babington Smith defined the coefficient of concordance, W, as

128

W=——"
m2(n3 — n)

3 A correction was proffered by J.A. van der Heiden in 1952 for observers who declined to express
a preference between a pair of objects [1390].

%The coefficient of concordance was independently developed by W. Allen Wallis in 1939, which
he termed the “correlation ratio for ranked data” [1411].
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where S is the observed sum of squares of the deviations of sums of ranks from
the mean value m(n + 1)/2. W is simply related to the average of the (’;)
Spearman rank-order correlation coefficients between pairs of m rankings. Kendall
and Babington Smith showed that the average Spearman rank-order correlation, p,,,
is given by

mW —1

Pav = m— 1

and pointed out that p,, is simply the intraclass correlation coefficient, r;, for the m
sets of ranks. The coefficient of concordance is also equivalent to the Friedman two-
way analysis of variance for ranks, as noted by L.R. Savage in 1957 [1224, p. 335].

Since m?(n® — n) is invariant over permutation of the observed data, Kendall and
Babington Smith showed that to test whether an observed value of § is statistically
significant it is necessary to consider the distribution of S by permuting the » ranks
in all possible ways. Letting one of the m sets of ranks be fixed, then there are
(n!)"~! possible values of S. Based on this permutation procedure, Kendall and
Babington Smith created four tables that provided exact probability values forn = 3
andm=2,...,10,n=4andm =2,...,6,andn = 5and m = 3.

In the same year, 1939, Kendall, Kendall, and Babington Smith utilized per-
mutation methods in a discussion of the distribution of Spearman’s coefficient of
rank-order correlation, p;, introduced by Spearman in 1904 [1300] and given by

62n:d,-2
i=1

nd—n

ps=1-— s
where d; = X; — Y; and X; and Y;, i = 1,...,n, are the permutation sequences
of the natural integers from 1 to n [746]. Kendall, Kendall, and Babington Smith
observed that to judge the significance of a value of p; it is necessary to consider the
distribution of values obtained from the observed ranks with all other permutations
of the numbers from 1 to n and further noted that in practice it is generally more
convenient to consider the distribution of Y '_, d? [746, p. 251]. They remarked that
distributions for small values of n obtained by Hotelling and Pabst [653] deviated
considerably from normality and that Hotelling and Pabst proved that as n — oo
the distribution of p, tends to normality. They went on to mention that p; is mainly
of service when 10 < n < 30 and stated that “it is the aim of the present paper
to throw some light on this crepuscular territory” [746, p. 252]. Finally, Kendall,
Kendall, and Babington Smith gave explicit values up to and including n = 8 with
some experimental distributions for » = 10 and n = 20. The distributions for n
up to 8 were exact and the distributions for n = 10 and n = 20 were based on a
random sample of 2,000 permutations [746, pp. 261-267].
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2.19 McCarthy and Randomized Blocks

M.D. McCarthy, trained as a statistician, was both an accomplished academic and
an able administrator, ultimately serving for 11 years as president of University
College, Cork, in Ireland. McCarthy urged researchers to first use a permutation test
as an approximation to a normal-theory test, then apply the normal-theory test.

M.D. McCarthy

M. Donal McCarthy received most of his advanced education at University
College, Cork, earning a B.A. degree in mathematics and mathematical
physics in 1928, an M.Sc. degree in mathematical science in 1934, and a Ph.D.
in statistics in 1938. He was an academic until he was appointed Director of
the Central Statistics Office, Ireland, on the resignation of R.C. Geary, serving
from 1957 to 1966. From 1967 to 1978 he served as President of University
College, Cork. M. Donal McCarthy died on 31 January 1980 at the age of
71 [910].

In 1939 McCarthy [911] also argued for the use of a permutation test as a first
approximation before considering the data via an asymptotic distribution, citing
earlier works by Fisher in 1935 [451] and 1936 [453] as well as by Welch in
1938 [1429]. McCarthy explained that in certain experiments, especially those in
the physical and chemical sciences, it is possible for a researcher to repeat an
experiment over and over. The repetition provides a series of observations of the
“true value,” subject only to random errors. However, in the biological and social
sciences it is nearly impossible to repeat an experiment under the same essential
conditions. McCarthy addressed the problem of analyzing data from a randomized
blocks experiment and utilized Fisher’s variance-ratio z statistic (q.v. page 33).
He concluded that the use of the z statistic is theoretically justifiable only when
the variations within each block are negligible, and suggested a permutation test on
the yields from a single block as a first approximation.

2.20 Computing and Calculators

The binary (base 2) system is the foundation of virtually all modern computer archi-
tecture. Although the full documentation of the binary system is usually attributed
to the German philosopher and mathematician Gottfried Leibniz®' in his 1703
article on “Explication de I’arithmétique binaire” (Explanation of binary arithmetic)

61 Also spelled Leibnitz.
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[508, pp. 223-227], priority should probably be given to the English mathematician
and astronomer Thomas Harriot®? [357, 1047, 1266].

T. Harriot

Thomas Harriot, born circa 1560 in Oxfordshire, England, was an astronomer,
mathematician, ethnographer, translator, and the founder of the English school
of algebra [1047]. He graduated from St. Mary’s Hall, University of Oxford,
in 1580 and immediately moved to London. In 1583 Harriot entered Sir
Walter Raleigh’s service as a cartographer, navigational instructor to Raleigh’s
seamen, Raleigh’s accountant, and designer of expeditionary ships. He sailed
with Raleigh to Virginia in 1585-1586 and most probably accompanied
Raleigh on his expedition to Roanoke Island off the coast of North Carolina
in 1584. Harriot translated the Carolina Algonquin language from two native
Americans, Wanchese and Manteo, who had been brought back to England
by Raleigh in 1584 [586].

In the 1590s Harriot moved from working with Raleigh to an association
with Henry Percy, the 9th Earl of Northumberland. The Earl introduced him
to a circle of scholars, gave him property in the form of a former Abbey, and
provided him with a handsome pension and a house on Northumberland’s
estate of Syon House, west of London on the Thames River near Kew,
that Harriot used as both a residence and a scientific laboratory. Harriot is
best known for his work on algebra, introducing a simplified notation and
working with equations of higher degrees [1392]. Harriot published only one
book in his lifetime, leaving unpublished some 7,000 pages of hand-written
manuscripts that have slowly come into the mainstream of historical record
over the past three centuries. The book, published in 1588, was an abstract
of his extensive Chronicle (now lost) as A Briefe and True Report of the
New Found Land of Virginia—the first book in English about the New World,
detailing the flora, fauna, and land resources of Virginia [587].

As described on the website of the Thomas Harriot College of Arts and
Sciences, Harriot was a man of both intellect and action, described by a
contemporary as, “[t]he master of all essential and true knowledge.” He played
many roles as an adventurer, anthropologist, astronomer, author, cartogra-
pher, ethnographer, explorer, geographer, historian, linguist, mathematician,
naturalist, navigator, oceanographer, philosopher, planner, scientist, surveyor,
versifier, and teacher [586]. The sweeping breadth of Harriot’s life story is
well told in John W. Shirley’s book Thomas Harriot: A Biography [1267]. In
addition, the Thomas Harriot College of Arts and Sciences at East Carolina
State University in Greenville, North Carolina, maintains a list of Internet

(continued)

62 Also spelled Hariot, Harriott, or Heriot.
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web-based sources on Thomas Harriot and his times [1265]. Thomas Harriot
died on 2 July 1621 in London and was buried in St. Christopher le Stocks,
which was destroyed in the Great Fire of London in 1666 and is presently the
site of the Bank of England.

G.W. Leibniz

Gottfried Wilhelm von Leibniz was born on 1 July 1646 in Leipzig, Saxony,
although some sources put the date of birth as 21 June 1646 using the Julian
calendar. In 1661 Liebniz began his university education at the University of
Leipzig. After earning his B.A. from Leipzig in December 1662, he continued
his studies at the University of Altdorf, earning a Doctorate of Law in 1667.
While at Altdorf, Leibniz published his Dissertation de arte combinatoria
(Dissertation on the Art of Combinations) in 1661 at the age of 20. In 1672 the
Elector of Mainz, Johann Philipp von Schonborn, sent Leibniz on a diplomatic
mission to Paris, then the center of learning and science. He remained in Paris
for 4 years, meeting with many of the major figures of the intellectual world.
In addition, he was given access to the unpublished manuscripts of both René
Descartes and Blaise Pascal. It was upon reading these manuscripts that he
began to conceive of the differential calculus and his eventual work on infinite
series [842].

In 1673 Leibniz traveled to London to present a prototype of his Stepped
Reckoner calculating machine to the Royal Society. In 1676 Leibniz was
appointed to the position of Privy Counselor of Justice to the Duke of
Hanover, serving three consecutive rulers of the House of Brunswick in
Hanover as historian, political advisor, and as librarian of the ducal library.
Leibniz is considered by modern scholars as the most important logician
between Aristotle and the year 1847, when George Boole and Augustus
De Morgan published separate books on modern formal logic. In addition,
Leibniz made important discoveries in mathematics, physics, geology, paleon-
tology, psychology, and sociology. Leibniz also wrote extensively on politics,
law, ethics, theology, history, and philosophy [819].

Today. Leibniz is best remembered, along with Sir Isaac Newton, for the
invention of infinitesimal calculus. He introduced many of the notations used
today, including the integral sign, |, and the d used for differentials. Gottfried
Wilhelm von Leibniz died in Hanover on 14 November 1716.

While Leibniz invented the Stepped Reckoner, a decimal (non-binary) calculator
that could add (subtract) an 8 digit number to (from) a 16 digit number, multiply
two 8 digit numbers together by repeated addition, or divide a 16 digit number by
an 8 digit divisor by repeated subtraction, computing by machine had its beginnings
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with the work of Charles Babbage, variously referred to as the “Grandfather” or
the “Patron Saint” of computing. Sometime around 1821, Babbage had the idea
to develop mechanical computation. Babbage was frustrated with the many errors
in tables used for calculating complex equations, some of which had persisted for
hundreds of years. The errors were largely due to the fact that the tables were copied
by hand and further transcribed to plates for printing. This led Babbage to develop
a mechanical device to calculate and print new tables; the device was called the
Difference Engine as it was designed for calculating polynomials of higher orders
using the method of differences [1336]. The Difference Engine was never finished
by Babbage, but was finally constructed in 1991 and presently resides in the London
Science Museum.®?

C. Babbage

Charles Babbage was born in London on 26 December 1791, the son of a
London banker. He attended Trinity College, University of Cambridge, in
1810 but was disappointed in the level of mathematical instruction available
at the time at Trinity. In 1812 he transferred to Peterhouse College, University
of Cambridge, graduating in 1814. In 1817 Babbage received an M.A. degree
from Cambridge. In his twenties, Babbage worked as a mathematician and
was a founder of the Analytical Society along with George Peacock, John
Herschel, Michael Slegg, Edward Bromhead, Alexander D’ Arblay, Edward
Ryan, Frederick Maule, and others. In 1821 Babbage invented the Difference
Engine to compile mathematical tables [106, 1290]. From 1828 to 1839
Babbage occupied the Lucasian Chair of Mathematics®* at the University of
Cambridge—Isaac Newton’s former position and one of the most prestigious
professorships at Cambridge—and played an important role in the establish-
ment of the Astronomical Society with mathematician and astronomer John
Frederick William Herschel, the London Statistical Society in 1834 (later,
in 1887, the Royal Statistical Society) and the British Association for the
Advancement of Science (BAAS) in 1831 [1027]. In 1856 he conceived of
a general symbol manipulator, the Analytical Engine.

As an interesting aside, in 1833, at a meeting of the British Association
for the Advancement of Science (now, the British Science Association) the
poet Samuel Taylor Coleridge raised the question as to what name to give
to professional experts in various scientific disciplines: an umbrella term that

(continued)

63 Actually, the model in the London Science Museum is of Difference Engine Number 2, designed
by Babbage between 1846 and 1849 [1290, pp. 290-291].
%4In a wonderful little book on the history of British science during the nineteenth century, Laura

Snyder noted that while Lucasian Professor of Mathematics at the University of Cambridge from
1828 to 1839, Charles Babbage never delivered a single lecture [1290, p. 130].
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would include anatomists, astronomers, biologists, chemists, and others. The
word “scientist” was suggested by William Whewell, a mineralogist, historian
of science, and future master of Trinity College, and thus was coined the term
“scientist” [1175, p. 8].

Babbage published some eighty volumes in his lifetime and was elected
Fellow of the Royal Society in 1816. Among other accomplishments, Bab-
bage published a table of logarithms from 1 to 108,000 in 1827 and invented
the cow-catcher, the dynamometer, the standard railroad gauge, and occulting
lights for lighthouses. Charles Babbage FR.S. passed away at home in
London on 18 October 1871 at the age of 79 [672, 1447].

In a well-known story, the textile industry served as the stimulus for Babbage to
provide instructions to the Difference Engine. On 30 June 1836 Babbage conceived
the idea of using punch cards like those devised by Joseph-Marie Jacquard in 1801
to produce patterns in weaving looms. These were similar in both form and function
to those used by Herman Hollerith in 1884 for his electric punch-card tabulator.
Babbage devised a system using four different types of punch cards, each about the
height and width of a modern-day brick. Operation cards instructed the engine to
add subtract, multiply, or divide; variable cards instructed the engine from where to
retrieve the number and where to store the result; combinatorial cards instructed the
engine to repeat a set of instructions a specified number of times; and number cards
were used to save the results [1290, p. 215].

The Jacquard Loom

The Jacquard loom used a series of cards with tiny holes to dictate the raising
and lowering of the warp threads. The warp threads are the longitudinal
threads and the weft threads are the lateral threads. In the weaving process,
the warp threads are raised and lowered as the weft threads are passed through
to create the textile. Rods were linked to wire hooks, each of which could lift
one of the warp threads. The cards were pressed up against the ends of the
rods. When a rod coincided with a hole in the card, the rod passed through the
hole and no action was taken with the thread. On the other hand, if no hole
coincided with a rod, then the card pressed against the rod and this activated
the wire hook that lifted the warp thread, allowing the shuttle carrying the
weft to pass underneath the warp thread [1290, p. 214-215]. The arrangement
of the holes determined the pattern of the weave. The Jacquard method, for
intricate weaving, could require as many as 20,000 punched cards with 1,000
holes per card.
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Fig. 2.6 Example of

generating successive values Column
for f(x) = 3x> =2x +5 T 2 PE—
using the method of
differences T f(z) A Az
0 5
1
1 6 6
7
2 13 6
13
3 26 6
19
4 45 6
25
5 70 6
31
6 101

2.20.1 The Method of Differences

The method of differences defines a process for calculating complex polynomial
expressions using only addition—no multiplication or division—thereby making
it highly amenable to machine calculation. To illustrate the method of differences,
consider a second degree polynomial f(x) = 3x2>—2x+5. Figure 2.6 demonstrates
how the method of differences works. Column 1 in Fig. 2.6 lists possible values of
x from O to 4 in Roman typeface, where 4 is the order of the polynomial plus 2.
Column 2 evaluates the polynomial expression f(x) = 3x%> — 2x + 5. Column
3 lists difference values for A} = f(x + 1) — f(x) obtained from Column 2,
commonly called first-order differences. Column 4 lists the second-order differences
Ay, = Aj(x + 1) — Aj(x) that yield a common value of 6. For any polynomial of
order n, Column n + 2 will be a constant.

Once stasis has been reached in Column n + 2, additional values of x can be
evaluated by simple addition by reversing the process. Add an additional value of
the constant 6 to Column 4 (shown in bold typeface); then add that value (6) to the
last value in Column 3 (6 + 19 = 25); add that value (25) to the last value in Column
2 (25 4 45 = 70); and finally increment Column 1 by 1 (4 + 1 = 5). For the next
step add another value of 6 to Column 4; add that 6 to the last value in Column 3
(6 + 25 = 31); add the 31 to the last value in Column 2 (31 + 70 = 101); and
increment Column 1 by 1 (§ + 1 = 6). The process can be continued indefinitely.

2.20.2 Statistical Computing in the 1920s and 1930s

Permutation methods, by their very nature, incorporate computationally-intensive
procedures and it would be imprudent not to mention the tabulating procedures
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of the 1920s and 1930s. Fisher had purchased a Millionaire calculator soon after
he arrived at the Rothamsted Experimental Station in 1919.9 While addition,
subtraction, and multiplication were easy to implement on the Millionaire, division
was not, and hand-written tables of reciprocals were attached to the lid of the
Millionaire to ease the problem [1027].° Fisher’s original Millionaire was still
in the office of Frank Yates at Rothamsted in 1974.” Karl Pearson relied on his
beloved Brunsviga calculators at the Galton Biometric Laboratory, which were
noisy, limited, but very robust machines. Division was done by repeated subtraction
until a bell rang to indicate passage through zero [1027]. Toward the end of his
life in 1936, Pearson was still using a vintage Brunsviga that dated from the turn
of the century and Maurice Kendall was using a Brunsviga in 1965 that he had
inherited from Udny Yule [1164, p. 18]. Commenting on the use of mechanical
desk calculators between 1945 and 1969, M.G. Kendall wrote:

[plractical statistics was conditioned by what such a machine — or in a few favored cases, a
battery of such machines — could accomplish. In consequence theoretical advance was held
back, not so much by the shortage of ideas or even of capable men to explore them as by
the technological impossibility of performing the necessary calculations. The Golden Age
of theoretical statistics was also the age of the desk computer. Perhaps this was not a net
disadvantage. It generated, like all situations of scarcity, some very resourceful shortcuts,
economies, and what are known unkindly and unfairly as quick and dirty methods. But it
was undoubtedly still a barrier [738, p. 204].

Statistical computing in the United States in the 1920s was concentrated in
modest statistical laboratories scattered around the country and employed small
mechanical desk calculators such as those manufactured by the Burroughs, Victor,
Monroe, Marchant, or Sundstrand companies [557]. Grier provides an excellent
historical summary of the development of statistical laboratories in the United
States in the 1920s and 1930s [557] and Redin provides a brief but comprehensive
history of the development of mechanical calculators in this period [1158]. Most
of these research laboratories were small ad hoc university organizations and many
were nothing more than a single faculty member arranging to use the university
tabulating machines during off hours [557]. The largest of these laboratories were
substantial organizations funded by small foundations or by private individuals. One
of the first of these statistical computing laboratories was founded at the University
of Michigan by James Glover, a professor of mathematics, under whom George
Snedecor studied. Interest in statistical computing became a popular field of study

%The Millionaire calculator was the first commercial calculator that could perform direct
multiplication. It was in production from 1893 to 1935.

%For Fisher’s first major publication in 1921 on “Studies in crop variation, 1,” Fisher produced 15
tables [445]. At approximately 1 min for each large multiplication or division problem, it has been
estimated that Fisher spent 185 h using the Millionaire to produce each of the 15 tables [618, p. 4].

7For pictures of the Millionaire calculator and Frank Yates using the Millionaire, see a 2012 article
by Gavin Ross in Significance [1196]. Also, there is a YouTube video of a Millionaire calculator
calculating the surface of a circle with diameter 3.18311 at http://www.youtube.com/watch?v=
r9Nnl-u-Xf8.


http://www.youtube.com/watch?v=r9Nnl-u-Xf8.
http://www.youtube.com/watch?v=r9Nnl-u-Xf8.
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during the 1930s, as research laboratories acquired the early punch-card tabulator,
first developed by Herman Hollerith for the 1890 census [557]. A picture of the
Hollerith 1890 census tabulator can be viewed at a website on computing history
constructed by Frank da Cruz [308].

H. Hollerith

Herman Hollerith, often called “the father of automatic computation,” grad-
uated from Columbia University with an Engineer of Mines (EM) degree in
1879 and then worked for the U.S. Bureau of the Census on the 1880 census.
Hollerith quickly determined that if numbers could be punched as holes into
specific locations on cards, such as used to produce patterns in a Jacquard
weaving loom, then the punched cards could be sorted and counted electro-
mechanically. The punched cards were especially designed by Hollerith,
having one corner cut off diagonally to protect against the possibility of
upside-down or backwards cards and each punched card was constructed to
be exactly 3.25in. wide by 7.3751n. long, designed to be the same size as
the 1887 U.S. paper currency because Hollerith used Treasury Department
containers as card boxes. The actual size of the United States currency in 1887
was approximately 3.125 in. wide by 7.4218in. long (79 mm x 189 mm), with
modern currency introduced in 1929 measuring 2.61 in. wide by 6.14 in. long
(66.3mm x 156 mm).

Hollerith submitted a description of this system, An Electric Tabulating
System [640, 641], to Columbia University as his doctoral thesis and was
awarded a Ph.D. from Columbia University in 1890. There has always been a
suspicion that this was an honorary degree, but it has recently been definitively
established that the degree was not an honorary degree and was awarded by
the Board of Trustees granting Hollerith “the degree of Doctor of Philosophy
upon the work which he has performed” [308].

Hollerith went on to invent a sorter and tabulating machine for the punched
cards, as well as the first automatic card-feed mechanism and the first key
punch. On 8 January 1889 Hollerith was issued U.S. Patent 395,782 for
automation of the census. It should be noted that the 1880 census with 50
million people to be counted took over 7 years to tabulate, while the 1890
census with over 62 million people took less than a year using the tabulating
equipment of Hollerith (different sources give different numbers for the 1890
census, ranging from 6 weeks to 3 years) [308].

In 1896 Hollerith started his own business, founding the Tabulating
Machine Company. Most of the major census bureaus in Russia, Austria,
Canada, France Norway, Puerto Rico, Cuba, and the Philippines leased
his tabulating equipment and purchased his cards, as did many insurance
companies. In 1911 financier Charles R. Flint arranged the merger of the

(continued)
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Tabulating Machine Company, the International Time Recording Company,
and the Computing Scale Company to form the Computing Tabulating
Recording Corporation (CTR). In 1914 Flint recruited Thomas J. Watson from
the National Cash Register (NCR) Company to lead the new company. In 1924
CTR was renamed the International Business Machines Corporation (IBM).
Herman Hollerith passed away on 17 November 1929 in Washington, DC.

In the absence at that time of government granting agencies such as the National
Science Foundation (NSF) and the National Institutes of Health (NIH), it fell to
the United States Department of Agriculture (USDA) to establish the largest of the
early statistical laboratories: the Statistical Laboratory at Iowa State College (now,
Towa State University) under the direction of George W. Snedecor in 1933 (q.v.
page 35).° Snedecor previously had been trained by James Glover in the Statistical
Laboratory at the University of Michigan.

The Graduate College of Iowa State College was always alert for opportunities
to invite outstanding scientists to visit and give lectures on their recent work. This
helped keep the local staff abreast of promising developments at other research
centers. Largely due to Dean R.E. Buchanan of the Graduate College and Professor
E.W. Lindstrom of the Department of Genetics, it was the regular custom through
the 1930s and 1940s to invite an outstanding scientist as a Visiting Professor for 6
weeks each summer. The Graduate College provided the expenses and honorarium
of the visiting scientist [859]. In 1931 and 1936 Snedecor invited R.A. Fisher to visit
the Department of Statistics at Iowa State College for the summer. Fisher’s lodging
was a room on the second floor of the Kappa Sigma (KX) fraternity house several
blocks from the Iowa State campus. To combat the summer heat in Iowa, Fisher
would put the sheets from his bed into the refrigerator for the day, then remake his
bed every evening [576].%°

While Fisher was at Iowa State College in 1936, the college awarded him an
honorary D.Sc. degree, his first of many.”” Over the two summers, Fisher met and
worked with about 50 researchers eager to learn his methods of analysis. One of
these researchers was Henry Agard Wallace, who later left Iowa State College to
become Secretary of Agriculture.”! As Secretary, Wallace devised and prepared

%Jowa Agricultural College and Model Farm was established in 1858 and changed its name to
Towa State University of Science and Technology in 1959, although it is commonly known as Iowa
State University.

%For more interesting stories about Fisher, see a 2012 article in Significance by A.E.W. Edwards
and W.F. Bodmer [401].

"OInterestingly, the Statistical Laboratory at Towa State College initiated four o’clock afternoon tea
while Fisher was there in the summer of 1936 [57,576].

"'Henry A. Wallace served as Secretary of Agriculture from 1933 to 1940. When John Nance
Garner broke with then President Franklin Delano Roosevelt in 1940, Roosevelt designated
Wallace to run as his Vice-President. Wallace served as Vice President from 1941 to 1945 when
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the Agricultural Adjustment Act, which required the Department of Agriculture to
undertake large studies of major farm products. Thus, the Agricultural Adjustment
Act of 1933 was a boon to the Statistical Laboratory at Iowa State College.””> Coin-
cidentally, the first statistical computing laboratory to use a punched-card tabulator
was not a university laboratory, but the computing laboratory of the Bureau of
Agricultural Economics, a division of the Department of Agriculture, which started
using punched cards in 1900 [557].

2.21 Looking Ahead

A number of notable threads of inquiry were established during the period 1920
to 1939 that were destined to become important in the later development of
permutation methods.

1. There was widespread recognition of the computational difficulties inherent in
constructing permutation tests by hand, with several researchers bemoaning the
restriction of permutation methods to small samples. For example, Hotelling and
Pabst were forced to limit construction of their exact tables for Spearman’s rank-
order correlation coefficient to small samples of n = 2, 3, and 4, noting that
for larger samples the calculation of exact probability values would be very
laborious [653, p. 35]. Like Hotelling and Pabst, Olds calculated probability
values up to n = 10 for Spearman’s rank-order correlation coefficient, but
only the probability values for n = 2,...,7 were calculated exactly; those
forn = 8, 9, and 10 were approximated by Pearson type II curves [1054]. In
like manner, Kendall, utilizing a recursion procedure, was able to provide exact
probability values for the t measure of rank-order correlation, but only up to
n =10 [728].

2. Throughout the period 1920-1939 there was general acceptance that permu-
tation tests were data-dependent, relying solely on the information contained
in the observed sample without any reference to the population from which
the sample had been drawn. Thus, permutation tests were considered to be
distribution-free and not restricted by any assumptions about a population, such
as normality. For example Frank Yates, commenting on the experiment on
Yeoman II wheat shoots conducted by Thomas Eden and himself, concluded that
the need for the postulation of any parent population from which the observed

Roosevelt jettisoned Wallace in favor of Harry S. Truman, who succeeded Roosevelt upon his death
on 12 April 1945 [597]. Finally, Wallace served as Secretary of Commerce from 1945 to 1946.

"2The best accounts of the origins and development of the Iowa State College Statistical Laboratory
are Statistics: An Appraisal, edited by H.A. David and H.T. David [327], “Statistics in U.S.
universities in 1933 and the establishment of the Statistical Laboratory at Iowa State” by H.A.
David [324], “Highlights of some expansion years of the lowa State Statistical Laboratory, 1947—
72” by T.A. Bancroft [58], “Revisiting the past and anticipating the future” by O. Kempthorne
[724], “The Iowa State Statistical Laboratory: Antecedents and early years” by H.A. David [322],
and “Early statistics at Iowa State University” by J.L. Lush [859].
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values are to be regarded as a sample is entirely avoided [1473, p. 165], and
the ground-breaking work by Harold Hotelling and Margaret Pabst on rank
data was designated to be completely distribution-free [653]. Bernard Welch,
commenting on Fisher’s The Design of Experiments in 1937, concluded that
while the calculations required by exact inference would be lengthy, the result
would be a test of hypothesis that was free of any assumptions [1428], and in
1938 Welch noted that an exact test of significance assumed nothing not obtained
directly from the observed sample values [1429, p. 154].

E.J.G. Pitman, in his first of three papers, emphasized that the difference
between two independent means could be determined without making any
assumptions about the populations from which the samples were obtained; in the
second paper on correlation, Pitman summarized the results of his investigation
by stating that the test of significance made no assumptions about the sampled
population; and in the third paper on analysis of variance, Pitman proposed a
permutation test that involved no assumptions of normality, explaining that the
observations were not to be regarded as a sample from a larger population [1129—
1131]. Finally in 1938, Fisher in a little-known book published by the University
of Calcutta Press, Statistical Theory of Estimation, was quoted as saying “it
should be possible to draw valid conclusions from the data alone, and without
a priori assumptions” [455, p. 23].

. Associated with data-dependency and distribution-free alternatives to conven-
tional tests, it was widely recognized that when utilizing permutation methods,
samples need not be random samples from a specified population. Yates,
discussing the Yeoman II wheat experiment, completely dismissed the notion that
a sample of observations be drawn from a parent population [1473]. Also, Pitman
noted in his discussion of the permutation version of the analysis of variance, that
observations were not to be regarded as a sample from a larger population [1131].
Finally, Welch in his analysis of the correlation ratio, explained that he preferred
to consider samples as drawn from a well-defined limited population rather than
a hypothetical infinite population [1429].

. It was generally accepted by many researchers that it was not necessary to
calculate an entire statistic, such as a ¢ or a z (later, /) when undertaking
a permutation test. In fact, only that portion of the statistic that varied under
permutation was required and the invariant portion could therefore be ignored,
for permutation purposes. This recognition greatly reduced the computations
necessary to perform an exact permutation test and allowed for more arrange-
ments of the observed data to be considered in resampling permutation tests.

For example, Eden and Yates substantially reduced calculations by recog-
nizing that the block and total sums of squares would be constant for all of
their 1,000 samples and, consequently, the value of z for each sample would
be uniquely defined by the treatment sum of squares, i.e., the treatment sum of
squares was sufficient for a permutation analysis of variance test [379]. Welch,
in his permutation analysis of randomized blocks, considered a monotonically
increasing function of z that contained only the portion of z that varied under
permutation. In this case, like Eden and Yates, Welch considered only the
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treatment sum of squares [1428]. Pitman, in his permutation analysis of two
samples, observed that since the sample sizes (m and n) and grand mean (7) were
invariant over permutation of the observed data, each arrangement was a simple
function of the sum of one sample for a one-sided probability value [1129].

Kendall and Babington Smith, in their discussion of the problem of m
rankings, substantially reduced their calculations by recognizing that the number
of rankings (m) and number of ranks (1) were invariant over permutation of
the observed data and, therefore, calculated only the sum of squared deviations
from the mean of the ranks in their permutation analysis of m rankings [739].
Likewise, Kendall, Kendall, and Babington Smith in their permutation analysis
of Spearman’s rank-order correlation coefficient, considered only the sum of the
squared differences between ranks, which reduced computation considerably for
each of the n! arrangements of the observed rank-order statistics [746].

5. Yates developed a recursion process to generate hypergeometric probability
values [1472] and Kendall utilized a recursion technique to generate successive
frequency arrays of sums of concordant and discordant pairs forn = 1,...,10
[728]. Recursion methods were not new at this time, having been utilized
historically by Blaise Pascal, Christiaan Huygens, James Bernoulli, Willem
’sGravesande, Pierre Rémond de Montmort, and Adolphe Quetelet, among others
[571,572]. Recursion methods were destined to become powerful tools for the
production of exact probability values in the 1980s and 1990s when computers
were finally able to generate complete discrete probability distributions with con-
siderable speed and efficiency. It is important to mention recursion methods here
as precursors to the algorithmic procedures employed by computer programmers
in later decades.

6. Many of the permutation methods utilized by researchers in the 1920s and 1930s
produced exact probability values based on all possible arrangements of the
observed data values. For example, Fisher in his investigation of monozygotic
and dizygotic twins calculated exact probability values based on all possible
arrangements of Johannes Lange’s data on twins and criminal activity [451].
Fisher also conducted an exact permutation analysis of the lady tasting tea
experiment and an exact permutation analysis of Darwin’s Zea mays data
[451]. Hotelling and Pabst calculated exact probability values based on all n!
arrangements of the observed rank data, albeit for very small samples [653], and
Friedman presented the exact distribution of y? for a variety of values of p and n
[485]. Pitman calculated exact probability values for his analysis of two-sample
tests [1129]; Olds provided exact probability values for Spearman’s rank-order
correlation coefficient for values of n = 2,...,7 based on the n! possible
arrangements of one ranking against the other [1054]; Kendall constructed exact
values of the differences between concordant and discordant pairs (£) for values
of n from 1 to 10 [728]; and Kendall and Babington Smith created four tables of
exact values for statistic W [739].

On the other hand, some researchers relied on a random sample of all pos-
sible arrangements of the observed data values, i.e., resampling-approximation
probability values. While credit is usually given to Dwass in 1957 for the idea of
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resampling probability values [368], it is readily apparent that resampling was in
use in the 1920s and 1930s, although in a rudimentary way. For example, Geary
utilized a random sample of 1,000 arrangements of cell frequencies to establish
the approximate probability of a correlation between potato consumption and the
incidence of cancer [500], and Eden and Yates examined 1,000 out of a possible
4,586,471,424 arrangements of Yeoman II wheat shoots grown in eight blocks to
generate an approximate probability value [379].

Something that was not emphasized in this chapter was the use of the method
of moments to fit a continuous distribution to the discrete permutation distri-
bution to obtain approximate probability values. The method of moments was
typically used to generate probability values based on permutation distributions
to compare with probability values obtained from asymptotic distributions, such
as the normal or chi-squared distributions. For example, Pitman utilized a method
of moments approach to obtain approximate probability values in all three of
his seminal papers [1129-1131]. There, moments based on the observed data
were equated to the moments of the beta distribution to obtain the correspondence
between the probabilities of the observed statistic and probabilities from the
associated beta distribution. Others who utilized moments of the permutation
distribution to compare results to asymptotic distributions were Welch [1428]
and Friedman [485] in 1937; Olds [1054] and Kendall [728] in 1938; and Kendall
and Babington Smith [739], Kendall, Kendall, and Babington Smith [746], and
McCarthy [911] in 1939.

7. Finally, the profusion of research on permutation methods for small samples by
Hotelling and Pabst; Olds; Kendall and Babington Smith; and Kendall, Kendall,
and Babington Smith ushered in the 1940s when tables of exact probability
values were published for a number of statistics with small sample sizes. These
early works constituted a harbinger of much of the work on permutation methods
during the 1940s: a focus on creating tables for small samples that employed
permutations for the calculations of exact probability values, primarily for
rank tests.



The 1920s and 1930s constituted a time of early development for permutation
statistical methods. This was also a period during which researchers recognized
the difficulties of computing exact probability values for all but the smallest of
data sets. Progress on the development of permutation methods continued over
the next two decades, but in many ways that work took on a different focus from
that of the previous two decades. The recognition of permutation methods as the
gold standard against which conventional statistical methods were to be evaluated,
while often implicit in the 1920s and 1930s, is manifest in many of the publications
on permutation methods that appeared between 1940 and 1959. Also, a number
of researchers turned their attention during this time period to rank tests, which
simplified the calculation of exact probability values; other researchers continued
work on calculating exact probability values, creating tables for small samples; and
still others continued the theoretical work begun in the 1920s. What follows is first
a brief overview of the achievements that took place in the two decades bridging the
1940s and 1950s, followed by an in-depth treatment of selected contributions. The
chapter concludes with a look ahead at the rapid expansion of permutation statistical
methods between 1960 and 1979.

3.1 Overview of This Chapter

The 1940s and 1950s saw a proliferation of non-parametric rank tests, which is not
surprising since, strictly speaking, every rank test is a permutation test; although,
not vice-versa; see for example, discussions by Feinstein in 1973 [421], Bradbury
in 1987 [200], May and Hunter in 1993 [908], Good in 1994 and 2004 [523, 529],
and Ernst in 2004 [413].! Examples of rank tests in this period include the Kendall
rank-order correlation coefficient [728, 734]; the Friedman two-way analysis of

'A comprehensive overview of statistics in the 1950s is provided by Tertius de Wet in his
presidential address to the South African Statistical Association in 2003 [335].

K.J. Berry et al., A Chronicle of Permutation Statistical Methods, 101
DOI 10.1007/978-3-319-02744-9__3,
© Springer International Publishing Switzerland 2014



102 3 1940-1959

variance for ranks [485, 486], which is equivalent to the Kendall coefficient of
concordance [734, 739, 1224, p. 335] and also to the Wallis correlation ratio for
ranked data [1411]; the Wilcoxon two-sample rank-sum test [1453], independently
developed by Mann and Whitney [880], Haldane and Smith [573], van der Reyden
[1391], and Festinger, who, incidentally, was the first to accommodate unequal
sample sizes [427]; the Wald—Wolfowitz runs test [1405]; the Jonckheere—Terpstra
test for ordered alternatives [699, 1347]; the Mann test for trend [879]; the
Kruskal-Wallis one-way analysis of variance rank test [779]; and the Mood median
test [1001].

In addition, permutation methods were often employed to generate tables of
exact probability values for small samples, e.g., tables for testing randomness by
Swed and Eisenhart [1337]; for 2 x 2 contingency tables by Finney [434]; for the
Spearman rank-order correlation coefficient by David, Kendall, and Stuart [328]; for
the Wilcoxon two-sample rank-sum test by Wilcoxon [1453, 1454], White [1441],
and Fix and Hodges [465]; for the Mann test for trend by Mann [879]; for a rank
test of dispersion by Kamat [707]; and for the Mann—Whitney two-sample rank-sum
test by van der Reyden [1391] and Auble [40].

A theme that was commonly repeated between 1940 and 1959 involved the
difficulty of computing exact probability values for raw data and, in response,
the conversion of the raw data to ranks to simplify computation. On this topic,
in 1943 Scheffé [1230] introduced non-parametric randomization tests, building
on the work of Fisher [448], remarking that “except for very small samples
the calculation...[was] usually extremely tedious” [1230, p. 311], a problem
that plagued permutation tests until the advent of high-speed computers. In that
same year, Wald and Wolfowitz [1406] developed an exact test procedure for
randomness based on serial correlation, which pointed the way for other researchers
to develop derivations of asymptotic distributions for the non-rank case of the
randomization method [1230, p. 311]. The Wald—Wolfowitz test provided an exact
test of significance by enumerating all possible values of a test statistic for the
measurement of serial correlation.

A year later, Wald and Wolfowitz [1407] devised exact tests of significance for
use in cases when the form of the underlying probability distribution was unknown,
extending the work done by R.A. Fisher in 1925 and 1935 [448,451]. A general
theorem on the limiting distribution of linear forms in the universe of permutations
of observations was derived. Included in the discussion were applications to the
Pitman test for two samples drawn from the same population [1129], the Pitman test
for dependence between two variates [1130], the Welch [1428] and Pitman [1131]
tests for randomized block designs, and Hotelling’s 7% generalization of Student’s
two-sample 7 test [652].

In 1948 Haldane and Smith provided an exact permutation test for birth-
order defects, complete with tables [573]. This exact test was devised to test
whether the probability of a child inheriting a certain medical condition, such as
phenylketonuria, increased with birth order and was equivalent to the Wilcoxon
two-sample rank-sum test. Pitman [1132] in unpublished, but widely circulated
lecture notes for a course given at Columbia University in 1948, showed that the
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Wilcoxon [1453] test for location had an asymptotic relative efficiency (ARE) of
3/m when compared to Student’s ¢ test under the assumption of normality. Also,
Pitman showed that the Wald and Wolfowitz [1405] runs test had zero asymptotic
efficiency for testing either location or dispersion [1001, p. 520]. New concepts
introduced in these lectures included efficiency, asymptotic power, and asymptotic
relative efficiency. Pitman’s approach to ARE was first published by Noether in 1950
and extended by Noether in 1955 [1038, 1039]; see also a 2009 article on this topic
by Lehmann [815]. Later, infinite classes of linear rank tests were introduced along
with the distributions for which these tests were asymptotically most powerful for
location and scale alternatives by Mielke in 1972 and 1974 [932,933] and by Mielke
and Sen in 1981 [987].

In 1949 Wolfowitz [1466] surveyed a number of problems in non-parametric
inference and recommended that methods for obtaining critical regions be developed
in connection with the randomization methods of Fisher [448] and Pitman [1129].
Lehmann and Stein showed that the permutation tests introduced by Pitman [1129-
1131], when applied to certain discrete problems, coincided with the Fisher two-
sample permutation test and that the two-sample permutation test of Pitman [1129]
was most powerful against the alternative that the two samples were independently
normally-distributed with common variance [§18]. In 1951 Freeman and Halton
[480], in what would later become a landmark article, described an exact test for
small samples in 7 x ¢ and 2 x 2 x 2 contingency tables when the chi-squared test
of independence was not applicable.

In 1952 Wassily Hoeffding (also, Hoffding) investigated the power of a family of
non-parametric tests based on permutations of observations, finding the permutation
tests to be asymptotically as powerful as the related parametric tests [636]. These
tests included the Pitman tests for two independent samples [1129], bivariate
correlation [1130], and randomized blocks analysis of variance [1131]; the Fisher
analysis of variance [451]; and the Welch test for randomized blocks [1428].
This was a recurring theme that was also addressed by Silvey in 1953 and 1954,
who further considered the problem of determining the conditions under which
the permutation distribution of a statistic and its normal-theory distribution were
asymptotically equivalent [1275, 1276].> As detailed by Baker and Collier [52],
Silvey showed analytically that the permutation distribution of the Fisher variance-
ratio z statistic for a one-factor treatment arrangement was asymptotically the F'
distribution [52]. In 1955 Box and Andersen also discussed the use of permutation
tests to assess the effect of departures from normality on standard statistical tests,
with specific references to the one-way analysis of variance and randomized block
designs [193]. Similarly, see a 1973 article by Robinson who considered the same
problem as Hoeffding, but did not assume that the errors were independently
distributed with equal variances [1178].

2Unfortunately, these two important articles by Samuel Silvey went largely unnoticed, published as
they were in Proceedings of the Glasgow Mathematical Association, a journal that was not widely
distributed at the time.
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In 1955 Hack generated an empirical F-ratio distribution based on 100 random
selections of the possible permutations of 80 values for each of two root depths
for tomato plants grown under greenhouse conditions [566]. Hack found that
when the data were approximately normally-distributed, Snedecor’s F-ratio and the
permutation version of the analysis of variance F test generally agreed, but when
the data were skewed, a deficiency of large and small values of F underestimated
significance at the 5 % level. Hack included in his study one data set with skewness
coefficient g; = 1.5, and kurtosis coefficient g, = 3.0, and a second set of data with
g1 = 3.6 and g, = 15.9. As documented by Baker and Collier [52], only for the
latter set did the empirical permutation distributions of the variance ratios differ
noticeably from the corresponding F distributions under normal-theory methods
[52]. In 1958 Johnson [690] found the empirical distribution of the F-ratio to be
similar to the randomization distribution studied by Welch in 1937 [1428].

Also in 1955, Kempthorne described the use of randomization in experimental
designs and how randomization permitted evaluation of the experimental results
[719]. Included in his discussion were analysis of variance procedures for com-
pletely randomized, randomized block, and Latin square designs. In 1956 Kamat
[707] proposed a test for the equivalence of two parameters of dispersion, based
on ranks, which was a modification of the Mann—Whitney two-sample rank-sum
test [880]. Kamat also included tables for selected significance levels for small
samples.

In 1956 Scheffé discussed alternative permutation models for the analysis of
variance [1231]. Under the heading of “randomization models,” Scheffé provided
an insightful comparison of the ordinary analysis of variance and the permutation
version of the analysis of variance. The following year, 1957, Dwass [368]
continued the general theme of computational difficulties for permutation tests, even
with small samples. In the same manner as Eden and Yates in 1933 [379], Dwass
recommended taking random samples of all possible permutations for a two-sample
test and making the decision to reject or fail to reject the null hypothesis on the basis
of these random permutations only.

In 1958 Sawrey published a short paper on the distinction between exact and
approximate non-parametric methods, with the first leading to an exact significance
level and the second to an approximate significance level [1227]. Sawrey cautioned
future researchers on the importance of the differences and concluded that when an
exact permutation test was available, it should “always be used unless the labor is
completely prohibitive” [1227, p. 175].

Also in 1958 Chung and Fraser proposed a number of randomization tests for
multivariate two-sample problems [254]. Noting that with few observations on a
large number of variables the Hotelling generalized 72 test cannot be computed,
they proposed several alternative tests based on permutation methods. Finally, like
Dwass [368], they observed that valid permutation tests could be obtained from a
subgroup of all possible permutations, thereby substantially reducing the amount of
computation required.



3.2 Development of Computing 105

3.2 Development of Computing

Because permutation tests are inherently computationally-intensive, it took the
development of high-speed computing for permutation tests to achieve their poten-
tial. What few computers were available in the period between 1940 and 1959 were
large, slow, very expensive to use, and located at only a few computing centers.
Moreover, in large part their use was restricted to military and industrial applications
and thus were not generally accessible to those involved in the development of
permutation methods. John Vincent Atanasoff at Iowa State University, with the
assistance of his graduate student Clifford Berry, is usually credited with inventing
the first automatic electronic digital computer, which was fully completed in 1942.
Atanasoff, in an attempt to justify the construction of a computer, described the
problems it could be expected to solve.® Although Atanasoff was an engineer and
applied scientist, the first three problems on his grant request to lowa State College
were statistical problems: multiple correlation, curve fitting, and the method of
least squares. Other problems on his list included questions relating to quantum
mechanics, electric circuit analysis, elasticity, and other problems primarily of
interest to engineers.

By the late 1930s punched-card machine technology had become so well
established and reliable that Howard Aiken, a graduate student in theoretical
physics at Harvard University, in collaboration with engineers at IBM, undertook
construction of a large automatic digital computer that eventually became known
as the Harvard Mark 1.+ The Mark I was the largest electro-mechanical calculator
ever built. It was a behemoth of a machine that was 51 ft long, 3 ft deep, 8 ft high,
weighed nearly five tons, possessed 765,000 components, and contained 530 miles
of wiring. The Mark I was completed in 1944, but its use was largely restricted to
producing mathematical tables. The Mark I was superseded by the Mark II in 1948,
the Mark III in 1949, and the Mark IV in 1952.

J. Cornfield and the Mark I

Salsburg relates an interesting anecdote about Jerome Cornfield and the Mark
I which illustrates both the expense and limited access of computers at that
time [1218]; see also a chapter by Hilbe for another version of this story [618].
In the late 1940s, Jerome Cornfield at the Bureau of Labor Statistics had a
mathematical problem. Cornfield needed to invert a 24 <24 matrix for Wassily

(continued)

3 Atanasoff’s proposal for construction of the computer was funded by Towa State College, (now,
Towa State University) which granted Atanasoff $5,000 to complete his computing machine.

“Technically, the computer was originally called the Aiken-IBM Automatic Sequence Controlled

Calculator (ASCC) and was renamed the Mark I by Harvard University when it was acquired from
IBM on 7 August 1944.
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Leontief, the Nobel prize-winning Columbia University economist he was
working with at the time, but the estimated time for him to invert the matrix
by hand was 100 years working 12h a day. Cornfield and Leontief decided
to send their 24 x 24 matrix to Harvard University to have it inverted on the
Mark I. When they contracted to pay for the project, the funding was denied
by the Bureau of Labor Statistics on the grounds that the government would
pay for “goods,” but not for “services.” Cornfield then negotiated with the
Bureau for a purchase order for capital goods. The invoice called for “one
matrix, inverted” [1218, pp. 177-179]. The matrix was successfully inverted
by the Mark I, taking only several days instead of 100 years [618, pp. 5-6].

The IAS (Institute for Advanced Study) computer was built from late 1945
to 1951 under the direction of John von Neumann (originally, Neumann Janos
Lajos) for the Institute for Advanced Study in Princeton, New Jersey. The IAS
computer was a stored-program parallel-processor computer and the architectural
design was so successful that most computers built since the 1940s have been
“von Neumann” machines [41, Sect. 5.8]. The IAS was a binary computer with a
40-bit word and 1,024 words of memory. It could perform 2,000 multiplications
in one second and add or subtract 100,000 times in the same period [240, p.
278]. In March of 1953 there were only 53 kilobytes of high-speed random-access
memory in the entire world; five kilobytes (40,960 bits) were housed in the IAS
computer [370, p. 4]. When President Eisenhower appointed von Neumann to the
Atomic Energy Commission (AEC) in 1954, von Neumann left the Institute and
the computer project went into decline. Three years later, on 8 February 1957,
John von Neumann died of advanced metastasizing cancer; he was only 53 years
of age.> As George Dyson reported, without its messiah, the computer project at
the Institute of Advanced Study lost support and was terminated. At midnight on
15 July 1958, Julian Himely Bigelow, von Neumann’s chief engineer, turned off the
master control, logged off with his initials, J.H.B, and The Institute for Advanced
Study Numerical Computing Machine ceased functioning [370, p. 315].

The year 1946 saw the completion of ENIAC (Electronic Numerical Integrator
and Computer), the first general purpose computer built for the United States Army
Ballistic Research Laboratory in the Moore School of Engineering at the University
of Pennsylvania with a speed of 5,000 simple additions or subtractions per second.
The ENIAC computer contained 17,648 double-triode vacuum tubes, had 500,000
soldered joints, 1,500 hundred relays, hundreds of thousands of resistors, capacitors,
and inductors, weighed 27 tons, and occupied 680 ft> of space [1424]. In 1949
Andrew Hamilton famously predicted that “[w]here a calculator like the ENIAC
today is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the

SFor an interesting biography of John von Neumann, as related to computers and computing
science, see Chap. 4 in the 2012 book Turing’s Cathedral by George Dyson [370, Chap. 4].
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future may have only 1,000 vacuum tubes and perhaps weigh only 1% tons” [580,
p. 258]. In late 1947 the ENIAC was moved 200 miles to its permanent home at the
Ballistics Research Laboratory at Aberdeen Proving Ground in Maryland.

In 1947, the transistor was invented by William Shockley, Walter Brattain, and
John Bardeen at Bell Laboratories (now, Alcatel-Lucent) in Murray Hill, New
Jersey.® However, it was not until 1956 that the first transistorized computer was
constructed; it was named the TX-0 by its designers at the Massachusetts Institute of
Technology [618]. The impact of the transistor on computing cannot be overstated.
When Bell Laboratories announced the invention of the transistor in 1948, the press
release boasted that more than a hundred transistors could easily be held in the palm
of the hand. Today, a person can hold more than 100 billion transistors in the palm
of one hand. Moreover, on today’s market, transistors cost only about a dollar per
billion, making them the cheapest and most abundant manufactured commodity in
human history [602, p. 106].

In 1949 the EDSAC (Electronic Delay Storage Automatic Calculator) computer
successfully ran its first program at the University of Cambridge, computing all
the squares of numbers from 0 to 99. EDSAC was a general purpose serial
electronic calculating machine installed at the Cambridge University Mathematical
Laboratory. EDSAC could process 650 instructions per second with 1,024 17-bit
words of memory stored in mercury delay lines, each of which was about 5 ft long,
and ran at 500 kHz with a multiplication time of about 7 ms. In 1950 EDSAC began
providing general service to the University of Cambridge users.

Fisher and Computing

Many people have surmised what R.A. Fisher could have accomplished if
only he had access to a modern computer. As noted by Edwards in 2012
[401, p. 44], in 1950 Fisher was the first person to tackle a biological problem
with a computer, publishing the results in an article titled “Gene frequencies
in a cline determined by selection and diffusion” in Biometrics [458]. The
analysis required the tabulation of the solution of a second-order non-linear
differential equation with two boundary point conditions; consequently, he
called on his friend Maurice Wilkes, the constructor of the EDSAC computer
at the University of Cambridge, who passed the problem to one of his students,
David Wheeler, in whose Ph.D. thesis the solution first appears [401, p. 44].
In Fisher’s own words:

[v]alues of ¢ [one minus the probability] to eight decimal places, from x = 0,
by intervals of .02, to extinction, are given in Table I. I owe this tabulation to

(continued)

SThis statement paints a rosy picture of the relationship between Shockley, on the one hand, and
Brattain and Bardeen, on the other hand, that was nothing but congenial. For a more detailed
account, see a 2010 book by Sam Kean titled The Disappearing Spoon [712, pp. 41-43].
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Dr. M. V. Wilkes and Mr. D. J. Wheeler, operating the EDSAC electronic computer.
The last decimal place may be in error by 3 or 4 digits [458, p. 357].

It was a difficult solution as it involved programming of an automatic trial-
and-error method for satisfying the boundary conditions at the two ends of the
interval. The entire story is related in the autobiography of Maurice V. Wilkes,
Memoirs of a Computer Pioneer, published in 1985 [1455, pp. 148-149].

It is interesting to compare the advances in computing in the United States
after World War II with those of Great Britain. The two models, one based on
a cooperative effort between private industry and the federal government, and the
other based on the federal government alone, provide a vivid contrast in the speed
with which computing was adopted by both universities and private corporations in
both countries.

Computing in Great Britain

When World War II broke out, British mathematicians and physicists were
enlisted to work on the development of intelligence and early warning systems
in government laboratories and institutions. Two of the institutions were
the Telecommunications Research Establishment in Great Malvern and the
highly secretive Government Code and Cipher School at Bletchley Park
[426, p. 53]. As Georgina Ferry related in a book titled A Computer Called
LEQO, at that time Great Britain was actually ahead of the United States
in developing computing capability. The Mark I Colossus, the first truly
electronic programmable digital computer, was developed by Thomas H.
(Tommy) Flowers at Bletchley Park in 1943, and was followed six months
later by the Mark II Colossus, which was five times faster than the Mark I
Colossus. Thus, electronic computers had been built and were working in
Great Britain while ENIAC was still on the drawing boards at the Moore
School of Engineering at the University of Pennsylvania [426, pp. 55-57].
The development and construction of computers in the United States was
often a joint effort between the government and the private sector, including
Bell Laboratories and such universities as the University of Pennsylvania,
Iowa State University, and Harvard University. Thus, while ENIAC was
quickly declassified and achieved world fame in the post-war years, Colossus
was a military project and remained obscured behind the impervious wall of
the Official Secrets Act [426, p. 56]. As Newton E. Morton described in an
obituary of Cedric Smith, human genetics and other scientific fields in Great
Britain were “[expletive deleted] by government policy that protested British
computers [and] for a score of years the sciences that needed competitive

(continued)
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computing were stifled, and many of their practitioners changed disciplines
or countries” [1008, p. 10]. Thus, there was no concerted effort by the British
government to explore and develop civilian applications [426, p. 57]. It was
not until 30 years later in 1974 that the secrecy act was lifted.” In the
meantime, Tommy Flowers had done as he was told and burned all of his
records. Today, the Bletchley Park Trust proudly shows visitors around the
site and in 1996 a reconstruction of Colossus was unveiled [426, p. 57].

In 1951, the first UNIVAC (UNIVersal Automatic Computer) computer was
delivered to the United States Census Bureau, with a speed of 1,905 operations per
second. In 1952 Univac Computer Corporation applied for and eventually received a
patent on the digital computer, which was voided in the late 1960s when Honeywell
Computer Corporation sued Univac claiming that Univac did not have a right to a
patent on computers [556]. It was a UNIVAC 1 computer at the United States Census
Bureau that provided, for the first time, a computer-based forecast of the 1952 U.S.
Presidential election between Dwight D. Eisenhower and Adlai E. Stevenson. It also
was the first time that a working computer was shown on television, as the returns
were broadcast by the Columbia Broadcasting System (CBS) in November of 1952
[556].

A year earlier, in November of 1951, LEO (Lyons Electronic Office) became
the first computer in the world to be harnessed to the task of managing a business,
anticipating IBM by 5 years. That business was J. Lyons & Company, renowned
throughout England for its fine teas and cakes [426, p. viii]. In 1952, the MANIAC
(Mathematical Analyzer, Numerical Integrator, And Computer) computer was
installed at the Los Alamos Scientific Laboratory in New Mexico. MANIAC was
an all vacuum-tube computer primarily used for “Project Mike” in the development
of the first hydrogen bomb. MANIAC had 1,024 words of memory with a word
length of 40 bits and, in addition, had a 10,000 word drum for auxiliary storage
[1436]. Maniac was later upgraded to five kilobytes of memory. As George Dyson
observed in 2012, that is less than what is allocated to displaying a single icon on a
computer screen today [370, p. ix].

In 1953 the ORACLE (Oak Ridge Automatic Computer and Logical Engine)
computer was installed at the Clinton Engineer Works in Oak Ridge, Tennessee.
ORACLE was based on the IAS architecture developed by John von Neumann
and used both vacuum tubes and transistors (q.v. page 106). ORACLE employed
a Williams tube for 1,024 words of memory of 40 bits each (later doubled to 2,048
words) and, at the time, was the fastest computer and possessed the largest data

7In fact, it took 70 years for the Government Communications Headquarters (GCHQ) to release two
papers written by Alan Turing between April 1941 and April 1942 while he was head of wartime
code-breaking at Bletchley Park. The two papers on “Paper on the statistics of repetitions” and
“Other applications of probability to cryptography” were finally released in April of 2012 [25].
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storage capacity of any computer in the world [753]. In 1953, the first magnetic
core memory was installed at the Massachusetts Institute of Technology and IBM
shipped its first computer, the IBM 701, with a speed of 16,000 operations per
second. In 1957, FORTRAN (FORmula TRANslation) was developed by John
Warner Backus at IBM,? and in 1958 Jack Kilby created the first monolithic
integrated circuit at Texas Instruments in Dallas, Texas. At the same time, Robert
Noyce at Fairchild Semiconductor in Mountain View, California, independently
created the integrated circuit. Kilby made his integrated circuit with a germanium
(Ge) surface, while Noyce made his with a surface of silicon oxide (SiO,) [618].
The first computer hard drive was developed by IBM in 1956; it consisted of 50
two-foot diameter platters, could store five million characters, and weighed one ton
[618].

It is, perhaps, interesting to note that in the mid-1950s computers contained either
built-in pseudorandom number generators (PRNG) or could refer to random number
tables [1419]. Unfortunately, the initial random number (seed) in the standard
FORTRAN library was a constant, meaning that all simulations using this subroutine
were using the same series of random numbers [1344, p. 43].

No account detailing the development of computing in this period would be
complete without a mention of Rear Admiral Grace Hopper, programmer of, at that
time, the world’s most complex computing machine, the “mother of COBOL,” and
the first woman to earn a Ph.D. in mathematics from Yale University in the school’s
223 year history [165, pp. 25-26].°

Grace Hopper

Grace Brewster Murray Hopper graduated Phi Beta Kappa with a degree in
mathematics and physics from Vassar College in Poughkeepsie, New York, in
1928, then earned her M.A. in mathematics from Yale University in 1930 and
her Ph.D. in mathematics from Yale University in 1934 under the direction
of algebraist @ystein Ore. In 1934 Hopper accepted a full-time academic
position at her undergraduate alma mater, Vassar. In 1940 Hopper took a
1-year sabbatical to study with the celebrated mathematician Richard Courant
at New York University. In the fall of 1942 Hopper returned to her tenured
position at Vassar. However, in late 1943 Hopper took a leave of absence from
her position at Vassar, making a life-altering decision to serve her country
by joining the U.S. Navy. She reported to the United States Naval Reserve

(continued)

8For a history of the development of FORTRAN, see the recollection by John Backus in the special
issue of ACM SIGPLAN Notices on the history of programming [44].
9This statement is from Kurt Beyer, Grace Hopper and the Invention of the Information Age.

Actually, the first woman to earn a Ph.D. in mathematics from Yale University was Charlotte
Cynthia Barnum (1860—1934) who received her Ph.D. in mathematics in 1895 [1018].
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Midshipmen’s School-Women in Northampton, Massachusetts, in December
of 1943. Hopper graduated from Midshipmen’s School in 1944 as battalion
commander and first in her class [165].

Much to her surprise, upon graduation Lieutenant (Junior Grade) Hopper
was assigned to the Bureau of Ordnance Computation at Harvard Univer-
sity, becoming the third programmer of the world’s most complex, unique
computing machine, the Automatic Sequence Controlled Calculator (ASCC),
later renamed the Harvard Mark I. The ASCC was an early example of a
programmable machine and was housed, under high security, in the basement
of Harvard University’s Cruft Physics Laboratory. Hopper worked under
Commander Howard H. Aiken and it was here that she was credited with
coining the term “bug” in reference to a glitch in the computer: actually a large
moth had flown into the laboratory through an open window on 9 September
1945 and was stuck between points at Relay #70, Panel F, of the Mark II
Aiken Relay Computer, whereupon she remarked that they were “debugging”
the system [870, 1042].

At the conclusion of the war, Hopper resigned from Vassar to become a
research fellow in engineering and applied physics at Harvard’s Computation
Laboratory and in 1949 she joined the Eckert—-Mauchly Computer Corpora-
tion as a senior mathematician, retaining her Naval Reserve commission. The
corporation was soon purchased by Remington Rand in 1950, which merged
into the Sperry Corporation in 1955. Here Hopper designed the first compiler,
A-0, which translated symbolic mathematical code into machine code [870].
In 1966, then Commander Hopper retired from the Naval Reserves, but was
recalled less than seven months later. In 1973 Hopper was promoted to the
rank of Captain, in 1983 she was promoted to the rank of Commodore in a
ceremony at the White House, and in 1985 she was elevated to the rank of
Rear Admiral. In 1986, after 43 years of military service, Rear Admiral Grace
Hopper retired from the U.S. Navy on the deck of the USS Constitution at
the age of 80. She spent the remainder of her life as a senior consultant to
the Digital Equipment Corporation (DEC). Grace Brewster Murray Hopper
died in her sleep on 1 January 1992 at the age of 86 and was buried with
full military honors at Arlington National Cemetery in Arlington, Virginia
[823,1042].

3.3  Kendall-Babington Smith and Paired Comparisons

In 1940 Maurice G. Kendall (q.v. page 84) and Bernard Babington Smith, the
renowned University of Oxford experimental psychologist, published a lengthy
article on the method of paired comparisons [741]. This article dealt with the same
problem as their 1939 article (q.v. page 86) on the problem of m rankings [739],
but in a very different manner. They considered a general method of investigating
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preferences. As they explained, given n objects suppose that each of the (’;) possible
pairs is presented to an observer and the preference of one member of each pair is
recorded. With m observers the data then comprise m (Z) preferences. The primary
question for Kendall and Babington Smith was: is there any significant concordance
of preferences between observers? [741, p. 325].

B. Babington Smith

Bernard Babington Smith, known as BBS, was one of four sons and five
daughters of Sir Henry Babington Smith and Lady Elizabeth Babington Smith
(née Bruce), daughter of the 9th Earl of Elgin (Victor Alexander Bruce),
grandson of the Lord Elgin (Thomas Bruce) who removed the Elgin marbles
from the Parthenon and other buildings on the Acropolis of Athens while
he was serving as the British ambassador to the Ottoman Empire from 1799
to 1803. Little is known of the early years of Bernard Babington Smith,
but he was most likely home-schooled like his sister, Constance Babington
Smith. In 1939 Babington Smith was a Lecturer in Experimental Psychology
at the University of St. Andrews in Scotland, but resigned to join the
Royal Air Force (RAF) at the beginning of World War II. He served with
his celebrated sister, Constance Babington Smith, and with Sarah Oliver,
daughter of Sir Winston Churchill, as wartime photographic interpreters in
the Allied Photographic Intelligence Unit at Medmenham, Buckinghamshire.
It was Constance Babington Smith who first identified a pilotless aircraft at
Peenemiinde, a major German rocket research facility on the Baltic Coast,
and it was her discovery that led to a critical bombing campaign by Allied
Forces that flattened strategic launch sites in France. Constance Babington
Smith writes about her brother in her book Evidence in Camera, and supplies
a picture of Bernard Babington Smith [42].

After the war Babington Smith joined the faculty at the University of
Oxford in 1946. While at Oxford, Babington Smith collaborated with Maurice
Kendall (q.v. page 84) on a number of projects that resulted in important
publications on ranking methods and random numbers. One of his students
was Ralph Coverdale, founder of the Coverdale Organisation. Coverdale and
Babington Smith worked together for many years on Coverdale Training, a
highly developed form of learning through action. In 1973 when Babington
Smith retired, he was Senior Lecturer in Experimental Psychology and Fellow
of Pembroke College at the University of Oxford. Bernard Babington Smith
died on 24 August 1993 at the age of 88 [683, 808].

Consider a set of n objects {w;, ..., w,} and an observer who is asked to choose
between every pair. If w; is preferred over w,, write w; — ;. If the observer is
not completely consistent, preferences might be made of the type w; — w, —
w3 — wi. This they termed an inconsistent or circular triad. Let d be the number
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of circular triads in a given experiment, then Kendall and Babington Smith showed
that

24d
{=1-— if n is odd
nd—n
and
24d
{=1——5—+ if n is even
n’ —4n

may be regarded as a coefficient of consistency, with0 < ¢ < 1 andn > 3.

For a brief aside, consider that 10 years later in 1950, B. Babington Smith
served as a discussant at a symposium on ranking methods organized by the Royal
Statistical Society with presenters P.A.P. Moran, J.W. Whitfield, and H.E. Daniels
[314, 1005, 1444]. Here Babington Smith expressed caution regarding the use of
paired ranking methods, in general, and the coefficient of consistency, in particular.
He related watching a subject rank order nine items and observed that the subject
made more than 70 comparisons between pairs of items.'>!! As to the coefficient
of consistency, Babington Smith suggested a new definition and a new symbol for
the coefficient, where

-1
g=1-(") 4a.
2
which gives the same form, but a different minimum value, for n odd and even. The
advantage, he noted, is that & is more in line with other coefficients and when the
chance expectation of circular triads is realized, the value of E is zero. Finally, he
observed that there is a certain advantage to attaching a negative sign to the situation
where the number of circular triads exceeds chance expectation.

Based on the permutation structure of ¢, Kendall and Babington Smith calculated
the exact probability distribution of ¢ forn = 3, ..., 7, and conjectured that the four
moments of { were given by

19The maximum number of inversions required to reverse the order of ranks follows an irregular
series. For n = 2, the maximum number of inversions, I, is 1; forn = 3,1 = 3; forn = 4,
I = 6; and so on. Thus, the sequence is 1, 3, 6, 10, 15, 21, and so on. The sequence is a component
of Pascal’s triangle; see Column 3 in Table 3.11 of this chapter, page 186. Any successive number
can be obtained by n(n 4 1)/2. Thus, for n = 9 objects the maximum number of inversions is
9(9+1)/2 = 45. It stretches the imagination that a subject made more than 70 paired comparisons
to rank order only nine objects.

'This is the reason that the Academy of Motion Picture Arts and Sciences places a maximum limit
of 10 nominations for the Academy Awards (Oscars), as it is too difficult for the judges to rank
order a larger number of nominations.
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_3n
2= T6\3]"

and

=)L) ) 0) )

these being polynomials in # which agreed with their numerical calculations for
n=23,...,7.If m < s, then (':') = 0. Kendall and Babington Smith explained that
they had very little doubt that the moments were correct, but were unable to offer
a rigorous proof [741, p. 332]. They further conjectured that the distribution of ¢
tended to normality as n increased.'?

3.4 Dixon and a Two-Sample Rank Test

In 1940 Wilfrid Dixon devised a statistic that he called C2. The new statistic was
designed to test the null hypothesis that two samples represent populations with the
same distribution function [353].

W.J. Dixon

Wilfrid Joseph Dixon received his B.A. degree in mathematics from Oregon
State College (now, Oregon State University) in 1938, his M.A. degree in
mathematics from the University of Wisconsin in 1939, and his Ph.D. in math-
ematical statistics from Princeton University in 1944 under the supervision of
Samuel S. Wilks. Dixon accepted a position at the University of Oklahoma
in 1942, moved to the University of Oregon in 1946, and moved again to the
University of California at Los Angeles (UCLA) in 1955, where he remained
until his retirement in 1986. While at UCLA, Dixon formed the Biostatistics

(continued)

2These results were later proved by Patrick Moran in a brief article on “The method of paired
comparisons” in Biometrika in 1947 [1003].
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Division in the School of Public Health and also organized and chaired the
Department of Biomathematics in the School of Medicine. Wilfrid Joseph
Dixon died at home from heart disease on 20 September 2008 at the age of 92
[472,473].

In 1940 Dixon published a short note in The Annals of Mathematical Statistics
on a criterion for testing the null hypothesis that two samples have been drawn from
populations with the same distribution function [353]. Following the notation of
Dixon [353], let the two samples, O, and O,,, be of size n and m, respectively and
assume n < m. Arrange in order the elements uy,...,u, of O, into their order
statistics, i.e., u; < uy < --- < u,, where the elements represent points along a line.
The elements of the second sample, O,,, represented as points on the same line are
then divided into n + 1 groupings by the first sample, O, in the following manner:
let m; be the number of points with a value u;, m; is the number of points with a
value greater than u; and less than or equal to u;4; fori = 1,...,n, and m, 4 is
the number of points with a value greater than u,. The criterion proposed by Dixon
was

n+1 1 m: 2
Cc?= -— . 3.1
Z(n—i—l m) 1)

i=1

An example will illustrate the calculation of C2. Consider samples O, =
{3,9, 1, 5} with n = 4 elements, O,, = {6, 2, 8, 7, 2} with m = 5 elements,
and arrange the elements in order representing points along a line:

1,22 3 5 6 7 8 9,

where an underline indicates the element is from the first sample, O,,. Thenm; = 0,
as there are no points less than u; = 1; m, = 2, as there are two points (2 and 2)
between u; = 1 and up = 3; ms = 0, as there are no points between u, = 3 and
u3 = 5; mgq = 3, as there are three points (6, 7, and 8) between u3 = 5 and ug = 9;
and ms = 0, as there are no points greater than u4 = 9. Then, following Eq. (3.1),

1 0\> 1 2\? 1 3\’
c?=3—__2 _— _Z - _Z
(4+1 5) +(4+1 5) +(4+1 5)
= 3(0.02)? 4+ (—0.20)% + (—0.40)>

= 0.60 4+ 0.04 4 0.16
= 0.80.
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Dixon provided a table for values of C?%form < 10,n < 10, and & = 0.01, 0.05,
and 0.10 where C2 was defined as the smallest value of C? for which P(C? >
cH<al?

Dixon showed that if m and n increased indefinitely in the ratio n/m = 1y,
then nC? converged stochastically to y + 1, whereas if n is small, nC? ranged
from O to n?/(n + 1), indicating a distribution with a tail to the right. To illustrate
the range of nC?, consider two samples O, = {1, 2, 3, 4} with n = 4 elements,
Onm = {5, 6,7, 8, 9} with m = 5 elements, arranged in order representing points
along a line:

1, 2, 3, 4, 5 6, 7, 8,09,

where an underline indicates the element is from the first sample, O,,. Then, m; =
my = m3 = my = 0, ms = 5, and following Eq. (3.1),

5 1 0\’ 1 5\’
Cl=4|——=) +(—-2=
441 5 441 5
= 4(0.20)% + (—0.80)*

= 0.16 + 0.64
= 0.80.

Then, nC? = 4(0.80) = 3.20, which is equal to n?/(n + 1) = 4*>/(4 + 1) = 3.20,
the upper limit of the range given by Dixon [353, p. 202].

For the lower limit of the range, consider two samples O, = {2, 4, 6, 8} with
n = 4 elements consisting of four consecutive even integers, 0, = {1, 3, 5, 7, 9}
with m = 5 elements consisting of five consecutive odd integers, arranged in order
representing points along a line:

17 27 37 év 55 és 75 §s 95

where an underline indicates the element is from the first sample, O,. Then m; =
my = ms = my = ms = 1, and following Eq. (3.1),

2 1 1\ 2

C'=5——=] =50)"=0.00.
441 5

Thus, when the two samples are in random order with respect to each other, the

lower limit is nC? = 4(0.00) = 0. This suggested to Dixon that for larger samples

of m and n it was reasonable to try to fit the distribution of 7C? by the method of

3This was a typical approach for the time. Because a permutation test generally did not generate
a value of the statistic that coincided exactly with « (e.g., 0.05 or 0.01) of the permutation
distribution, a value of the permuted statistic, Cj, was defined as the smallest value of statistic
C? for which P(C? > C2) < .
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moments. The rest of this short article by Dixon was devoted to finding the moments
of nC? and fitting a continuous probability distribution, in this case the chi-squared
distribution with v degrees of freedom, where

an(n +m+1)
n+1

and

y— m(n + 3)(n + 4)
S 2m—Dm+n+2)(n+1)°

3.5 Swed-Eisenhart and Tables for the Runs Test

In 1943 Frieda Swed and Churchill Eisenhart, both of whom were at the University
of Wisconsin at the time, developed a runs test that was based on the existing runs
test of Wald and Wolfowitz [1337].

FE.S. Swed

Little is known of Frieda Selma Swed after she earned her B.A. and M.A. in
mathematics from the University of Wisconsin at Madison in 1935 and 1936,
respectively. In 1937 she was appointed as a research assistant in Agricultural
Economics and in 1942 as a research assistant in the Agricultural Statistical
Service at the University of Wisconsin. On 17 March 1946 she married
Herbert E. Cohn who was an accountant for the University of Wisconsin.
Herbert Cohn passed away on 27 June 1995 at age 81. Frieda Cohn worked
for the University of Wisconsin for 50 years, principally for the Numerical
Analysis Laboratory. She was an ardent University of Wisconsin booster, who
for many years tutored the University of Wisconsin athletes in calculus and
higher mathematics. Frieda Swed Cohn passed away on 7 October 2003 at the
age of 88 [332, p. 27].

C. Eisenhart

Churchill Eisenhart received his A.B. degree in mathematical physics in 1934
and a year later, his A.M. degree in mathematics, earning both from Princeton
University. During his junior year, Eisenhart was introduced to statistics when
his professor, Dr. Robert U. Condon, gave him a copy of Statistical Methods

(continued)
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for Research Workers by R.A. Fisher. As a physics major, the Fisher text made
Eisenhart realize that “most physicists simply do not know how to handle
small sets of measurements” [1057, p. 513] and the book kindled his interest
in statistics. Eisenhart worked with Samuel Wilks while he was at Princeton,
and it was Wilks who suggested that Eisenhart move to University College,
London, where Egon Pearson was chair, for his Ph.D. studies.

Eisenhart completed his Ph.D. at University College, London, in 1937
under the direction of Jerzy Neyman. Upon graduation, Eisenhart returned to
the United States, taking a position at the University of Wisconsin at Madison,
where he remained until 1947, although during World War II Eisenhart
was a Research Associate at Tufts University, a Research Mathematician
in the Applied Mathematics Group at Columbia University, and Principal
Mathematical Statistician for the Statistical Research Group at Columbia (q.v.
page 69). In 1945, Condon was appointed head of the National Bureau of
Standards (NBS)'* and brought Eisenhart to the Bureau in October of 1946.
Eisenhart was appointed Chief of the NBS Statistical Engineering Laboratory
in 1947 and in 1963 became a Senior Research Fellow. He retired from the
NBS in 1983, but stayed on as a guest researcher. Churchill Eisenhart died
from cancer at the age of 82 on 25 June 1994 [406, 1057, 1140].

In 1940 Abraham Wald (q.v. page 122) and Jacob Wolfowitz (q.v. page 122)
published a new procedure to test whether two samples had been drawn from
the same or identical populations [1405]. In this article they observed that in the
problem treated by “Student,” the distribution functions were assumed to be known,
i.e., normal in form and completely specified by two parameters. They argued that
such assumptions were open to very serious objections. For example, as they pointed
out, the distributions may be radically different, yet have the same first moments.
Wald and Wolfowitz proposed an alternative non-parametric procedure that was
termed U and was based on the total number of runs and which, as Mood later
stated, was very similar to his test published in the same year [999, p. 370].151

In 1943 Frieda Swed and Churchill Eisenhart, building on the runs test of Wald
and Wolfowitz [1405], considered two different kinds of objects arranged along a

'“The National Bureau of Standards was founded in 1901 as a non-regulatory agency of the United
States Department of Commerce in Gaithersburg, Maryland. The NBS was renamed The National
Institute of Standards and Technology (NIST) in 1988.

5Tn a 1943 article in The Annals of Mathematical Statistics, Wolfowitz commented that the choice
of U as a test statistic was somewhat arbitrary and that other reasonable tests could certainly be
devised [1465, p. 284], such as that proposed by Wilfrid Dixon in 1940, also in The Annals of
Mathematical Statistics [353].

16A clear exposition of the Wald—Wolfowitz runs test was given in an article by Lincoln Moses on

“Non-parametric statistics for psychological research” published in Psychological Bulletin in 1952
[1010].
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line, e.g., {a, a, b, b, b, a, b}, where there are 3 as and 4 bs, forming four runs,
two of as, i.e., {a, a} and {a} and two of bs, i.e., {b, b, b} and {b} [1337]. Thus, a
run is a succession of similar events preceded and succeeded by different events; the
number of elements in a run is referred to as its length [999, p. 367]. They showed
that if there were m objects of one kind and n objects of the other kind, there were

(2]

equally-likely distinct arrangements of the objects under the null hypothesis, with
m < n. If u is defined to be the number of distinct groupings of like objects, then
the proportion of arrangements of the observed data yielding u’ or fewer groupings
is given by

-1
P{qu/}z(mr:n) qu,

u=2

m—1\({n—-1 .
fu—2<k_1)<k_l) if u =2k

m-+n m—1\[(n-1 .
f”_(—k _2)<k—1)<k—1) ifu=2k+1

for 1 < k < m < n. Incidentally, the approximation to the normal distribution for u
based on the large sample method of moments is given by

where

and

U— Uy

u

&N, 1),

where the exact mean and variance of u are given by

_ 2mn +m+n

Hou mn

and

5 2mn(2mn —m —n)
o, = ,
o m+n)?i(m+n-—1)

respectively.
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Swed and Eisenhart prepared three tables of probability values. The first table
provided exact probability values for P{u < u'} to seven places form < n < 20
with a range of m from 2 to 20, inclusive. The second table provided exact
probability values of u, for ¢ = 0.005, 0.01, 0.025, 0.05, 0.95, 0.975, 0.99, and
0.995, where u, is the largest integer, «’, for which P{u < u'} < ¢ when ¢ < 0.50
and is the smallest integer, u/, for which P{u < u'} > & when ¢ > 0.50.
The third table utilized the normal distribution provided by Wald and Wolfowitz,
enhanced by a correction for continuity. In the third table, the values of u, from
m = n = 10 through m = n = 20 were provided. There was a total of 736 values
in the third table and all but five agreed with the exact values in the second table,
leading Swed and Eisenhart to conclude “[i]t appears that the approximation will
be adequate in general for m = n > 20” [1337, p. 67]. As Swed and Eisenhart
noted, the merit of the test was that it employed a minimum of assumptions; only
that the common population be continuous and the samples be independently drawn
at random [1337]. The generalized runs test as presented by Mielke and Berry
extended the Wald—Wolfowitz runs test from ¢t = 1 tree, g = 2 groups, N — k
objects, and L = N — 1 links to ¢ > 1 trees, g > 1 groups, and N > k objects,
where N > kif g = 1and L < N — 1 links [965, pp, 103-108].

3.6 Scheffé and Non-parametric Statistical Inference

In 1943 Henry Scheffé published an extensive 28 page introduction to statistical
inference for non-parametric statistics in The Annals of Mathematical Statistics. At
the time, this paper was considered a definitive work in the area of non-parametric
tests and measures [1230].

H. Scheffé

Henry Scheffé received his A.B., A.M., and Ph.D. degrees in mathematics
from the University of Wisconsin in 1931, 1933, and 1935, respectively.
Scheffé held several academic positions at the University of Wisconsin,
Oregon State University, Princeton University, Syracuse University, and
the University of California at Los Angeles before accepting a position
at Columbia University in 1948. In 1953 he moved to the University of
California at Berkeley where he remained until his retirement in 1974. After
his retirement from Berkeley, Scheffé accepted a 3-year appointment at the
University of Indiana at Bloomington. Henry Scheffé returned to Berkeley in
1977 to complete work on a new edition of his magnum opus, The Analysis of
Variance, but passed away 3 weeks later on 5 July at the age of 70, following
a bicycling accident [814].
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In 1943 Scheffé published what soon became a seminal article on non-parametric
statistical inference. This article was an extensive introduction to what was then
the relatively new field of non-parametric statistics [1230]. Scheffé prefaced this
paper with an introduction in which he acknowledged that in most problems of
statistical inference, where solutions do exist, the distribution function is assumed
to depend on parameters, the values of which are unknown. Scheffé labeled this
the “parametric case” under which, he said, falls all the theory based on normality
assumptions [1230, p. 305]. He further observed that only a very small fraction
of the extensive literature of mathematical statistics was devoted to the non-
parametric case and that most of the non-parametric literature was quite recent.
More formally, Scheffé defined a non-parametric test, noting that in any problem of
statistical inference it is assumed that the cumulative distribution function F,, of the
measurements is a member of a given class 2 of n-variate distribution functions. If
Q is a k-parameter family of functions the problem is called “parametric,” otherwise
it is called “non-parametric” [1230, p. 307].

In an extensive review and highly mathematical summary of the non-parametric
literature, Scheffé provided an excellent description of permutation methods, which
he termed “randomization methods” and attributed the origins of permutation
methods to the work of R.A. Fisher in 1925 [448].!7 Scheffé noted that a special
case of permutation methods was the “methods of ranks” to which he devoted
considerable space and much detail. Near the end of a section on permutation
methods, Scheffé mentioned a few difficulties with permutation methods when used
in actual applications. The primary difficulty was, of course, that except for very
small samples the calculation of exact permutation tests was “usually extremely
tedious” [1230, p. 311]. He expressed dissatisfaction with those cases where the
author of the test provided an approximation to the discrete permutation distribution
by means of some familiar continuous distribution for which tables were readily
available. He objected to “the laborious exact calculation by enumeration. .. being
replaced by the computation of a few moments...and the use of existing tables
of percentage points of the continuous distribution” [1230, p. 311]. Scheffé clearly
took exception to the method of moments, emphasizing that with the exception of a
few rank tests, the justification of these approximations was never satisfactory from
a mathematical point of view, with the argument being based on two, three, or at
most four moments.

In the following sections of this lengthy paper, Scheffé described in summary
fashion the contributions to permutation tests by Hotelling and Pabst, who had
previously investigated the Spearman coefficient of rank-order correlation [653];
Thompson and his rank test for two samples [1360], which was shown to be
inconsistent with respect to certain alternatives by Wald and Wolfowitz [1405];

Tests based on permutations of observations require that, under the null hypothesis, the
probability distribution is symmetric under all permutations of the observations. This symmetry
can be assured by randomly assigning treatments to the experimental units. As a result, these tests
are often referred to as “randomization tests” in the literature [254, p. 729].
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Swed and Eisenhart who provided tables for the 0.05 and 0.01 levels of significance
for the runs test [1337]; Dixon who developed a two-sample test based on ranks for
small sample sizes at the 0.01, 0.05, and 0.10 levels of significance [353]; Welch and
his method of randomization for an analysis of variance ratio [1428]; Pitman’s three
randomization permutation tests for two independent samples, bivariate correlation,
and randomized blocks analysis of variance [1129-1131]; Kendall’s new t measure
of rank-order correlation with tables of exact probability values for small samples
[728]; Kendall, Kendall, and Babington Smith and the permutation version of
Spearman’s rank-order correlation coefficient [746]; and Friedman and the analysis
of variance for ranks [485], among others.

3.7 Wald-Wolfowitz and Serial Correlation

Early in the 1940s, Abraham Wald and Jacob Wolfowitz, both at Columbia
University, published an exact permutation test of randomness based on serial
correlation and designed for quality assurance analysis [1406].

A. Wald

Abraham Wald began his studies at the University of Cluj in Austria—Hungary
(present-day Romania), then moved to the University of Vienna where he
earned his Ph.D. in 1931. The pre-war environment provided few academic
opportunities to Wald, who was Jewish, so he took a position as a tutor in
mathematics. Wald immigrated to the United States in 1938, moving first to
Colorado Springs, Colorado, to join the Cowles Commission for Research
in Economics, but moving after only a few months to become a research
associate at Columbia University at the invitation of Harold Hotelling. During
his time at Columbia, Wald was a member of the Statistics Research Group
(q.v. page 69) and it was while Wald was at Columbia that he met and began
working with Jacob Wolfowitz, then a graduate student at Columbia. Abraham
Wald remained at Columbia until his untimely death in a plane crash in
southern India on 13 December 1950 at the age of 48 [814, 1426].

J. Wolfowitz
Jacob Wolfowitz earned his B.S. degree from City College of New York
in 1931, his M.S. degree from Columbia University in 1933, and a Ph.D.
from New York University in 1942. Between earning his M.S. and Ph.D.
degrees, Wolfowitz taught high school mathematics to support his family,
while continuing his studies at Columbia. Sometime in the 1930s, Wolfowitz

(continued)



3.7 Wald-Wolfowitz and Serial Correlation 123

began studying statistics at Columbia and it was at Columbia that Wolfowitz
met Wald in 1938. In the spring of 1939, Wolfowitz and Wald began having
long discussions about statistics, which resulted in Wald identifying a series of
problems for the two of them to work on together. These discussions resulted
in a series of collaborations in mathematical statistics and a lifelong friendship
[814].

Wolfowitz also joined Wald as a member of the Statistics Research Group
at Columbia in 1942 (q.v. page 69). Wolfowitz moved briefly to the University
of North Carolina in 1945, but returned to Columbia University in 1946 where
he remained until Wald’s death in 1950.

In 1951 Wolfowitz took a position as professor of mathematics at Cornell
University where he remained until 1970. In 1970 he joined the University
of Illinois at Urbana, retiring in 1978, when he then went to the University
of South Florida at Tampa as Shannon Lecturer in the Institute of Electrical
and Electronic Engineers. Jacob Wolfowitz suffered a heart attack and passed
away on 16 July 1981 at the age of 71 in Tampa, Florida [9].

As an interesting aside, Wolfowitz has been credited [323] with coining
the term “non-parametric” in his 1942 paper on “Additive partition functions
and a class of statistical hypotheses” in The Annals of Mathematical Statistics
[1464, p. 264].

In 1943 Wald and Wolfowitz devised an exact non-parametric test for ran-
domness based on serial correlation [1406]. Noting that the problem of testing
randomness frequently arose in quality control of manufactured products and in the
analysis of time series data, Wald and Wolfowitz constructed an exact permutation
test based on serial correlation with a defined lag [1406]. Following the notation of
Wald and Wolfowitz, suppose that x denotes some quality character of a product and
that xy, ..., xy are the values of x for N consecutive units of the product arranged
in the order they were produced. The production process is considered to be in a
state of statistical control if the sequence {x,...,xy} satisfies the condition of
randomness. The serial correlation coefficient with lag / is defined as

i=1 i=1
R, =

S5

i=1 i=1

; (3.2)

where xj,4; is to be replaced by xj,+;—y for all values of i for whichz +i > N.
Denote by a; the observed value of x;, i = 1,..., N, and consider the sub-

population where the set {xj,...,xy} is restricted to permutations of aj,...,ay.

In the subpopulation, the probability that {xi, ..., xy} is any particular permutation
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{al,....ay} of {ai,... ,ay} is equal to 1/N! if the hypothesis of randomness is
true. Then the probability distribution of R}, in the subpopulation can be determined.
Consider the set of N! values of R; obtained by substituting for {x;,...,xy} all
possible permutations of {aj, ..., ay}. Each value of R; has the probability 1/N!.
Let o denote the level of significance and choose as a critical region a subset of M
values of the set of N! values of R;, where M/N! = a.

Next, Wald and Wolfowitz considered the statistic

N
Ry = fo Xhi s
i=l1

where xj,4; is to be replaced by x;4;—y for all values of i for whichh +i > N.
They pointed out that since vazl x; and Z,N= , X7 in Eq.(3.2) are constants and
therefore invariant under permutation, the statistic R, is a linear function of R,
in the subpopulation and could be substituted for R, when constructing the exact
permutation distribution [1406]. This dramatically simplified calculations. However,
as Wald and Wolfowitz noted, difficulties in carrying out the test arose if N was
neither sufficiently small to make the computations of the N ! values of R practically
possible, nor sufficiently large to permit the use of a limiting distribution. They
concluded that “it may be helpful to determine the third, fourth, and perhaps higher,
moments of R, on the basis of which upper and lower limits for the cumulative
distribution of R can be derived” [1406, p. 381]. The remainder of the paper is
devoted to deriving the mean and variance of R. Finally, Wald and Wolfowitz
observed that they could replace the observed values {aj, ...,ay} by their ranks,
but questioned the wisdom in making the test on the rank-transformed values instead
of the original observations [1406, p. 387].

The following year Wald and Wolfowitz published a general paper on a variety
of statistical tests based on permutations of observations [1407]. They observed that
one of the problems of statistical inference was to devise exact tests of significance
when the form of the underlying probability distribution was unknown, such as
Fisher had discussed in 1925 and 1935 [448, 451]. They explained that an exact
test on the level of significance « could be constructed by choosing a proportion
« of the permutations of the observations as a critical region. Wald and Wolfowitz
noted that Scheffé had previously shown that for a general class of problems this
was the only possible method of constructing exact tests of significance [1230].

In this 1944 paper, a general theorem on the limiting distribution of linear
forms in the universe of permutations of the observations was derived by Wald
and Wolfowitz. Applications of this general theorem were made by Wald and
Wolfowitz for a number of existing permutation tests, including Spearman’s rank-
order correlation coefficient [1300, 1301], the limiting distribution which had
previously been proved by Hotelling and Pabst [653]; Pitman’s test of dependence
between two variates [1130]; Pitman’s test of the hypothesis that two samples came
from the same population [1129]; the analysis of variance for randomized blocks as
developed by both Pitman and Welch [1131, 1428]; and Hotelling’s generalized 72
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for permutations of the observations [652]. In this last case, Wald and Wolfowitz
derived the limiting distribution of 7% in the universe of permutations of the
observations, an original contribution by Wald and Wolfowitz to the Hotelling paper
[652].

3.8 Mann and a Test of Randomness Against Trend

In 1945 Henry Mann introduced a two-sample rank test of randomness based on the
number of reversal arrangements necessary to convert one set of ranks into a second
set of ranks [879].

H.B. Mann

Henry Berthold Mann received his Ph.D. in mathematics from the University
of Vienna in 1935, then emigrated from Austria to the United States in
1938. In 1942 he was the recipient of a Carnegie Fellowship for the study
of statistics at Columbia University where he had the opportunity to work
with Abraham Wald in the Department of Economics, which at the time
was headed by Harold Hotelling. This likely would have put him in contact
with other members of the Statistical Research Group at Columbia University
such as W. Allen Wallis, Jacob Wolfowitz, Milton Friedman, Jimmie Savage,
Frederick Mosteller, and Churchill Eisenhart (q.v. page 69).

In 1946 Mann accepted a position at The Ohio State University, remaining
there until his retirement in 1964, at which point he moved to the U.S. Army’s
Mathematics Research Center at the University of Wisconsin. In 1971, Mann
moved again to the University of Arizona, retiring a second time in 1975.
Henry Mann remained in Arizona until his death on 1 February 2000 at the
age of 94 [1060].

In 1945 Mann introduced two non-parametric tests of randomness against trend
[879]. Both tests were based on ranks, but it is the first of his two tests that pertains
to permutation statistical methods. Mann noted, as had others, that the advantages
of such rank tests are that they may be used if the quantities considered cannot be
measured, as long as it is possible to rank the observations [879, p. 247]. By way of
examples of such quantities, Mann specifically mentioned ranking the intensity of
sensory impressions, such as pleasure and pain.

As Mann explained, let X;,, ..., X;, be a permutation of the n distinct numbers
X1,..., Xy, let T count the number of inequalities X;, < X; where k < [, and
label one such inequality a “reverse arrangement.” If X1, ..., X, all have the same
continuous distribution, then the probability of obtaining a sample of size n with T
reversal arrangements is proportional to the number of permutations of the variables
1, 2,...,n with T reversal arrangements. Mann stated that the statistic 7 was first
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Table 3.1 Reversal sequences for n = 5 ranks to obtain no reversals from an observed data set

Reversal sequence

Observed 1 2 3 4 5 6 7

1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1
2 4 2 4 2 4 2 1 2 3 2 3 2 3 2 2
3 5 3 5 3 1 3 4 3 4 3 4 3 2 3 3
4 2 4 1 4 5 4 5 4 5 4 2 4 4 4 4
5 1 5 2 5 2 5 2 5 2 5 5 5 5 5 5

proposed by M.G. Kendall in 1938 and acknowledged that Kendall had also derived
a recursion formula, tabulated the distribution of 7" for 7 < 10, and proved that
the asymptotic distribution of 7 is normal; see Sect.2.18 in Chap.2. What Mann
contributed in his paper was a table of probability values that was easier to use
and a simpler proof of the normality of the asymptotic distribution of T'. The table
produced by Mann provided cumulative probability values for 3 < n < 10 with
T or fewer reversal arrangements, where 0 < T < 21 and every permutation
occured with probability 1/n!. The counting of the reversal arrangements followed
the technique described by M.G. Kendall in 1938 [728].

Table 3.1 illustrates the counting of reversal arrangements in a sequence of ranks
from 1 to 5. The first set of two columns in Table 3.1 lists the observed ranks for two
groups, and subsequent sets of columns illustrate the number of reversals necessary
to produce the first column from the second. In this case, seven reversal sequences
are required with one reversal arrangement per sequence. For example, reversal
sequence 1 in Table 3.1 exchanges ranks 2 and 1 in the observed column, reversal
sequence 2 exchanges ranks 5 and 1 in reversal sequence 1, reversal sequence 3
exchanges ranks 4 and 1 in reversal sequence 2, and so on until reversal sequence 7
exchanges ranks 3 and 2 in reversal sequence 6 to achieve the ordered sequence in
reversal sequence 7.

The technique that Mann described is similar to a graphic computation of
disarray first constructed by S.D. Holmes and published in an appendix to a
book on Educational Psychology by P. Sandiford in 1928 with application to the
Pearson product-moment correlation coefficient [1221, pp. 391-394], and in a
later publication by H.D. Griffin in 1958 with reference to the Kendall rank-order
correlation coefficient, 7, [558].

A proof that the number of interchanges of nearest neighbors required to reduce
one ranking to the other is related to 7" was provided by P.A.P. Moran in 1947 [1003]
and was, according to Moran, first proved by Olinde Rodrigues in 1839 [1182].!8
On this note, in 1948 Moran mathematically established the relationship between

18A summary in English of the Rodrigues 1839 article is available in Mathematics and Social
Utopias in France: Olinde Rodrigues and His Times [39, pp. 110-112].
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Fig. 3.1 Graphic depiction

of the number of reversals for 1 4

two sets of ranks, from 1 to 5 2 2
3 3
4 1
5—5

rank-order correlation and permutation distributions [1004].!° Consider n objects

denoted by 1, ..., n and let s be the least number of interchanges of adjacent objects
required to restore the permutations to the normal order. In his 1938 article that
introduced a new coefficient of rank-order correlation, z, Kendall (q.v. page 84)
showed that S = tn(n — 1)/2 is distributed about a mean of zero with variance
given by n(n—1)(2n+5)/18 in a distribution that tended to normality as n increased
[728]. Utilizing a theorem of Haden [569], Moran proved that s = n(n—1)/4—S/2
so that

4s _ 4t
Can—1)  an—1)"

where t = s — n(n — 1)/4. This showed that Kendall’s 7 rank-order correlation
coefficient could be defined in terms of s and, therefore, the theory of rank-order
correlation could be mathematically linked with the theory of permutations. This
ultimately became an observation of considerable importance.

A graphic that depicts the number of reversals consists of lines that are drawn
between like values in the two columns and the number of reversals is represented
by the number of times the lines cross [558]. For example, consider the two sets of
ranks given in Fig.3.1.%°

There are five crosses (x) among the n = 5 lines, i.e., both diagonal lines
cross two horizontal lines and each other, indicating the five reversals required to
produce the distribution of ranks on the left from the distribution of ranks on the
right. Thus, beginning with the right column of {4, 2, 3, 1, 5} and for the first
reversal, exchange ranks 3 and 1, yielding {4, 2, 1, 3, 5}; for the second reversal,
exchange ranks 2 and 1, yielding {4, 1, 2, 3, 5}; for the third reversal, exchange
ranks 4 and 1, yielding {1, 4, 2, 3, 5}; for the fourth reversal, exchange ranks 4

=1

9This paper was cited by Moran in [1005, p. 162] as “Rank correlation and a paper by
H.G. Haden,” but apparently the title was changed at some point to “Rank correlation and
permutation distributions” when it was published in Proceedings of the Cambridge Philosophical
Society in 1948.

20Technically, Fig.3.1 is a permutation graph of a family of line segments that connect two
parallel lines in the Euclidean plane. Given a permutation {4,2,3, 1,5} of the positive integers
{1,2,3,4,5}, there exists a vertex for each number {1,2,3,4,5} and an edge between two
numbers where the segments cross in the permutation diagram.
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Table 3.2 Permutations and number of reversals for n = 4 ranks: {1, 2, 3, 4}

Number Permutation Reversals Number Permutation Reversals
1 1 234 0 13 3124 2
2 1 243 1 14 3142 3
3 1324 1 15 321 4 3
4 1 342 2 16 3241 4
5 1 423 2 17 3412 5
6 1432 3 18 3421 3
7 213 4 1 19 412 3 4
8 2143 2 20 4132 4
9 2314 2 21 4213 4
10 2341 3 22 4 2 31 5
11 2413 3 23 4 312 5
12 2 4 31 4 24 4 3 21 6

and 2, yielding {1, 2, 4, 3, 5}; and for the fifth reversal, exchange ranks 4 and 3,
yielding {1, 2, 3, 4, 5}.

To illustrate the Mann procedure to obtain exact probability values under the
null hypothesis of randomness, P(X; > X;) = 1/2, consider an example with
n = 4 ranks, where there are n! = 4! = 24 possible permutations of the ranks.
Table 3.2 lists the 24 permutations of the four ranks, along with the number of
reversal arrangements required to achieve a sequence of {1, 2, 3, 4}. As can be seen
in Table 3.2, there is only one permutation with no (zero) reversal arrangements,
i.e., permutation number 1 with {1, 2, 3, 4}. Thus, the probability of zero reversal
arrangements is

1
P(T =0) = 5, = 0.0417.

There are three permutations with one reversal arrangement, i.e., permutations 2,
3, and 7; thus, the cumulative probability of one or fewer reversal arrangements is

3 1 4
PT<1)=—=+—=— =0.1667.
=1 24 + 24 24
There are five permutations with two reversal arrangements, i.e., permutations
4,5, 8, 9, and 13; thus, the cumulative probability of two or fewer reversal
arrangements is

P(T <2)= > + ) + L_2 = 0.3750
=724 24 24 24 7 ‘
There are six permutations with three reversal arrangements, i.e., permutations 0,
10, 11, 14, 15, and 18; thus, the cumulative probability of three or fewer reversal
arrangements is
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Fig. 3.2 Portion of a figurate

riangle with n = 4 and 5 n | Partial figurate triangle

4 |1 35 6 5 3 1
5 |1 4 9 15 20 22 20 15 9 4 1

6 5 3 1 15
PMT<3)=—+—4+—+—=— =0.6250.
(r=3) 24+24+24+24 24
There are five permutations with four reversal arrangements, i.e., permutations
12, 16, 19, 20, and 21; thus, the cumulative probability of four or fewer reversal
arrangements is

5 6 5 3 1 20
PT<4)=—+—+—+—+—=— =0.8333.
(=4 24+24+24+24+24 24

There are three permutations with five reversal arrangements, i.e., permutations 17,
22, and 23; thus, the cumulative probability of five or fewer reversal arrangements is

3 5 6 5 3 1 23
P(T<5) ="+ — 4 — 4+ — + 4 — == =0.9583.
==t utuTua u"x

Finally, there is only one permutation with six reversal arrangements, i.e., permuta-
tion 24 with {4, 3, 2, 1}; thus, the cumulative probability of six or fewer reversal

arrangements is

1 3 5 6 5 3 1 24
PT<6)=—+—4+—4+—+—+—+—=—=1.0000.
(r'=6) 24+24+24+24+24+24+24 24

Note that in this example with n = 4 ranks, the numerators of the final fractions
are 1, 3, 5, 6, 5, 3, 1 and, using the Kendall recursion procedure (q.v. page 86),

Mann was able to generate numerator values for successive values of n up to 10.
For example, consider n = 5 where the denominator is #! = 5! = 120 and there
are 11 numerator values instead of 7. The process is as follows. First forn = 2
there are two numerator values, for n = 3 there are four values, for n = 4 there
are seven values, and for n = 5 there are 11 numerator values. Thus, add n — 1 to
the previous number of values, e.g., for n = 2 with two values, n = 3 will have
24+n—1=2+43—1=4values,n = 4willhave 74+n—1 = 74+5—1 = 11 values
and so on. The numerator values for n = 5 can be obtained from the numerator
values for n = 4 by a figurate triangle, a portion of which is listed in Fig. 3.2. For
the full figurate triangle, see page 86 in Chap. 2.

Here, as in Kendall’s 1938 article [728], a number in the nth row is the sum of
the number immediately above it and the n — 1 or fewer numbers to the left of that
number, e.g., in row n = 5 the number 9 in the third position from the left is the
sum of the number above it (5) in row 4 and all the numbers to the left of 5 in row 4
(3 and 1), since there are fewer thann — 1 = 5— 1 = 4 numbers to the left of 3; and
inrow n = 5, 22 in the sixth position from the left is the sum of the number above
it(3)andthen — 1 = 5—1 = 4 numbers to the leftof 3: 22 =3+ 5+ 6+ 5+ 3.
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In this manner, Mann constructed a table of exact probability values for a test of
trend with 3 < n < 10, under the null hypothesis of randomness. The remainder
of the article was concerned with determining approximate probability values for
T. Under the null hypothesis of randomness Mann obtained the mean of 7, i.e.,
E(T) = n(n — 1)/4, and continued to find the higher moments beyond the mean.
He then proved that the limiting distribution of 7" was normal.

Gottfried Emanuel Noether further investigated certain asymptotic properties of
the test of randomness based on the statistic R;, proposed by Wald and Wolfowitz
[1038]. He was able to show that the conditions given in the original paper by Wald
and Wolfowitz [1406] for the asymptotic normality of R;, when the null hypothesis
of randomness was true could be weakened considerably. Further, Noether described
a simple condition for the asymptotic normality of Rj, for ranks under the alternative
hypothesis. He then utilized this asymptotic normality to compare the asymptotic
power of R; with the T statistic proposed by Mann [879] in the case of downward
trend [1038].

3.9 Barnard and 2 x 2 Contingency Tables

In 1945 George Barnard introduced the CSM test for 2 x 2 contingency tables that
was based on two binomial distributions representing the two rows of the observed
contingency table [63]. In this article, Barnard claimed that the proposed CSM test
was more powerful than the Fisher—Yates exact probability test.

G.A. Barnard

George Alfred Barnard attended St. John’s College, University of Cambridge,
on a scholarship, earning a degree in mathematics in 1937. From 1937 to
1939 he did graduate work on mathematical logic under Alonzo Church at
Princeton University. Another prominent Englishman who was at Princeton at
the same time as Barnard and also studying under Church was Alan Mathison
Turing, British logician, cryptologist, and the “father of computer science and
artificial intelligence” [188, p. 272].%!

Barnard was on holiday in Great Britain when World War II began and
he never returned to Princeton to finish his Ph.D. Complicating the matter
was Barnard’s radical left-wing views, a consequence of which was that
he was denied a visa for the United States for many years after the war;
for Barnard’s views on this, see “A conversation with George A. Barnard”
by Morris DeGroot published in Statistical Science in 1988 [339, p. 206].

(continued)

21See also a discussion about the relationship between Turing and Church by George Dyson in a
2012 book titled Turing’s Cathedral [370, pp. 249-250].
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As Dennis Lindley noted, Barnard’s expressions of his anti-establishment
views most likely accounts for Barnard never being elected to a Fellowship in
the Royal Society [831].

In 1940 Barnard accepted a position at the Plessey Company, an engi-
neering firm, as a mathematical consultant, and in 1942 he joined the
Ministry of Supply as head of a research group that applied quality control
to the products for which they were responsible. It was at that time that he
developed an interest in statistics. The research group that he supervised
included Dennis Lindley; Peter Armitage; Robin Plackett; Peter Burman;
Patrick Rivett, who subsequently went into operational research as the first
professor of operational research in the United Kingdom; Dennis Newman,
of the Newman—Keuls test; and Frank Anscombe [339].

At the conclusion of the war, Barnard accepted an appointment at Imperial
College, London, where he was named professor of mathematics in 1954,
but he left in 1966 for the newly created University of Essex, from which
he retired in 1975 (the University of Essex in Colchester was established
in 1963 and received its Royal Charter in 1965). After retirement, Barnard
spent much of each year, until 1981, at the University of Waterloo in Ontario,
Canada. George Alfred Barnard died peacefully in Brightlingsea, Essex, on
30 July 2002 at the age of 86 [830, 831]. For some personal insights on the
life of George Barnard, see the fourth chapter in G.E.P. Box’s autobiography
An Accidental Statistician published in 2013 [192, Chap. 4].

In 1945 George Barnard introduced a new test for 2 x 2 contingency tables
that he claimed was more powerful than the Fisher—Yates exact probability test
[63].2% Taking the table to be generated by samples of 7; and 7, from two binomial
distributions with probabilities p; and p,, respectively, Barnard argued that if
p1 = p» = pand n; = np, = 3, for example, the probability of observing a
2 x 2 contingency table with rows {3, 0} and {0, 3} was p*(1 — p)3, which gave
the probability value 1/64 when p = 0.5 and was less than this for all other values
of p, as opposed to a probability value of 1/20 if all marginal frequency totals were
regarded as fixed, as Fisher had recommended.

The new test prompted an exchange between Fisher and Barnard [64, 457],
debating the merits of both methods; see also articles by Barnard in 1947 and 1949
[67,68] and by E.S. Pearson in 1947 [1095]. In 1947 Barnard named the test the
CSM test [67, p. 124], but in 1949, in a paper read before the Research Section of
the Royal Statistical Society, Barnard withdrew the test from further consideration.
He allowed as he had never been satisfied with the position he had taken in 1945
and said that “further meditation has led me to think that Professor Fisher was right

22This was actually Barnard’s first, of many, published papers. It was published in Nature while
Barnard was employed at the Ministry of Supply and is only one-half page in length.
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after all” [68, p. 115]. He credited Egon Pearson for strengthening this conclusion
by his remarks in his article on choosing statistical tests [1095].2%24

3.10 Wilcoxon and the Two-Sample Rank-Sum Test

Frank Wilcoxon, trained as a chemist, was also an accomplished statistician. In 1945
Wilcoxon, in a concise article in the first volume of Biometrics Bulletin, introduced
two new rank tests: the two-sample rank-sum test for two independent (unpaired)
samples, and the matched-pairs (signed-ranks) rank-sum test for two dependent
(paired) samples [1453].

F. Wilcoxon

Frank Wilcoxon had an interesting early life. Wilcoxon’s parents were
wealthy Americans and were honeymooning in Europe. They rented the
Glengarriff Castle near Cork, Ireland, where Wilcoxon and his twin sister
were born on 2 September 1892. In 1908, at the age of 16, Wilcoxon
ran away to sea. At some point he jumped ship and hid for years in
the back country of West Virginia working as an oil-well worker and a
tree surgeon [221]. Returning home to Catskill, New York, he enrolled at
the Pennsylvania Military College. Wilcoxon earned his B.Sc. degree from
Pennsylvania Military College in 1917, an M.S. degree in chemistry from
Rutgers University in 1921, and a Ph.D. in chemistry from Cornell University
in 1924.

Wilcoxon spent much of his adult life as a chemist working for the
Boyce Thompson Institute for Plant Research in Yonkers, New York, the
Atlas Powder Company in Wilmington, Delaware, and, finally, the Lederle
Laboratories Division at the American Cyanamid Company in Norwalk,
Connecticut. It was while at the Boyce Thompson Institute that Wilcoxon’s
interest in statistics was spurred through his work with a small reading group
that met to study R.A. Fisher’s Statistical Methods for Research Workers.
Organizers of the group were Wilcoxon, fellow chemist William John (Jack)
Youden, and biologist Frank E. Denny. This introduction to statistics had a

(continued)

23In 1984 Barnard revealed the meaning behind labeling the statistic CSM, recalling “there was a
private pun in my labelling the suggested procedure CSM—it referred . . . to the Company Sergeant
Major in my Home Guard unit at the time, my relations with whom were not altogether cordial. I
still feel that the test, like the man, is best forgotten” [70, p. 450].

24The Barnard test will not die and from time to time the test is resurrected and advocated; see for
example, articles by McDonald, Davis, and Milliken [913] in 1977; Barnard [72], Hill [621], and
Rice [1167,1168] in 1988; Dupont [365] and Martin Andrés and Luna del Castillo [900] in 1989;
and Campbell [239] in 2007.
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profound effect on the subsequent careers of Wilcoxon and Youden as both
became leading statisticians of the time. Wilcoxon retired from the American
Cyanamid Company in 1957 and 3 years later, at the behest of Ralph Bradley,
joined the faculty at Florida State University in Tallahassee, Florida, where he
helped develop its Department of Statistics.

As Bradley related, he and Wilcoxon had met several times at Gordon
Research Conferences,” and in 1959 Bradley was recruited from Virginia
Polytechnic Institute to initiate a department of statistics at Florida State Uni-
versity (formerly, the Florida State College for Women). Bradley persuaded
Wilcoxon, who had retired in Florida, to come out of retirement and join the
newly-formed department. Wilcoxon agreed to a half-time position teaching
applied statistics as he wanted time off to kayak and ride his motorcycle [639].
Frank Wilcoxon died on 18 November 1965 after a brief illness at the age of
73 [203-205]. At the time of his death, Wilcoxon was Distinguished Lecturer
in the Department of Statistics at Florida State University [363].

In 1945 Wilcoxon introduced a two-sample test statistic, W, for rank-order
statistics [1453].%¢ In this very brief paper of only three pages Wilcoxon considered
the case of two samples of equal sizes and provided a table of exact probability
values for the lesser of the two sums of ranks for both paired and unpaired
experiments [1453]. In the case of unpaired samples, a table provided exact
probability values for 5-10 replicates in each sample; and for paired samples, a
table provided exact probability values for 7—16 paired comparisons.?’ Bradley has
referred to the unpaired and paired rank tests as the catalysts for the flourishing of
non-parametric statistics [639] and Brooks described the Wilcoxon 1945 article as
“a bombshell which broke new and permanent ground” and the unpaired and paired
rank tests as “cornerstones in the edifice of nonparametric statistics” [221].

25The Gordon Research Conferences on Statistics in Chemistry and Chemical Engineering began
in 1951 and continued through the summer of 2005.

26The Wilcoxon two-sample rank-sum test statistic is conventionally expressed as W in textbooks,
but Wilcoxon actually designated his test statistic as 7. Also, many textbooks describe the
Wilcoxon test as a “difference between group medians” test, when it is clearly a test for the
difference between mean ranks; see for example, an article by Bergmann, Ludbrook, and Spooren
in 2000 [100] and an article by Conroy in 2012 [274].

Z7A clear and concise exposition of the Wilcoxon unpaired and paired sample rank tests is given in

an article by Lincoln Moses on ‘“Non-parametric statistics for psychological research” published
in Psychological Bulletin in 1952 [1010].
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Wilcoxon’s 1945 Article

While Wilcoxon’s 1945 article may have been a “bombshell,” it should be
emphasized that the original Wilcoxon article can be difficult to read. It is
cryptic, incomplete, and contains notational errors. Moreover, Wilcoxon was
trained as a chemist and not as a mathematician; consequently, his notation
was somewhat unconventional. For example, as late as 1945 Wilcoxon was
still using the old representation for n factorial of |z instead of the customary
n! expression. The expression |n was developed by Thomas Jarrett, an
English churchman and orientalist, and first published in 1830, appearing in
a paper “On algebraic notation” printed in Transactions of the Cambridge
Philosophical Society [681, p. 67]. The familiar n! expression was introduced
by the French mathematician Chrétien (Christian) Kramp as a convenience to
his printer who was unable to typeset Jarrett’s |n. The factorial symbol n! first
appeared in Kramp’s book on Eléments d’arithmétique universelle in 1808
[770].28

3.10.1 Unpaired Samples

Wilcoxon showed that in the case of two unpaired samples with rank numbers
from 1 to 2¢q, where g denotes the number of ranks (replicates) in each sample,
the minimum sum of ranks possible is given by ¢(g + 1)/2, where W is the sum of
ranks in one sample, continuing by steps up to the maximum sum of ranks given
by q(3q + 1)/2. For example, consider two samples of ¢ = 5 measurements
converted to ranks from 1 to 2¢ = 10. The minimum sum of ranks for either
groupis {1 +2+3+4+ 5} = 505+ 1)/2 = 15 and the maximum sum of
ranks is {6 + 7 + 8 + 9 4+ 10} = 5[(3)(5) + 1]/2 = 40. Wilcoxon explained that
these two values could be obtained in only one way, but intermediate sums could be
obtained in more than one way. For example, the sum of 7" = 20 could be obtained
in seven ways, with no part greater than 2¢ = 10: {1, 2, 3, 4, 10}, {1, 2, 3, 5, 9},
{1,2,3,6,8},{1,2,4,5,8},{1,2,4,6,7},{1, 3, 4,5, 7}, and {2, 3, 4, 5, 6}.
The number of ways each sum could arise is given by the number of g-part, here
5-part partitions of 7 = 20, the sum in question.?’

28For a brief history of the factorial symbol, see a 1921 article in Isis by Florian Cajori on the
“History of symbols for n = factorial” [237].

PWilcoxon’s use of the term “partitions” here is a little misleading. These are actually sums of
T = 20, each sum consisting of five integer values between 1 and 2¢ = 10 with no integer
value repeated e.g., {1, 2, 3, 4, 10} = 20 which consists of five non-repeating integer values, but
not {5, 7, 8} = 20 which consists of only three integer values, nor {1, 3, 3, 5, 8} = 20 which
contains multiple values of 3.
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This was not a trivial problem to solve, as calculating the number of partitions is
quite difficult, even today with the availability of high-speed computers. In general,
the problem is known as the ‘“subset-sum problem” and requires a generating
function to solve. The difficulty is in finding all subsets of a set of numbers that
sum to a specified total, without repetitions. The approach that Wilcoxon took was
ingenious and is worth examining, as the technique became the basic method for
other researchers as well as the basis for several computer algorithms in later years.
Wilcoxon showed that the required partitions were “equinumerous” with another
set of partitions, r, that were much easier to enumerate, a technique he apparently
learned from a volume by Percy Alexander MacMahon on Combinatory Analysis
[865].3 He defined r as the serial number of 7T in the possible series of sums,
beginning with 0,1.e.,0, 1, 2,...,r.

For an illustrative example, consider vide supra ¢ = 5 replications of mea-
surements on two samples and assign ranks 1 through 2¢g = 10 to the data:
{1,2,3,4,5,6,7,8,9, 10}. The lowest possible sumis 1+2+3+4+5 = 15 and
the highest possible sum is 6474849410 = 40. Then the question is: in how many
ways can a total of 7 = 20 be obtained, i.e., how many unequal five-part partitions
of T = 20 exist, having no part greater than 2¢g = 10 and no repetition of values? As
shown above, there are seven such partitions. Now, 7" = 20 is sixth in the possible
series of totals, i.e., T = 15,16,17,18,19,20,...,40; therefore, r = 5 and the
total number of partitions that sum to 7" = 20 is equivalent to the total number of
partitions that sum to r = 5 with no part greater than g = 5; specifically, {5}, {1, 4},
{2, 3}, {1, 1, 3}, {1, 2, 2}, {1, 1, 1, 2}, and {1, 1, 1, 1, 1}. These are, of course,
true partitions consisting of one to five integer values between 1 and 5, summing
to 5 with repetitions allowed. Wilcoxon capitalized on the relationship between the
two subset-sum problems, 7" = 20 and r = 5, to enumerate the partitions of r = 5
from an available table of partitions included in a 1942 book by William Allen
Whitworth titled Choice and Chance [1446], which then corresponded to the more
difficult enumeration of the five-part partitions of 7 = 20.

Partitions

The number theory function known as the partition function gives the number
of ways of writing any integer as a sum of smaller positive integers [505]. As
above, the integer 5 can be written in seven different ways: {5}, {1, 4}, {2, 3},
{1, 1, 3}, {1, 2, 2}, {1, 1, 1, 2}, and {1, 1, 1, 1, 1}. The partition number of

(continued)

30MacMahon’s monumental two-volume work on Combinatory Analysis, published in 1916,
contained a section in Volume II, Chap. III, on “Ramanujan’s Identities” in which MacMahon
demonstrated the relationship between the number of g-part unequal partitions without repetitions
with no part greater than 2¢ and the number of partitions with repetitions with no part greater than
q [865, pp. 33-48].
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Fig. 3.3 Values of T and

. T: 28, 29, 30, 31, 32, 33, 34, 35, 36, ..., 77
corresponding values of r

r 0, 1, 2, 3, 4, 5, 6, 7, 8, ...,49

5 is, therefore, 7. As given by Gelman [505, p. 183], the partition numbers of
the integers from 1 to 10 are:

Integer: 1,2,3,4,5, 6, 7, 8, 9,10
Partition number: 1, 2, 3,5, 7, 11, 15, 22, 30, 42

Thus, there are 30 ways to sum smaller integers to make a sum of
9 and 42 ways to sum smaller integers to make a sum of 10, with
repetitions. As Gelman observed, while the partition number of 100
is only 190,569,292, the partition number of 1,000 is an astounding
24,061,467,864,032,622,473,692,149,727,991 [505, p. 183]. In 1918 Godfrey
Harold (G.H.) Hardy and Srinivasa Ramanujan, in a remarkable article in
Proceedings of the London Mathematical Society, provided the asymptotic
formula for partition numbers, p(n), showing that as n — oo,

(n) ~ ! exp | 7 2_n
2 4n«/§ P 3

[585, p. 79]. See also a 2004 article on this topic by Berry, Johnston, and
Mielke in Psychological Reports [111].

To illustrate the Wilcoxon procedure, consider an example two-sample rank-sum
test analysis with ¢ = 7 replicates in each treatment and the lesser of the two
sums of ranks 7 = 35. The minimum value of T with ¢ = 7 replicates is T =
1+24+34+44+54+6+7 = 7(7+ 1)/2 = 28. The values of T with the
corresponding values of r are given in Fig. 3.3.

The exact lower one-sided probability (P) value of T = 35 is given by

r—=q

r q
b= 1+ZZP§—Z[(r—q k+ P ”"} (é?))z! :

i=1 j=1 k=1

where P! represents the number of j-part partitions of i; 7 is the serial number of
possible rank totals, O, 1, 2, ..., r; and ¢ is the number of replicates [1453, p. 82].
If ¢ > r, the summation Z;;ql is assumed to be zero. For the example data, the
equation is

7 7-7 14!
P= 1+ZZP [(7 7— k+1)]P’72+k] /W

i=1 j=1 k=1
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Table 3.3 Illustrative table comparing the ¢ = 7-part partitions of 77 = 35 with the
corresponding partitions of r = 7
Partition

Number q=1 T =35 r=717

1 1 2 3 4 5 6 14 1 1 1 1 1 1 1
2 1 2 3 4 5 7 13 1 1 1 1 1 2
3 1 2 3 4 5 8 12 1 1 1 2 2
4 1 2 3 4 6 7 12 1 2 2 2
5 1 2 3 4 5 9 11 1 1 1 1 3
6 1 2 3 4 6 8 11 1 1 2 3
7 1 2 3 5 6 7 11 2 2 3
8 1 2 3 4 6 9 10 1 3 3
9 1 2 3 4 7 8 10 1 1 1 4
10 1 2 3 5 6 8 10 1 2 4
11 1 2 4 5 6 7 10 3 4
12 1 2 3 5 7 8 9 1 1 5
13 1 2 4 5 6 8 9 2 5
14 1 3 4 5 6 7 9 1 6
15 2 3 4 5 6 7 8 7

and the exact lower one-sided probability value is

P={l+142+43+5+7+11+15-0}/[87,178,291,200/(5,040%]
= 45/3,432 = 0.0131 .

The correspondence between the number of unequal g-part partitions of 7" with no
part greater than 2¢g and the number of partitions of » with no part greater than g used
by Wilcoxon greatly reduced the calculations required. For example, the values in
the solution above of 1, 2, 3,5, 7, 11, and 15 are obtained simply by finding the parti-
tionsof 1,2, 3,4, 5,6, and 7, respectively. To illustrate how Wilcoxon simplified the
calculations, consider 7" = 35 in the example above. What is necessary to compute
is the number of unequal ¢ = 7-part partitions of 7 = 35 with no part greater than
2g = (2)(7) = 14. Since r = 7 corresponds to 7" = 35, as illustrated in Fig. 3.3,
the number of unequal 7-part partitions of 7 = 35 is equivalent to the number of
(equal or unequal) partitions of r = 7 with no part greater than ¢ = 7. Table 3.3 lists
the 15 unequal ¢ = 7-part partitions of 7 = 35 with no part greater than 2q = 14
and the corresponding 15 partitions of r = 7 with no part greater than ¢ = 7.

3.10.2 Paired Samples

As with the unpaired data, Wilcoxon availed himself of a similar simplification for
the case of paired data. Wilcoxon showed that for paired data, the number of unequal
Jj-part partitions of r, with no part greater than i, was equal to the number of j-part
partitions of r — (é) For example, if r = 10, j = 3, and i = 7, then the unequal
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Fig. 3.4 Analysis with

j =1land 7 i—1+1 List IP’?l
r=(}) =8-() =8-0=8 1 1 {1} 1
2 2 {2} 1

3 3 {3} 1

4 4 {4} 1

5 5 {5} 1

6 6 {6} 1

7 7 {7} 1

8 8 {8} 1

Sum 8

3-part partitions of r = 10 are {1, 2, 7}, {1, 3, 6}, {1, 4, 5}, and {2, 3, 5}, but the
3-part partitions of 10 — G) = 10 — 3 = 7 with no part greater thani — j + 1 =
7—-34+1=5are{l, 1, 5}, {1, 2, 4}, {1, 3, 3}, and {2, 2, 3}, which are much
easier to enumerate and could readily be found in available tables of partitions.

Consider an example analysis on paired ranks with ¢ = 10 paired differences and
the sum of the negative differences between the ranks to be 7 = —8. The minimum
value of 7 is zero when all the rank numbers are positive. The next possible sum is
—1, when rank one receives a negative sign. As the sum of negative ranks increases,
there are more and more ways in which a given total can be formed. The values for
T and r are the same as both begin with zero. Then the one-sided probability value
of r = 8 is given by

~(3)
P=[1+Y [ Y /2‘1,
i\ i=i

where ]P’ij represents the number of j-part partitions of i, g is the number of paired
differences, and r is the serial number of the total under consideration in the series

of possible totals. If in (’2) j is less than 2, (’2) is considered to be zero and if (’2) is
greater than r, r — (’2) is undefined. For the example data with r = 8 and ¢ = 10,

Figs.3.4, 3.5, and 3.6 illustrate the ]P’ij for j = 1,2,3, respectively. Thus, for the
example data, the equation is

()
P={1+>"| Y P /210,
J J

i=
and the one-sided probability value is

14841244 25

P = = =0.0244
1,024 1,024

where the summations of the partitions yielding the sums of 8, 12, and 4 are
illustrated in Figs. 3.4, 3.5, and 3.6.
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Fig. 3.5 Analysis with

j=2and i 1—241 List Pg
r—()=8-(3) =8-1=7 1 0 — 0
2 1 {1,1} 1

3 2 {1,2} 1

4 3 {1,3}{2,2} 2

5 4 {1,4}{2,3} 2

6 5 {1,5}{2,4}{3,3} 3

7 6 {1,6}{2,5}{3,4} 3

Sum 12

Fig. 3.6 Analysis with : ; - )
]=v3and 7 1—3+1 List Py
r—(]) =8-()=8-3=5 1 -1 — 0
2 0 — 0

3 1 {1,1,1} 1

4 2 {1,1,2} 1

5 3 {1,1,3}{1,2,2} 2

Sum 4

3.11 Festinger and the Two-Sample Rank-Sum Test

The social psychologist, Leon Festinger, was also an accomplished statistician. In
1946 Festinger developed a new statistical test to evaluate differences between two
independent means by first converting the data to ranks, a test that has largely been
ignored [427]. This is unfortunate as, unlike the Wilcoxon test, Festinger’s otherwise
equivalent test allowed for unequal sample sizes.

L. Festinger

Leon Festinger is best known for his work in social psychology and,
especially, his theories of cognitive dissonance and social comparisons, but
Festinger was also a gifted statistician, working in the area of non-parametric
statistics. Festinger was born in New York City and earned his B.Sc. degree
in psychology from City College of New York in 1939, then moved to the
University of Iowa to earn his Ph.D. in psychology in 1942.3! After earning
his Ph.D., Festinger worked first as a Research Associate at the University of
Iowa, then joined the University of Rochester in 1943 as a Senior Statistician.
In 1945, Festinger moved to the Massachusetts Institute of Technology,

(continued)

31Several sources list Festinger earning his Ph.D. in 1942 from Iowa State University, not the
University of Iowa. Since his dissertation advisor was Kurt Lewin, who was at the University of
Iowa from 1935 to 1944, the University of lowa appears correct.
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then to the University of Michigan in 1948, the University of Minnesota in
1951, Stanford University in 1955, and finally to the New School for Social
Research (now, The New School) in 1968. Festinger remained at the New
School until his death from liver cancer on 11 February 1989 at the age of 69
[1009, 1229].

In 1946 Festinger introduced a statistical test of differences between two inde-
pendent means by first converting raw scores to ranks, then testing the difference
between the means of the ranks [427]. Festinger provided tables for tests of sig-
nificance based on exact probability values for the 0.05 and 0.01 confidence levels
forn = 2,...,15, the smaller of the two samples, and m = 2,...,38, the larger
sample. Festinger’s approach to the two-sample rank-sum problem was developed
independently of Wilcoxon’s solution; moreover, Festinger’s tables considered both
equal and unequal sample sizes, whereas Wilcoxon’s [1453] method allowed for
only equal sample sizes. In addition, the approach that Festinger took was quite
different from that of Wilcoxon. While both approaches generated all possible
permutations of outcomes, Festinger’s was considerably simpler to implement
and is worth consideration here as a unique and ingenious recursive permutation
generation method.

Consider two independent samples {xi, x2,..., Xy} and {y1, y2,..., y,} with
n < m. Combining the samples x and y and assigning ranks to each case from
1 to m + n structures the question as to the probability of obtaining any specified
difference between sample ranks if both samples are drawn at random from the same
population. Stated in terms of sums of ranks: what is the probability of obtaining any
specified sum of ranks of n cases selected at random from the total of m + n cases?
The problem for Festinger was to generate exact probability distributions for sums
of ranks given specified values of m and n.

For simplicity, consider first m = 2 and n = 2. The possible combinations of
m+n = 2+2 = 4 consideredn = 2 atatime are {1, 2}, {1, 3},{1,4},{2,3},{2,4},
and {3, 4}, yielding sums of 3, 4, 5, 5, 6, and 7, respectively. Thus, the frequency
distribution of the sums is 3(1), 4(1), 5(2), 6(1), and 7(1), where the frequencies are
enclosed in parentheses. If each case is independent of every other case and equally
likely to be drawn, then each combination is equiprobable. However, as Festinger
showed, there is an alternative way to generate this frequency distribution of sums.

The frequency distribution of sums for (’":’”) can be constructed from the frequency

distributions of sums for (m+:_l) and (m:'fl_ 1), as illustrated in Table 3.4.3> The
2+2—1) _ (3

frequency distribution of ("*'7") = (**2 5) is listed in Column 1 of

32The decomposition (") = ("7') 4 (/Z}) has been well known since the publication of Blaise

Pascal’s Traité du triangle arithmétique in 1665, 3 years after his death [1088]. Thus, considering

any one of n objects, ("71) gives the number of combinations that exclude it and (::}) the number
of combinations that include it.
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Table 3.4 Generation of frequency arrays for 3, 4, 5, 6, and 7 objects considered n = 2 at a time

Column

1 2 3 4 5 6 7 8 9
Sum () () () (1) () () (5) () ()
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 2 2 2 2
6 1 1 1 2 2 2
7 1 1 1 2 1 3 3
8 1 1 1 2 1 3
9 1 1 1 2 1 3
10 1 1 1 2
11 1 1 1 2
12 1 1
13 1 1

Table 3.4 and the frequency distribution of sums for (m+"1 1) = (Z;ETI) = (;)
is listed in Column 2 of Table 3.4. Note that the frequency distribution of sums
for (;) is offset from the frequency distribution of sums for (g) Since the sum of
ranks below the value 5 would not be affected by the addition of a 4th case to the
ranks of (g), only the totals of 5, 6, and 7 would be augmented by one or more
possibilities. In general, the starting value for frequency distribution (m:_"l_l) is
given by n(n + 1)/2 + m; in this case, 2(2 4+ 1)/2 4+ 2 = 5. Thus, the frequency
distribution of sums for (’" Jr") = (4) in Column 3 is constructed from the frequency

distributions of sums for (m+” 1) = (;) and (m:'fl_l) = (‘;’) in Columns 1 and 2
in Table 3.4, respectively, by simply adding across Columns 1 and 2 to obtain the
frequency distribution of sums for (;) in Column 3.

Now consider the frequency distribution of sums for m = 3 and n = 2. The
possible combinations of m + n = 5 considered n = 2 at a time are {1, 2}, {1, 3},
{1,4}, {1,5}, {2, 3}, {2,4}, {2, 5}, {3,4}, {3, 5}, and {4, 5}, yielding sums of 3, 4,
5,6,5,6,7,7,8, and 9, respectively. The frequency distribution of the sums is
therefore 3(1), 4(1), 5(2) 6(2), 7(2), 8(1), and 9(1). The frequency distribution of
sums for (m+”) = ( 22) = (g) in Column 5 of Table 3.4 can be constructed from

the frequency distributions of sums for (m+: 1) = (3+§ l) = (3) and (m:_"l l) =

(gﬁrl) = (‘11) in Columns 3 and 4, respectively, in Table 3.4. In similar fashion
to the previous case, no sum of ranks below the value 6 would be affected by the
addition of a 5th case to the sum of ranks for (3), thus the starting position for

the frequency distribution of (4) in Column 4 is the value n(n + 1)/2 + m =
2(2 4+ 1)/2 4+ 3 = 6. Again, the frequency distribution of sums for (m+") = (;) in

Column 5 is constructed from the frequency distributions of sums for (" *"~") = (3)

and (’"+" 1) = (1) in Columns 3 and 4 in Table 3.4, respectively, by adding across

n—l1
Columns 3 and 4 to obtain the frequency distribution of sums for (2) in Column 5.



142 3 1940-1959

Table 3.5 Generation of frequency arrays for 4, 5, 6, 7, and 8 objects considered n = 3 at a time

Column

S}
(98]
~
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©
Ne)
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[Ny
~
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~
~
@3
~
—_
@ o0
~

1
sum ()

1

1

1

1
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[}
_—— N =
_— N NN =
_— N NN =
—_ = W W W W N =
_— = NN WY ==
—_ m, N W R RO RA RO ==
— =N WA NN N R W ==

—_—= NN W W W N = =

In this manner, Festinger was able to recursively generate all frequency distri-
butions of sums for m 4 n objects considered n = 2 at a time. In addition to the

frequency distributions of sums for (3) and (;), Table 3.4 illustrates the construction
6
2

distributions of sums for (;) and (f) in Columns 5 and 6, respectively, and the
frequency distribution of sums for (;) in Column 9 from the frequency distributions

of the frequency distribution of sums for ( ) in Column 7 from the frequency

of sums for ((2’) and (?) in Columns 7 and 8§, respectively. Thus, for example, with
m=4m >n =2,andm +n = 4+ 2 = 6 the sum of 7 can occur in only
three ways: {1, 6}, {2, 5}, and {3, 4}. As illustrated in Table 3.4, the frequency 3 is
read in Column 7 with heading ((2’) in the row designated as Sum 7. The probability,
therefore, of a sum of 7 is 3/(" ") = 3/(*}?) = 3/() = 3/15 = 0.20.

Once the exact frequency distributions of sums for m +n ranks considered n = 2
at a time are established, it is relatively straightforward to construct exact frequency
distributions of sums for m + n ranks considered n = 3 at a time, using the same
method. Table 3.5 illustrates the construction of the frequency distribution of sums

for (") = (**?) = (}) in Column 3 from the frequency distributions of sums for

(m+:_1) = (2) and (’":’_”1—1) = (3) in Coluénns 1 and 2, respectively. In like manner,

the frequency distribution of sums for (3

frequency distributions of sums for (g) and (;) in Columns 3 and 4, respectively; the
7
3

distributions of sums for (g) and (g) in Columns 5 and 6, respectively; and the

) in Column 5 is constructed from the
frequency distribution of sums for ( ) in Column 7 is constructed from the frequency

frequency distribution of sums for (2) in Column 9 is constructed from the frequency



3.12 Mann-Whitney and a Two-Sample Rank-Sum Test 143

distributions of sums for (7) and (7) in Columns 7 and 8, respectively. As before, the

3 2
frequency distribution of sums for (m:_"l_l) is offset and has a starting value given

by n(n +1)/2 + m, e.g., for (§) the starting value for (]) is 3(3 + 1)/2 4 5 = 11.

This method allowed Festinger to recursively generate exact frequency distri-
butions of sums for any combination of m 4 n and n. For example, to obtain the
exact frequency distribution of the sum of n = 7 cases selected at random from
m + n = 18 ranked cases with n = 7 and m = 11, add to the distribution of the
sums of n = 7 cases from m + n — 1 = 17 ranked cases, the distribution of the
sums of n — 1 = 6 cases from the m + n — 1 = 17 ranked cases, making the first
addition for the sum equalton(n + 1)/2 +m = 7(7+ 1)/2 + 11 = 39, which is
the lowest sum where the frequency sums will be affected. Festinger explained that
since the distributions of sums were symmetrical about

nim+n+1)
2 9
only one-half of the distribution need be computed.
Finally, Festinger proposed a convenient alternative for summarizing and pre-
senting the frequency distributions of sums. He replaced the sums of ranks of the

smaller of the two samples with the absolute deviation (d ) of the mean of the ranks
of the smaller sample from the mean of the ranks of the total group, using

1 < m-+n-+1
d=1-Y R ——— |, 3.3
HZ 5 (3.3)

i=1

where n is the number of cases in the smaller sample, m + n is the number of cases

in both samples combined, and ) "_, R; is the sum of the ranks of the cases in the
smaller sample. The last term in Eq. (3.3) is, of course, the mean of the m + n ranks.
Festinger then presented two tables containing the d values necessary for tests of
significance at the 0.01 and 0.05 levels of confidence. For values of n from 2 to 12,
the Festinger tables listed values of d from m = 2 to m = 38 [427].

3.12 Mann-Whitney and a Two-Sample Rank-Sum Test

Henry Mann and his graduate student, Donald Whitney, published a two-sample
rank-sum test in 1947 that was equivalent to the two-sample rank-sum test proposed
by Wilcoxon 2 years prior, but was easier to calculate, allowed for unequal sample
sizes, and also permitted larger samples than the Wilcoxon two-sample rank-sum
test [880].
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D.R. Whitney

While Henry Mann (q.v. page 125) was at The Ohio State University from
1946 to 1964, one of his graduate students was Donald Ransom Whitney.
Whitney had earned his B.A. degree in mathematics from Oberlin College in
1936 and his M.S. degree in mathematics from Princeton University in 1939.
After service in the Navy during World War II, Whitney enrolled in the Ph.D.
program at The Ohio State University in 1946, where eventually he came to
work under Henry Mann. After receiving his Ph.D. in mathematics in 1949,
Whitney remained at The Ohio State University, eventually becoming Chair of
the newly established Department of Statistics in 1974. Whitney retired from
The Ohio State University in 1982, whereupon he received the University
Distinguished Service Award. Donald Ransom Whitney passed away on 16
August 2007 at the age of 92 [1460].

In 1947 Mann and Whitney, acknowledging the previous work by Wilcoxon
on the two-sample rank-sum test [1453], proposed an equivalent test statistic,
U, based on the relative ranks of two samples denoted by {x;, x», ..., x,} and
{Y1, Y2, ..., Y} [880].%* Like Festinger in 1946, Mann and Whitney utilized a
recurrence relation involving » and m and, using this relation, computed tables of
exact probability values for U up to n = m = §, many more, they noted, than
the few probability values provided by Wilcoxon. As Mann and Whitney explained,
let the measurements {x, X2, ..., x,} and {yy, Y2, ..., iy} be arranged in order
and let U count the number of times a y precedes an x. For example, given n = 4
x values and m = 2 y values, consider the sequence {x, y, x, x, y, x} where
U = 4: the first y precedes three x values and the second y precedes one x value;
thus, U = 3 +1 = 4. Also, let the Wilcoxon statistic, W, be the sum of the m rank-
order statistics {y1, 2, ..., ym}. The relationship between Wilcoxon’s W statistic
and Mann and Whitney’s U statistic can be expressed as

m(m + 1) B

U =mn+
mn )

W,
where 0 < U < mn. Mann and Whitney noted that since Wilcoxon only considered
the case of n = m, it seemed worthwhile to extend this important work to n # m
and larger values of n and m.

Consider again the ordered sequences of n x and m y values, replace each x with
a0 and each y with a 1, let U denote the number of times a 1 precedes a 0, and let
Pn.m(U) represent the number of sequences of n Os and m 1s in each of which a

3 A particularly clear exposition of the Mann-Whitney U test is given in a 1952 paper by Lincoln
Moses on “Non-parametric statistics for psychological research” published in Psychological
Bulletin [1010].
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Table 3.6 Sequences of n = 4 0sand m = 2 1s for p, »(U), pu—1.m(U —m), and p, n—1(U)

ﬁn,m(U) ls/t—l,m(U_m) [;/l.m—l(U)

Row Sequence U Sequence U Sequence U
1 000011 0 00011 0 00001 0
2 000101 1 00101 1 00010 1
3 001001 2 01001 2 00100 2
4 010001 3 10001 3 01000 3
5 100001 4 00110 2 10000 4
6 000110 2 01010 3

7 001010 3 10010 4

8 010010 4 01100 4

9 100010 5 10100 5

10 001100 4 11000 6

11 010100 5

12 100100 6

13 011000 6

14 101000 7

15 110000 8

1 precedes a 0 U times. For example, suppose the sequence is {1, 1, 0, 0, 1, 0},
then U = 7 as the first 1 precedes three O values, the second 1 precedes the same
three O values, and the third 1 precedes only one O value. Mann and Whitney then
developed the recurrence relation,

Pnom(U) = pu—t.m(U —m) + pp u—1(U) , (3.4)

where py—1 w (U —m) =0if U < m.

An example of the recurrence relation will illustrate the Mann—Whitney proce-
dure. Table 3.6 lists all the sequences of Os and 1s and corresponding values of U
for pp.m(U), pp—1.m(U — m), and p, m—1(U) forn = 4 and m = 2. There are

(m;") = (2;4) = 15 values of U in the first sequence of Os and 1s in Table 3.6,

(m':’:_l) = (2+;1—1) = 10 values of U in the second sequence of Os and 1s, and

(’";11_41'”) = (2;1_41'4) = 5 values of U in the third sequence of Os and 1s.** To
illustrate the recurrence process with U = 3, p, ,,(3) = 2, as there are two

occurrences of U = 3 (in Rows 4 and 7) in the leftmost column of sequences in
Table 3.6. Then, py—1 (U —m) = ps—12(3 —2) = 1, as there is only a single
occurrence of U = 1 (in Row 2) in the middle column of sequences in Table 3.6,
and p, m—1(U) = pa.2—1(3) = 1, as there is only a single occurrence of U = 3 (in
Row 4) in the rightmost column of sequences in Table 3.6. Then, following Eq. (3.4),
2=1+1.

34Here, the decomposition is identical to Festinger’s, as given in [427].
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Given that under the null hypothesis each of the (n + m)!/(n! m!) sequences of
n Os and m 1s is equally-likely, let p, ,,(U) represent the probability of a sequence
in which a 1 precedes a 0 U times. For example, for U = 3 in the leftmost column
of sequences of Os and 1s in Table 3.6,

W) x —1mt GxHE 2 133
P n+my PRy T s T

Mann and Whitney also provided a recurrence relation for the probability values of
U given by

n m
pn m(U) —— DPn— lm(U m)+Tpnm I(U)

+
where
_ (n—1!m!
n—1,m U - = Pn—1l,m U - T
Pn—tm(U —m) = pu—i.m( m)X(n+m_l)!
and
_ n! (m—1)!
Pum=1(U) = pun.m—1(U) X G rm—Dl
Thus, for U = 3 in Table 3.6,
()= — G-+ ()
yZ%) = 4+2P4 1.2 ir 2174,2—1
e 1
5 \6/\10
2 1 n 1
5 15 15°

Mann and Whitney used this recurrence relation to construct tables of exact
probability values up to and including n = m = 8. Finally, from the recurrence
relation Mann and Whitney derived explicit expressions for the mean, variance, and
various higher moments for U, and explained that the limit of the distribution is
normal if min(z, m) — oo [880].

It should be noted that in 1914 Gustav Deuchler suggested an approach that
was essentially the same as that used by Mann and Whitney in their treatment of
the two-sample rank-sum test [345]. Deuchler’s work in this area seems to have
been neglected, but William Kruskal attempted to redress this failure in a 1957
article on “Historical notes on the Wilcoxon unpaired two-sample test” in Journal
of the American Statistical Association [776]. In a 1952 article W.H. Kruskal and
W.A. Wallis provided a list of independent discoveries of the Wilcoxon two-sample
rank-sum test [779] and this 1957 article is, in part, an attempt to update that list.
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Fig. 3.7 Rankings of a
dichotomous variable

Also mentioned in the 1957 article, but omitted in the 1952 article, was a 1947 article
by J.W. Whitfield who independently discovered the Mann—Whitney test [1443].

3.13 Whitfield and a Measure of Ranked Correlation

In 1947 John W. Whitfield proposed a measure of rank-order correlation between
two variables, one of which was composed of ranks and the other dichotomous
[1443].3% While not presented as a permutation test per se, the article by Whitfield
is of historical importance as it is occasionally cited as an independent discovery
of the Wilcoxon two-sample rank-sum test [e.g., 776, pp. 358-359]. Whitfield
considered the dichotomous variable as a ranking composed entirely of two sets
of tied rankings. An example will illustrate the procedure. Following Whitfield,
consider the rank data in Fig. 3.7 where the — and + signs indicate the dichotomous
variable and the ranks are from 1 to 6. Let m = 2 denote the number of ranks in the
“+4” group and let n = 4 denote the number of ranks in the “—” group.

Now consider the n = 4 ranks in the group identified by a — sign: 1, 3, 4, and 5.
Beginning with rank 1 with a — sign, there are no ranks with a 4 sign to the left of
rank 1 and two ranks with a 4 sign to the right of rank 1 (ranks 2 and 6); so compute
0—2 = —2. For rank 3 with a — sign, there is one rank to the left of rank 3 with a 4
sign (rank 2) and one rank to the right of rank 3 with a 4 sign (rank 6); so compute
1 — 1 = 0. For rank 4 with a — sign, there is one rank to the left of rank 4 with a +
sign (rank 2) and one rank to the right of rank 4 with a 4 sign (rank 6); so compute
1 — 1 = 0. Finally, for rank 5 with a — sign, there is one rank to the left of rank 5
with a + sign (rank 2) and one rank to the right of rank 5 with a + sign (rank 6); so
compute 1 — 1 = 0. The sum of the differencesis S = —2+04+0+4+0=—2.In
this manner, Whitfield’s approach incorporated unequal sample sizes with m # n
as well as tied ranks.

Since the number of possible pairs of m + n consecutive integers is given by
(m + n)(m + n — 1)/2, Whitfield defined and calculated his test statistic as

B 28 B 2(-2) e S
T mrmmin—1) @+aH2+4—1 30

3SWhitfield’s article was followed immediately in the same issue of Biometrika with a comment
by M.G. Kendall noting that “Mr Whitfield has correctly surmised the variance [of t] when one
ranking contains ties, and the other is a dichotomy” [733, p. 297].
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Table 3.7 Fifteen paired observations with concordant/discordant (C/D) pairs and associated
pair values

Number Pair C/D Value Number Pair C/D Value
1 12 -+ —1 9 2-6 +, + 0

2 1-3 - = 0 10 34 - = 0

3 14 - - 0 11 3-5 - - 0

4 1-5 -, — 0 12 3-6 -+ —1

5 1-6 — + —1 13 4-5 - = 0

6 2-3 +,— +1 14 4-6 -+ —1

7 24 +,— +1 15 5-6 -, + —1

8 2-5 +,— +1

Whitfield’s S is directly related to the U statistic of Mann and Whitney [880]
and, hence, to the W statistic of Wilcoxon [1453].%¢ Compare statistic S with the
U statistic of Mann and Whitney. For the data in Fig. 3.7 there are m = 2 + signs
and n = 4 — signs, so considering the lesser of the two (the m = 2 4 signs),
the first 4 sign (rank 2) precedes three — signs (ranks 3-5) and the second 4 sign
precedes no — signs, so U = 3 4+ 0 = 3. The relationship between Whitfield’s
S and Mann and Whitney’s U is given by S = 2U — mn [229,776]; thus, § =
2(3) — (2)(4) = 6 — 8 = —2. For the example data in Fig. 3.7, the Wilcoxon’s W
test statistic for the smaller of the two sums (with the m = 2 4 signs) is W =
2 4+ 6 = 8 and the relationship with S is given by S = m(m + n + 1) —2W; thus,
S=224+4+1)—-2)8) =14—-16=-2.

As Whitfield mentioned, the calculation of S was fashioned after a procedure first
introduced by Kendall in 19457 and Whitfield was apparently unaware of the two-
sample rank-sum tests published by Wilcoxon in 1945, Festinger in 1946, and Mann
and Whitney in 1947, as they are not referenced in the Whitfield article. Kendall
considered the number of concordant (C') and discordant (D) pairs, of which there
is a total of (m + n)(m + n — 1)/2 pairs when there are no ties in the m + n
consecutive integers [730]. For the example data in Fig. 3.7 there are (2+4)(2+4—
1)/2 = 15 pairs. Table 3.7 numbers and lists the 15 pairs, the concordant/discordant
classification of pairs, and the pair values, where concordant pairs (—, — and +, +)
are given a value of 0, and discordant pairs (4, — and —, 4) are given values of
+1 and —1, respectively. The sum of the pair values in Table 3.7 for the 15 pairs is
S=-5+3=-2.

Today it is well-known, although poorly documented, that when one classifi-
cation is a dichotomy and the other classification is ordered, with or without tied
values, the S statistic of Kendall is equivalent to the Mann—Whitney U statistic; see
also articles by Lincoln Moses in 1956 and Edmund John Burr in 1960 on this topic

3In 1968 Charles R. Kraft and Constance van Eeden showed how Kendall’s 7 can be computed as
a sum of Wilcoxon W statistics [768, pp. 180-181].

37Whitfield lists the date of the Kendall article as 1946, but Kendall’s article was actually published
in Biometrika in 1945.
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[229,1011]. Whitfield was apparently the first to discover the relationship between
S, the statistic underlying Kendall’s v rank-order correlation coefficient, and U,
the Mann—Whitney two-sample rank-sum statistic for two independent samples.
However, it was Hemelrijk in 1952 [610] and Jonckheere in 1954 [699] who made
the relationship explicit; see also a discussion by Leach in 1979 [806, p. 183].
Because the Jonckheere—Terpstra test, when restricted to two independent samples,
is mathematically identical in reverse application to the Wilcoxon and Mann—
Whitney tests (see [699, p. 138] and [1153, p. 396]), the two-sample rank-sum test
is sometimes referred to as the Kendall-Wilcoxon—-Mann—Whitney—Jonckheere—
Festinger test [1011, p. 246]. Whitfield concluded his article with derivations of
the variances of S for both untied and tied rankings and included a correction for
continuity. For untied ranks the variance of S, as given by Kendall [731], is

(m+n)ym+n—1D[2(0m+n) + 5]
18
and the desired probability value is obtained from the asymptotically N(0, 1)

distribution when min(m,n) — oo. For the example data listed in Fig.3.7, the
variance of S is calculated as

03 =

C+H2+4-D22+4) +5]

o3 = 3 = 28.3333
and
5 —2 0.3757
T =— = — = —U. s
os /283333

with a one-sided probability value of 0.3536.

3.13.1 An Example of Whitfield’s Approach

It is common today to transform a Pearson correlation coefficient between two
variables (ry,) into Student’s pooled ¢ test for two independent samples and vice-
versa, i.e.,

m+n—2 t
=Ty, ——— and =

,
) xy .
I=ry i+ m4n—2

where m and n indicate the number of observations in Samples 1 and 2, respectively.
It appears that Whitfield was the first to transform Kendall’s rank-order correlation
coefficient, t, into Mann and Whitney’s two-sample rank-sum test, U, for two
independent samples. Actually, since

~ 28
= m+n)(m+n-1)"
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Age: 20 20 20 20 22 23 23 24 25 25 25 25 27 29 29 35 35
Rank: 24 24 21 21 5 61 63 9 103 103 103 104 13 141 141 163 163
Sampl: A A A A B A A B A A A A B A A B B

Fig. 3.8 Listing of the m + n = 17 age and rank scores from Samples 4 and B

A4 2 4 0 2 0]12
Blo 1 1 0 1 0 2/ 5
4 1 2 1 4 1 2 2|17

Fig. 3.9 Contingency table of the frequency of ranks in Fig. 3.8

Whitfield established the relationship between the variable part of Kendall’s t,
S, and Mann and Whitney’s U. To show just how Whitfield accomplished this,
consider the data listed in Fig.3.8. The data consist of m = 12 adult ages from
Sample A and n = 5 adult ages from Sample B, with associated ranks. The sample
membership of the ages/ranks is indicated by an A or a B immediately beneath the
rank score.

Now, arrange the two samples into a contingency table with two rows and
columns equal to the frequency distribution of the combined samples, as in Fig. 3.9.
Here the first row of frequencies in Fig. 3.9 represents the runs in the list of ranks
in Fig. 3.8 labeled as A, i.e., there are four values of 24 1o value of 5, two values
of 6%, no value of 9, four values of 10%, and so on. The second row of frequencies
in Fig. 3.9 represents the runs in the list of ranks in Fig. 3.8 labeled as B, i.e., there
is no value of 2% labeled as B, one value of 5, no value of 6%, one value of 9,
and so on. Finally, the column marginal totals are simply the sums of the two rows.
This contingency arrangement permitted Whitfield to transform a problem of the
difference between two independent samples into a problem of correlation between
two sets of ranks.

Denote by X the r x ¢ table in Fig. 3.9 with r = 2 and ¢ = 8 and let x;; indicate
acell frequency fori = 1,...,rand j = 1,...,c. Then, as noted by E.J. Burr in
1960, S can be expressed as the algebraic sum of all second-order determinants in
X [229]:

r c—1

S = X_: Z Z Z (xikle_xilxjk) .

i=1 j=i+1 k=1 I=k+1

Thus, for the data listed in Fig. 3.9 there are ¢(c —1)/2 = 8(8 — 1) /2 = 28 second-
order determinants:

40

S =
01

I R R
01 01

00
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Therefore,

§=@1)—(0)(0) + (4(0) = 2)(0) + (4 (1) = (0)(0) + (4)(0) — (4)(0)
+ (4)(1) = (0)(0) + (4)(0) — (2)(0) + (H)(2) — (0)(0) + (0)(0) — (2)(1)
+ (0)(1) — (0)(1) + (0)(0) — (4)(1) + (0)(1) — (0)(1) + (0)(0) — (2)(1)
+(0)(2) — (0)(1) + (2)(1) = (0)(0) + (2)(0) — (4)(0) + (2)(1) — (0)(0)
+ (2)(0) = (2)(0) + (2)(2) = (0)(0) + (0)(0) — (4)(1) + (0)(1) — (0)(1)
+ (0)(0) — (2)(1) + (0)(2) = (0)(1) + (4)(1) — (0)(0) + (4)(0) — (2)(0)
+ (4)(2) — (0)(0) + (0)(0) = (2)(1) + (0)(2) — (0)(1) + (2)(2) — (0)(0)
andS =4+ 0+4+---+2+4=28

Alternatively, as Kendall showed in 1948 [734], the number of concordant pairs
is given by

r—1 c—1 r c
C=2 2w 2 2w
i=1 j=1 k=i+1I=j+1

and the number of discordant pairs is given by
r—1 ¢

D=>)" ‘ lx,-,c_,»+1< Zr: Cixkl) .

i=1 j=1 k=i+1 I=1

Thus, for X in Fig. 3.9, C is calculated by proceeding from the upper-left cell with
frequency x;; = 4 downward and to the right, multiplying each cell frequency by
the sum of all cell frequencies below and to the right, and summing the products, i.e.,

C=#HA4+04+14+04+14+0+2)+0)O0+14+04+14+0+2)
+2)A+0+14+0+2)+0)(O0+1+0+2)
+@HA+0+2)+0)(O0+2)+(2)(2)

=20+0+84+0+124+0+4 =44,
and D is calculated by proceeding from the upper-right cell with frequency x;9 = 0

downward and to the left, multiplying each cell frequency by the sum of all cell
frequencies below and to the left, and summing the products, i.e.,

D=0)04+1+0+14+0+1+0)+2)(14+0+1+0+1+0)
+(0)O04+1+0+140)+@)(1+0+1+0)
+(0)(0 + 1 4 0) + (2)(1 + 0) + (0)(0)
=04+64+04+84+0+2+0=16.

Then, as defined by Kendall, S = C — D =44 —16 = 28.



152 3 1940-1959

To calculate Mann and Whitney’s U for the data listed in Fig. 3.8, the number
of A ranks to the left of (less than) the first B is 4; the number of A ranks to the
left of the second B is 6; the number of A ranks to the left of the third B is 10; and
the number of A ranks to the left of the fourth and fifth B are 12 each. Then U =
446410412+ 12 = 44.Finally, S = 2U —mn = (2)(44)—(12)(5) = 28. Thus,
Kendall’s S statistic, as redefined by Whitfield, includes as special cases Yule’s O
test for association in 2 x 2 contingency tables and the Mann—Whitney two-sample
rank-sum U test for larger r x ¢ contingency tables.

It is perhaps not surprising that Whitfield established a relationship between
Kendall’s S and Mann and Whitney’s U as Mann published a test for trend in 1945
(q.v. page 125) that was identical to Kendall’s S, as Mann noted [879]. The Mann
test is known today as the Mann—Kendall test for trend where for n values in an
ordered time series xi, ..., X,

n—1 n
S:Z Z sgn (xi — x;) ,

i=1 j=i+1

where

+1 ifx,'—Xj >0,
sgn(:) = 0 ifx;—x; =0,

—1 ifxi—xj<0.

3.14 Olmstead-Tukey and the Quadrant-Sum Test

In 1947 Paul Olmstead and John Tukey (q.v. page 232) proposed a new test for
the association of two continuous variables [1059].3 They termed the new test
the “quadrant-sum test,” but it is better known as the “corner test for association.”
Olmstead and Tukey observed that when a moderate number of paired observations
(25-200) on two quantities were plotted as a scatter diagram, visual examination
tended to give greater weight to observations near the periphery of the scatter dia-
gram. They pointed out that a quantitative test of association with such concentration
on the periphery was lacking, and the quadrant-sum test was developed to fill this
gap [1059, p. 499]. In classic Tukey fashion, they recommended the quadrant-sum
test for exploratory investigations of large data sets, due to its simplicity and ease
of use; see also discussions by Tukey and Olmstead in 1947 [1383], Mood in 1950
[1000, pp. 410-414], and Daniel in 1978 [313, pp. 321-324].

381t was common at this time to assume continuous variables as this ensured no tied values, cf.
articles by Sun and Sherman in 1996 [1335, p. 90] and Gebhard and Schmitz in 1998 [502, p. 76].
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Consider a sample of n paired x and y values given by

(1, y1), (x2, y2)s ooy (Xns V) -

Plot the sample values in an xy plane and draw a horizontal line at x = x,, and a ver-
tical line at y = y,,, where x,, (y,,) is the median of the x (y) values without regard
to the values of y (x). Label the quadrants as +, —, 4+, —, beginning in the upper
right-hand quadrant and moving counterclockwise, so that the upper right and lower
left quadrants are positive. Then beginning at the right side of the scatter diagram
with the sample point furthest from the vertical line, count in (in order of abscissae)
along the observations until forced to cross y,,. Write down the number of observa-
tions encountered before crossing y,,, attaching a + sign if the observation lies in the
+ quadrant and a — sign if the observation lies in the — quadrant. Denote the count
by s1. Do a similar count, moving from the top sample point downward, another
count moving from the leftmost sample point to the right, and a final count moving
from the bottom sample point upward. Let the number of points be denoted by s, 53,
and sy, respectively, with attached 4 or — signs depending on whether the sample
points in each case fall into a 4+ or — quadrant. Finally, let S denote the algebraic
(quadrant) sum of sy, s, 53, and s4, with their respective signs attached. Note that
the order of sy, ..., s4 is not important and also that an observation may be counted
twice, once in counting from the top, say, and again when counting from the right.

Olmstead and Tukey explained that the set of x values, the set of y values,
and the permutations of the order of the y values when the pairs were ordered
by the x values were independently distributed, and that any permutation was as
likely as any other permutation. Thus, since the quadrant sum S depended only
on the permutation, its distribution in the absence of association did not depend
on the distribution of x and y. The question for Olmstead and Tukey was: how
many permutations yield a count of exactly k positive values? They tabulated exact
probability values of P(|S| > k) forn = 2,3,4,5, 7and fork =1, 2,...,30
and showed that for large n

93 + 92 + 168k + 208
(216)(2K)

Olmstead and Tukey also provided extensions to higher dimensions and applications
to serial correlation.

Consider an example with 28 paired observations as depicted in Fig.3.10.
Beginning at the right side of the diagram, count in along the observations, moving
toward the center until forced to cross the horizontal median (y,,) and write down
the number of observations met before the crossing the median (the dashed line),
attaching a 4 (—) sign if the observations lie in the + (—) quadrant. In this example,
s1 = +2, as the observations are in the + quadrant. Then, moving from the bottom
toward the center, s, = +1, as the observation is in the + quadrant. Moving from
the left side, s3 = 45 and moving from the top, s4 = +3. Thus, the quadrant sum
is S =24 145+ 3 = 11, yielding an approximate probability value of 0.0342.

lim P(|S|>k) =
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Fig. 3.10 Scatter diagram of n = 28 pairs of observations to illustrate the corner test of

association by P.S. Olmstead and J.W. Tukey [1059]

3.15 Haldane-Smith and a Test for Birth-Order Effects

In 1948 John Haldane and Cedric Smith proposed a recursively-obtained two-
sample rank-sum test for birth-order effects that employed a clever decomposition
procedure similar to that used by Festinger in 1946 [573].

J.B.S. Haldane

John Burton Sanderson Haldane was educated at Eton and New College,
University of Oxford, and was a commissioned officer during World War
I. At the conclusion of the war, Haldane was awarded a fellowship at New
College, University of Oxford, and then accepted a readership in biochemistry
at Trinity College, University of Cambridge. In 1932 Haldane was elected
Fellow of the Royal Society and a year later, became Professor of Genetics
at University College, London. In the 1930s Haldane joined the Communist

(continued)
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Party and assumed editorship of the party’s London Paper, the Daily Worker.
In 1956 Haldane, disillusioned with the official Party line and the rise of
the Soviet biologist Trofim Lysenko, immigrated to India where he joined
the Indian Statistical Institute at the invitation of P.C. Mahalanobis. In 1961
he resigned from the Indian Statistical Institute and accepted a position as
Director of the Genetics and Biometry Laboratory in Orissa, India. Haldane
wrote 24 books, including science fiction and stories for children, more
than 400 scientific research papers, and innumerable popular articles [869].
John Burton Sanderson Haldane ER.S. died of cancer on 1 December 1964,
whereupon he donated his body to Rangaraya Medical College, Kakinada,
India [869].

C.A.B. Smith

Cedric Austen Bardell Smith attended University College, London. In 1935,
Smith received a scholarship to Trinity College, University of Cambridge,
where he earned his Ph.D. in 1942.% In 1946 Smith was appointed Assistant
Lecturer at the Galton Biometric Laboratory, University College, London,
where he first met Haldane. In 1964 Smith accepted an appointment as
the Weldon Professor of Biometry at University College, London. Cedric
Smith clearly had a sense of humor and was known to occasionally sign his
correspondence as “U.R. Blanche Descartes, Limit’d,” which was an anagram
of Cedric Austen Bardell Smith [1008]. Smith contributed to many of the
classical topics in statistical genetics, including segregation ratios in family
data, kinship, population structure, assortative mating, genetic correlation, and
estimation of gene frequencies [1008]. Cedric Austen Bardell Smith died on
10 January 2002, just a few weeks shy of his 85th birthday [400, 1008].

In 1948 Haldane and Smith introduced an exact test for birth-order effects
[573]. They had previously observed that in a number of hereditary diseases and
abnormalities, the probability that any particular member of a sibship had a specified
abnormality depended in part on his or her birth rank (birth order) [573, p. 117].
The test they proposed was based on the sum of birth ranks of all affected cases
in all sibships. In a classic description of an exact permutation test, Haldane and
Smith noted that if in each sibship the numbers of normal and affected siblings were

39Cedric Smith, Roland Brooks, Arthur Stone, and William Tutte met at Trinity College, University
of Cambridge, and were known as the Trinity Four. Together they published mathematical papers
under the pseudonym Blanche Descartes, much in the tradition of the putative Peter @rno, John
Rainwater, and Nicolas Bourbaki.
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held constant, then if birth rank had no effect, every possible order of normal and
affected siblings would be equally-probable. Accordingly, the sum of birth ranks for
affected siblings would have a definite distribution, free from unknown parameters,
providing “a ‘conditional’ and ‘exact’ test for effect of birth-rank” [573, p. 117].
Finally, they observed that this distribution would be very nearly normal in any
practically occurring case with a mean and variance that were easily calculable.
Consider a single sibship of k births, & of which are affected. Let the birth ranks
of the affected siblings be denoted by a;, a, ..., a; and their sumby 4 = fo:l ar.

Then, there are
k _ k! (3.5)
h]  h'(k—h) ‘

equally-likely ways of distributing the & affected siblings.*” Of these, the number of
ways of distributing them, P,  (A), so that their birth ranks sum to A is equal to the

number of partitions of A into & unequal parts, a;, as, ..., a,, no part being greater
than k. Given this, the probability pj 1 (A) of obtaining a sum A is given by

Pk (A) = Py (A) / (2) ) (3.6)

Dividing these partitions into two classes according to whether the greatest part is
or is not k, yields

Py i(A) = Phi—1(A) + Ppy—1(A—=k) . 3.7

Haldane and Smith observed that from the relation described in Eq. (3.7) they could
readily calculate Py x(A) for small samples of / and k.

Since (k + 1 —ay), (k+1—ay),...,(k + 1 —a;) must be a set of & integers,
all different and not greater than k, and summing to 4(k + 1) — A, they showed that

Ppi(A) = Pyilh(k + 1) — A] . (3.8)

Haldane and Smith went on to note that, similar to the affected siblings, in any

sibship the unaffected siblings would all have different birth ranks, none exceeding
k, but summing to k(k + 1)/2 — A. Thus,

Ppi(A) = Pr—pk [k(k +1)/2—A] . (3.9)

An examPle will serve to illustrate the recursion procedure employed by Haldane
and Smith.*! Consider a sibship of k = 6 siblings with 4 = 2 of the siblings

40Equation (3.5) is incorrect in Haldane and Smith [573, p. 117] and is corrected here.

417t should be noted that while the decomposition in Eq. (3.8) is different from that employed by
Mann and Whitney in Eq. (3.4) [880], it is similar to the decomposition used by Festinger [427],
although there is no indication that Haldane and Smith were familiar with the work of Festinger.
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Table 3.8 Partitions (P), sums (A), and frequencies (f) for Pj ;(A) = P2.6(7), P r—1(A) =
Py5(7), Ph—ix—1(A —k) = P15(1), and Py—p i [k(k + 1)/2 — A] = P4(14)

P3.6(7) Py 5(7) Py s(1) Py (14)
P A f P A f P A f P A f
1,2 3 1 1,2 3 1 1 1 1 1,2,3,4 10 1
1,3 4 1 1,3 4 1 2 2 1 1,2,3,5 11 1
1,4 5 2 1,4 5 2 3 3 1 1,2,3,6 12 2
1,5 6 2 1,5 6 2 4 4 1 1,2,4,5 13 2
1,6 7 3 2,3 7 2 5 5 1 1,2,4,6 14 3
2,3 8 2 2,4 8 1 1,2,5,6 15 2
2,4 9 2 2,5 9 1 1,3,4,5 16 2
2,5 10 1 3,4 1,3,4,6 17 1
2,6 11 1 3,5 1,3,5,6 18 1
3,4 4,5 1,4,5,6
3,5 2,3,4,5
3,6 2,3,4,6
4,5 2,3,5,6
4,6 2,4,5,6
5,6 3,4,5,6

classified as affected (¢) and k — h = 6 — 2 = 4 of the siblings classified as
normal (n), with birth order indicated by subscripts: ny, as, ns, na, as, ne. Thus,
the affected siblings are the second and fifth born out of six siblings and yield a
sum of A = a, + as = 2+ 5 = 7. Table 3.8 lists the partitions and associated
frequency distributions for # = 2 and k = 6 in the first set of columns, i = 2
andk —1 = 6 — 1 = 5 in the second set of columns, 7 — 1 = 2—1 = 1 and
k —1 = 6—1 = 5in the third set of columns,andk —h = 6—2 =4andk = 6in
the fourth set of columns. It can be seen in Table 3.8 that P x(4) = P,.6(7) =3
since there are three ways of placing an affected sibling yielding a sum of 4 = 7,
ie., {1, 6}, {2, 5}, and {3, 4}. As there are a total of

KY_ k6
R Wk —h) 216-2)!

equally-probable ways of placing the 7 = 2 affected siblings, the probability of
obtaining a sum of 4 = 7 as given in Eq. (3.6) is

p2.6(7) = P26(7)/15=3/15=10.20 .
Dividing the partitions into two classes as in Eq. (3.7) yields

Pr6(7) = P26-1(7) + P2—1,6-1(7—6) ,
3="Py5(7)+ P15(1),
3=2+1,



158 3 1940-1959

as illustrated in Table 3.8, where P, ¢(7) in the first set of columns is associated
with a frequency of 3, P, 5(7) in the second set of columns is associated with a
frequency of 2, and P; 5(7 — 6) = P 5(1) in the third set of columns is associated
with a frequency of 1; thus, 3 + 2 + 1. Note that once again, the decomposition
observed in the discussion of Festinger and the two-sample rank-sum test appears

0
-0
0-0-0)

I5=10+5.

This decomposition can be observed in Table 3.8 where the column of frequencies
for Py ¢(A) in the first set of columns sums to 15, the column of frequencies for
P; 5(A) in the second set of columns sums to 10, the column of frequencies for
P, 5(A — k) in the third set of columns sums to 5, and 15 = 10 4 5.

The affected siblings, (k + 1 — a) and (k 4+ 1 — as), constitute a set of & = 2
integer values where (6 +1—2) = 5and (6 + 1 —5) = 2 are all different with none
greater than k = 6. The values 5 and 2 sumto i(k +1)— A =2(6+1)—-7=17.
Thus, as in Eq. (3.8),

P2,6(7) = P2,6[2(6 =+ 1) —7] = P2,6[7] =3.

The first set of columns in Table 3.8 lists the partitions and frequency distribution
of the partitions of P; ¢(A) in which the sum A = 7 has a frequency of 3 based on
the partitions of {1, 6}, {2, 5}, and {3, 4}.

On the other hand, the normal siblings, (k + 1 —ny), (k + 1 —n3), (kK + 1 —ny),
and (k + 1 — ng), constitute a set of k —h = 6 — 2 = 4 integer values where
6+1-1)=6,(06+1-3)=46+1—-4) =3,and(6+1—-6) =1
are all different with none greater than k = 6. The values 6, 4, 3, and 1 sum to
k(k +1)/2—A=6(6+1)/2—7 = 14. Thus, as in Eq. (3.9),

Py 6(7) = P26 [6(6+1)/2—T] = P4s[l4]=3.
The rightmost set of columns in Table 3.8 lists the partitions and frequency

distribution of P4 ¢[k(k + 1)/2 — A] in which the sum A = 14 has a frequency
of 3 based on the partitions {1, 2, 5, 6}, {1, 3, 4, 6}, and {2, 3, 4, 5}.



3.16 Finney and the Fisher-Yates Test for 2 x 2 Tables 159

From Eqgs. (3.8) and (3.9), Haldane and Smith were able to construct a table of
values of P r(A) and (1,;), giving the exact distribution for all values of k up to
and including 12, noting that values not explicitly given in the table could readily
be derived by the use of Eqs.(3.8) and (3.9). Additionally, Haldane and Smith
investigated the approximate distribution of A. They found it more efficient to test
6A instead of A and showed that the theoretical mean of 64 was 3h(k + 1) and
the theoretical variance was 3h(k + 1)(k — h), and thus provided a table of means
and variances for h = 1,...,18 and k = 2,...,20. They observed that since A
is made up of a number of independent components, the distribution of A would
be approximately normal and, therefore, if an observed value of A exceeded the
mean by more than twice the standard deviation, siblings born later were most
likely to be affected, but if the observed value of A fell short of the mean by the
same amount, siblings born earlier were most likely to be affected [573, p. 121].
They concluded the paper with an example analysis based on data from T.A. Munro
on phenylketonuria from forty-seven British families that had previously been
published in Annals of Human Genetics in January of 1947 [1014].4?

3.16 Finney and the Fisher-Yates Test for 2 x 2 Tables

In 1948 David Finney constructed and published tables of exact probability values
based on the hypergeometric distribution for testing the significance of data arranged
in a 2 x 2 contingency table [434].

D.J. Finney

David John Finney read mathematics and statistics at Clare College, Univer-
sity of Cambridge, from 1934 to 1938. During his second year at Cambridge,
doctors found a small spot on one lung and suggested he move to England’s
south coast for a brief period during the summer to recuperate. While there,
he developed typhoid fever and was hospitalized for weeks, which caused him
to miss an entire term at Cambridge. Finney later recalled that the fever had
been a “happy accident” because it allowed him to deliberate on his future and
rethink his plans to become a mathematician. Thus, when Finney returned to
the University of Cambridge in 1937, he took the advice of an advisor to try
his hand at statistics and signed up to take a course from John Wishart. It was
Wishart who later told Finney about a competitive post-graduate opportunity

(continued)

“Phenylketonuria (PKU) is a autosomal recessive metabolic genetic disorder that can lead to
mental retardation, seizures, behavioral problems, and autism. Dr. Asbjgrn Fglling, a Norwegian
biochemist and physician, was the first to publish a description of phenylketonuria as a cause of
mental retardation in 1934 [475].
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Fig. 3.11 Notation for the

Finney standard 2 X 2 “ A-a 4
. b B—-b B
contingency table
a+b  A+B-a—b | A+B

that took him to the Galton Biometric Laboratory at University College,
London, to work with R.A. Fisher.

In 1939 Finney accepted a position as assistant to Frank Yates at Rotham-
sted Experimental Station to replace William G. Cochran who was leaving
to assume a post at Iowa State University. After leaving Rothamsted, Finney
taught statistics at the University of Oxford, the University of Aberdeen, and
the University of Edinburgh. Finney was elected Fellow of the Royal Society
in 1955 and was president of the Royal Society in 1973. Finney retired from
the University of Edinburgh in 1984 but has continued researching, with a
focus on drug safety [435, 866] David John Finney F.R.S. was born on 3
January 1917 and at the time of this writing is 96 years old.

In 1948 Finney considered the Fisher—Yates exact permutation test* of signifi-
cance for 2 x 2 contingency tables [434]. Acknowledging that the usual chi-squared
test of significance was questionable when the expected cell frequencies were small,
Finney utilized exact hypergeometric probability values to construct a table of sig-
nificance levels for 2 x 2 contingency tables with small expected frequencies. Thus,
as Finney explained, for a standard 2 x 2 contingency table with cell frequencies and
marginal frequency totals represented as in Fig. 3.11, the hypergeometric probability
for cell b, with fixed marginal frequency totals, is given by

P{h|B.a+b A+ B} =

AlBl(@+b)!(A+B—a-b) 1
(4 + B)! albl(A—a)! (B—b)~

(3.10)

Note that the first factor to the right of the equal sign in Eq. (3.10) is dependent
only on the five marginal frequency totals, while the second factor to the right of the
equal sign depends only on the four internal cell frequencies. The table presented
by Finney enabled tests of significance at one-tailed probability levels of « = 0.05,
0.025, 0.01, and 0.005, to be made by direct reference for any 2 x 2 contingency

43The Fisher—Yates test of significance for 2 X 2 contingency tables was independently developed
by R.A. Fisher in 1935 [452], F. Yates in 1934 [1472], and J.O. Irwin in 1935 [674] (qq.v. pages
25, 37, and 48).
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table having no marginal frequency total greater than 15.* Finney illustrated the use
of the table of significance levels with Johannes Lange’s data on criminal behavior
among twin brothers or sisters of criminals, previously analyzed by R.A. Fisher (q.v.
page 41).

The table to test significance published by Finney in 1948 was limited to 2 x 2
contingency tables with both the marginal frequency totals in either the rows or
columns less than or equal to 15. Latscha [804] extended Finney’s table with tables
containing marginal frequency totals up to 20 in 1953, and Armsen [34] further
extended Latscha’s tables to marginal frequencies up to 50 in 1955.

3.17 Lehmann-Stein and Non-parametric Tests

In 1949, in a highly theoretical article published in The Annals of Mathematical
Statistics, Erich Lehmann and Charles Stein investigated optimum tests for non-
parametric hypotheses against certain classes of alternatives [818].

E.L. Lehmann

Erich Leo Lehmann studied mathematics at Trinity College, University of
Cambridge, before moving to the University of California at Berkeley as
a graduate student in 1940, where he was surprisingly admitted without
having earned an undergraduate degree. Lehmann received his M.A. degree
from Berkeley in 1942, followed by his Ph.D. in 1946, both in mathematics
and both under Jerzy Neyman (q.v. page 21). After brief teaching assign-
ments at Columbia University, Princeton University, and Stanford University,
Lehmann returned to Berkeley in 1952 as an Associate Professor. In 1954
he was appointed Professor of Mathematics and the following year, Berkeley
formed a Statistics Department at which time Lehmann became a Professor of
Statistics. Lehmann remained at Berkeley for the remainder of his academic
career, retiring in 1988. Retirement did not mean, however, that Lehmann
ceased working. In fact, Lehmann completed work on his last book, Fisher,
Neyman, and the Creation of Classical Statistics, in 2009. The book was
published posthumously by Springer in 2011. Erich Leo Lehmann died at
home in Berkeley on 12 September 2009 at the age of 91 [38,215,337,1187].

#Unfortunately, Finney recommended doubling the obtained one-tailed probability value when
using a two-tailed test [434, p. 146]. This was destined to become a procedure of considerable
controversy in the mid-1980s (q.v. page 51).



162 3 1940-1959

C.M. Stein

Charles M. Stein earned his B.S. in mathematics from the University of
Chicago in 1940 and began graduate work at Chicago, but his graduate studies
were interrupted by military service during World War II. After leaving the
Air Force in 1946, Stein moved to Columbia University, earning his Ph.D.
in mathematical statistics under Abraham Wald (q.v. page 122) in 1947.
Upon graduation, Stein worked first at the Neyman Statistics Laboratory at
the University of California at Berkeley and then from 1951 to 1953 was an
Associate Professor at the University of Chicago. Stein joined the faculty at
Stanford University in 1953, where he remained for the rest of his academic
career. Stein retired in 1989 and in 2010, Stanford held a symposium in
probability and statistics in honor of Stein’s 90th birthday [336,751,767,814].
Charles Stein was born on 22 March 1920 and at the time of this writing is 93
years old.

In a 1949 article Eric Lehmann and Charles Stein researched permutation tests
in a very general framework. Let Z;,...,Zy = Z denote N random variables
and suppose there is a partition of the sample space zj,...,zy = z into classes of
equivalent points. Denote by T, the set of all points that are equivalent to z, which
contains a finite number of points, 7, and let H be the hypothesis that the distribution
of Z is, for any z, invariant over all the points in 7. Then a test of H is a function
of ¢ that assigns to each point z a number ¢, between zero and one representing the
probability of rejecting H when z is observed. If

Y v =ar

7eT,

identically in z, then ¢ is a similar size-o test of statistic H. Lehmann and Stein
showed that a most powerful and similar size-« test of H against a simple alternative
is given by ordering the points of 7 so that

(@)= > u(:")
and setting

1 ifu(@ >u (Z(1+[0”‘])) ,
0(2) = ya ifu(z) =u(HeD),
0 ifu(z)<u (Z(l"r[al‘])) ,

where u is an appropriately chosen function and « = «(z) is uniquely determined
to provide a size-o test [818].
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Lehmann and Stein stated that in many experimental situations, the hypothesis
that the distribution of the Z's was invariant under all permutations was more real-
istic than the hypothesis that the Zs were independently and identically distributed.
They also noted in a discussion of alternative hypotheses that many of the alternative
hypotheses considered, for example those involving normality, were dictated more
by tradition and ease of treatment than by appropriateness in actual experiments
[818, p. 29].

3.18 Rank-Order Statistics

The years 1948-1950 constituted a defining period for rank-order statistical meth-
ods. The year 1948 saw the publication of M.G. Kendall’s deceptively small 160
page volume on Rank Correlation Methods [734]; also in 1948, a massive summary
of order statistics by S.S. Wilks was published in Bulletin of the American Mathe-
matical Society [1456]. In March 1950, a special symposium on ranking methods
was held by the Research Section of the Royal Statistical Society and chaired by
M.G. Kendall, with presenters that included P.A.P. Moran, J.W. Whitfield, and
H.E. Daniels, along with several discussants, including R.L. Plackett, B. Babington
Smith, A. Stuart, J.I. Mason, 1.J. Good, S.T. David, and L.T. Wilkins. The text
of the symposium was later published in Journal of the Royal Statistical Society,
Series B [314, 1005, 1444]. Although the presentations by Moran, Whitfield, and
Daniels contained little on permutation methods per se, Kendall’s book was replete
with discussions of permutation statistics and the article by Wilks constituted a rich
source on permutation methods for its time [1456].

3.18.1 Kendall and Rank Correlation Methods

The importance of Kendall’s 1948 book on rank-order correlation methods cannot
be overstated, as it forever changed the field of rank-order statistics (q.v. page
84). It has gone through five editions, the last edition with J.D. Gibbons, it has
been cited over 5,000 times, and it is still in print. The title of Kendall’s book,
Rank Correlation Methods, is perhaps a little misleading as it contained much
more than rank-order correlation methods, including an extensive summary of
permutation methods. Of particular relevance to permutation methods, Kendall
included descriptive summaries of articles that contained permutation statistics per
se and tables of exact probability values obtained from permutation distributions.
For example, Kendall summarized articles by H. Hotelling and M.R. Pabst
that used permutation methods for calculating exact probability values for small
samples of ranked data in their research on simple bivariate correlation [653];
E.J.G. Pitman on permutation tests for two independent samples, bivariate corre-
lation, and randomized blocks analysis of variance [1129-1131]; M. Friedman on
procedures employing ranked data in place of the ordinary analysis of variance
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[485]; M.G. Kendall on exact probability values for the t;, measure of rank-order
correlation [728]; E.G. Olds on exact probability values for Spearman’s rank-order
correlation coefficient [1054]; B.L. Welch on exact probability values for the n? test
of homogeneity [1429]; M.G. Kendall and B. Babington Smith on exact probability
values for the coefficient of consistency [741]; H.B. Mann on tables of exact
probability values for tests of randomness against trend [879]; F. Wilcoxon on tables
of exact probability values for the two-sample test for rank-order statistics [1453];
and H.B. Mann and D.R. Whitney on exact probability values for the two-sample
rank-sum test [880].%

3.18.2 Wilks and Order Statistics

In 1948 Samuel S. Wilks of Princeton University published a lengthy article on
order statistics in Bulletin of the American Mathematical Society that summarized
contributions by a large number of statisticians on a comprehensive collection of
statistical tests and measures and included an exhaustive list of references [1456].

S.S. Wilks

Samuel Stanley Wilks earned his B.A. degree in industrial arts at North Texas
State Teachers College (now, the University of North Texas) in 1926, his
M.A. degree in mathematics at the University of Texas, and his Ph.D. in
statistics at the University of Iowa in 1931. Upon graduation with his Ph.D.,
Wilks was awarded a National Research Council Fellowship in mathematics
at Columbia University, where he studied with Harold Hotelling. In 1932
Wilks was appointed as a National Research Council International Fellow and
studied at both the University of London and the University of Cambridge.
There, Wilks had the opportunity to work with both Karl Pearson and John
Wishart.

In 1934, at the recommendation of Harold Hotelling, Wilks was recruited
to Princeton University by the Chair of the Department of Mathematics,
Luther Pfahler Eisenhart, who was the father of Churchill Eisenhart by his
first wife. Later, Churchill Eisenhart would earn his M.A. degree under Wilks.
Wilks remained at Princeton for his entire career. Samuel Stanley Wilks died
unexpectedly in 1964 as lamented in the opening sentences of his obituary by
Frederick Mosteller:

(continued)

41t should be noted that Kendall neglected to mention the two-sample rank-sum test developed by
Festinger 2 years prior, perhaps because it was published in the psychology journal, Psychometrika,
which was not commonly read by statisticians.
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[t]he death in his sleep of Samuel Stanley Wilks at his Princeton home on March
7, 1964, ended a life of dedicated service to statistics, education, and the nation.
Apparently in the best of health, his sudden death at the age of 57 shocked and
saddened the entire statistical community [1012, p. 411].

While at Princeton, Wilks was the editor of Annals of Mathematical
Statistics from 1938 to 1949. In addition, for 30 years Wilks worked with
the College Entrance Examination Board (CEEB) and with the Educational
Testing Service (ETS), advising on research design and analysis, score
scaling, the development of mathematical tests, and studies of mathematical
education [325,692,814,1012].

Kendall’s Rank Correlation Methods was quickly followed by a substantial and
sophisticated exposition of order statistics by S.S. Wilks in 1948 [1456]. In a highly
structured organization, Wilks provided a lengthy discourse on order statistics,
summarizing the results on order statistics, and listing all the references up to that
time. Although the title of the article was “Order statistics,” the article was also a
rich source on permutation methods.

This article by Wilks on order statistics comprised some 45 pages in Bulletin
of the American Mathematical Society and is too extensive to be summarized
completely here. The article included summaries of the contributions to permutation
methods by R.A. Fisher on permutation tests in general [448,451]; H. Hotelling
and ML.R. Pabst on exact probability values for ranked data [653]; M. Friedman
on the analysis of variance for ranks [485]; E.J.G. Pitman’s classic three arti-
cles on permutation versions of the two-sample test, bivariate correlation, and
randomized blocks analysis of variance [1129-1131]; B.L. Welch on permutation
tests for randomized block and Latin square designs [1428]; E.G. Olds on a
permutation approach to rank-order correlation [ 1054]; W.J. Dixon on a permutation
approach to a two-sample test [353]; A.M. Mood on the exact distribution of
runs [999]; H. Scheffé’s seminal article on non-parametric statistical inference
[1230]; E.S. Swed and C. Eisenhart on exact probability values for the runs test
[1337]; A. Wald and J. Wolfowitz on two-sample tests and serial correlation
[1405, 1406]; and P.S. Olmstead and J.W. Tukey on exact probability values for
the quadrant-sum test [1059].

3.19 vander Reyden and a Two-Sample Rank-Sum Test

In 1952 D. van der Reyden proposed a two-sample rank-sum test that was equivalent
to those published previously by Wilcoxon in 1945, Festinger in 1946, Mann and
Whitney in 1947, Whitfield in 1947, and Haldane and Smith in 1948. However, the
approach was quite different, as it was based on a novel tabular procedure [ 1391].
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D. van der Reyden

Little is known about Dirk van der Reyden other than that early in the
1950s he was a statistician for the Tobacco Research Board in Salisbury,
Southern Rhodesia.*® In 1957 he earned a Ph.D. in experimental statistics
from North Carolina State University at Raleigh and then joined the faculty
at Washington University in St. Louis. In 1952 van der Reyden independently
developed a two-sample rank-sum test equivalent to the tests of Wilcoxon
[1453], Festinger [427], Mann and Whitney [880], Whitfield [1443], and
Haldane and Smith [573], although none of these is referenced; in fact, the
article by van der Reyden contains no references whatever. The stated purpose
of the proposed test was to provide a simple exact test of significance using
sums of ranks in order to avoid computing sums of squares [1391, p. 96].

In a novel approach, van der Reyden utilized a tabular format involving
rotations of triangular matrices to generate permutation distribution frequen-
cies and published tables of critical values at two-tailed significance levels
of 0.05, 0.02, and 0.01 for all sample sizes such that if m and n denote the
population and sample sizes, respectively, 10 <m < 30and2 <n < 12 at
the 0.05 level, and 3 < n < 12 at the 0.02 and 0.01 levels [1391]. This work
went largely unnoticed for some years, appearing as it did in the relatively
obscure Rhodesia Agricultural Journal.

In 1952 D. van der Reyden proposed a tabular procedure for the two-sample
rank-sum test that was equivalent to tests previously proposed by Wilcoxon in 1945
[1453], Festinger in 1946 [427], Mann and Whitney in 1947 [880], Whitfield in
1947 [1443], and Haldane and Smith in 1948 [573].*7 Table 3.9 illustrates the van
der Reyden tabular procedure with values of n = 1, 2, 3, m = 1,...,6, and sums
of frequencies from 7" = 1 to T = 15. Looking first at the column headed n = 1
in Table 3.9, note that whenm = landn = 1,7 = 1; whenm = 2andn =1,
T =1or2;whenm =3andn =1,T = 1,2,or3;and whenm =4 andn = 1,
T =1, 2,3, or 4. Simply put, taking all samples of one item from m items, all
values of 7" will have a frequency of 1. In this case, each T has a frequency of 1 and
each frequency sums to (';), e.g., form = 4 and n = 1 the frequency distribution is
{1, 1, 1, 1} with a sum of 4, which is (T) = 4. To obtain the frequencies for samples
of n = 2 items, rotate all frequencies for n = 1 clockwise through 45°, shifting the
whole distribution downward to

46Southern Rhodesia was shortened to Rhodesia in 1965 and renamed the Republic of Zimbabwe
in 1980.

4TFor a brief history of the development of the two-sample rank-sum test, see a 2012 article by
Berry, Mielke, and Johnston in Computational Statistics [160].
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Table 3.9 Generation of frequency arrays forn = 1, n = 2, and n = 3 as described by van der
Reyden [1391]

n=1 n=2 n=3

T/m 1 234 2345 2 345 3456 3456
1 1111

2 111

3 11 1 1111

4 1 1 111

5 11 122

6 11 12 1 1111
7 11 12 1 111
8 1 1 11 122
9 1 1 111 123
10 21 2 3
11 12 13
12 12 13
13 2 2
14 1 1
15 1 1

T:<n+l):n(n+1)'
2 2

Thus in Table 3.9, the frequencies obtained for n = 1 are transposed with the
first row now constituting the fourth column, the second row constituting the third
column, and so on. Then this transposed matrix is shifted downward so that it begins
atT =n(n+1)/2 = 2(2 + 1)/2 = 3. Finally, the frequencies are added together
horizontally in a specific manner, as follows.

Consider the frequency distributions listed under n = 2 in Table 3.9. There are
two sets of frequency distributions under n = 2, one on the left and one on the right,
both labeled m = 2, 3, 4, 5. So, for example, to create the frequency distribution
listed under n = 2, m = 3 on the right, add together the frequency distribution
listed under n = 2, m = 2 on the right and the frequency distribution under n = 2,
m = 3 on the left. To create the frequency distribution listed undern = 2, m = 4
on the right, add together the frequency distribution listed under n = 2, m = 3 on
the right and the frequency distribution under n = 2, m = 4 on the left. To create
the frequency distribution listed under n = 2, m = 5 on the right, add together the
frequency distribution listed under n = 2, m = 4 on the right and the frequency
distribution under n = 2, m = 5 on the left. The process continues in this manner,
recursively generating the required frequency distributions.*®

8 Authors’ note: in deciphering the article by van der Reyden we were often reminded of a
comment by Nathaniel Bowditch. In the memoir prefixed to the fourth volume of Bowditch’s
translation of Laplace’s Mécanique Céleste, page 62, Bowditch wrote: “[w]henever I meet in La
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For a final example, consider the frequency distributions listed under n = 3.
Again there are two sets of frequency distributions, one on the left and one on the
right. The distribution on the left is created by rotating the distribution created under
n = 2 on the right, and shifting it downward so it begins at T = n(n + 1)/2 =
3(3 + 1)/2 = 6. To create the frequency distribution listed undern = 3, m = 6 on
the right, add together the frequency distribution listed under n = 3, m = 5 on the
right and the frequency distribution under n = 3, m = 6 on the left. The frequency
distributions of sums in Table 3.9 can be compared with the frequency distributions
of sums in Tables 3.4 and 3.5 that were generated with Festinger’s method [427]. In
this recursive manner, van der Reyden created tables for 7 fromn = 2,...,12 and
m = 10, ..., 30 for the « = 0.05, 0.02, and 0.01 levels of significance.

3.20 White and Tables for the Rank-Sum Test

Although trained as a medical doctor, Colin White also contributed to the field
of permutation statistics. In 1952 White recursively generated tables of exact
probability values for the Wilcoxon two-sample rank-sum test in which the sample
sizes could either be equal or unequal [1441].

C. White

Colin White earned his M.S. and his M.D. degrees from the University of
Sydney, Australia, in 1937 and 1940, respectively. Upon graduation, White
served as a medical officer for the Commonwealth Department of Health in
Canberra, then moved to England where he was a lecturer at the University
of Birmingham. White immigrated to the United States in 1948 and joined
Yale University as an Assistant Professor in 1953. In 1962 he was promoted
to Professor and, eventually, Chair of the Department of Epidemiology and
Public Health. White retired in 1984, but continued his research as a senior
research scientist at Yale University until 2007, enjoying a career that spanned
six decades. Colin White passed away on 1 February 2011 at the advanced age
of 97 [673].

In 1952 White introduced “elementary methods” to develop tables for the
Wilcoxon two-sample rank-sum test when the numbers of items in the two

Place with the words “Thus it plainly appears’ I am sure that hours, and perhaps days of hard study
will alone enable me to discover how it plainly appears.” (Bowditch, quoted in Todhunter [1363,
p. 478]; emphasis in the original).
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independent samples, n; and n,, were not necessarily equal [1441].*° White

provided three tables that gave critical values for rank sums forn; = 2,...,15and
n, = 4,...,28 for critical values of « = 0.05,n; = 2,...,15andn, = 5,...,28
for critical values of « = 0.01,andn; = 3,...,15and n, = 7,...,27 for critical

values of « = 0.001.

Following the notation of White, let n; denote the number of items in the sample
for which the rank total, T, is required, and let n, represent the number of items in
the second sample. The ranks to be allotted are 1, 2,...,n; + ny, where the lowest
value the rank total can have is given by

ni(ny + 1)
2 ki
the largest total is given by

ni(ny +2n, + 1)
2

)

and all integer values between these two limits are possible rank totals. For example,
consider n; = 5 items drawn from the consecutive integers 1, 2, ..., 12, where the

lowest rank total is
ni(n+1)  5(5+1)
3 =

=14243+4+5=15,

and the highest rank total is

ny(ny 4+ 2ny + 1) _ 56+ (2)(7) +1]
2 2

=8+9+10+11+12=50.

White’s recursion procedure to obtain rank-sum totals described here is similar to
Wilcoxon’s procedure [1453]. Let Wy """ denote the number of ways of obtaining a

rank total when there are n| items in the sample of which T is required, and 7, items
in the second sample. Now, as White showed, Wf 12 can be obtained recursively;
thus,

WTnl,nz — W}ﬂ,(nz—l) + WT(n—ln_ll—)nZZ )
For example, as shown in Table 3.10 there are 18 ways of obtaining a total of T =
23 when n; = 5 of the integers 1, 2, 3,...,n; + n, = 13 are summed without
repetitions, 17 ways of obtaining a total of 7 = 23 when n; = 5 of the integers
1,2, 3,...,n1 + (np — 1) = 12 are summed, and only one way of obtaining a total
of T = 10 whenn; = 4 of theintegers 1, 2, 3,...,(n;—1)+n, = 12 are summed.
Specifically, when n; = 5,n, = §,and 7' = 23,

“9Recall that the two-sample rank-sum method proposed by Wilcoxon in 1945 considered only
equal sample sizes [1453] and Festinger, in 1946, was the first to develop a two-sample rank-sum
procedure that could accommodate different sample sizes [427].
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Table 3.10 Number of ways a sum of 7 = 23 can be obtained from 5 integers chosen from 13,
asum of 7 = 23 can be obtained from 5 integers chosen from 12, and a sum of 7 = 10 can be
obtained from 4 integers chosen from 12

Count 5 from 13 5 from 12 4 from 12
1 2 3 5 6 7 2 35 6 7 1 2 3 4
2 1 4 5 6 7 1 4 5 6 7
3 2 3 4 6 8 2 3 4 6 8
4 1 3 5 6 8 1 3 56 8
5 1 3 4 7 8 1 3 4 7 8
6 1 2 5 7 8 1 2 5 7 8
7 2 3 4 5 9 2 3 45 9
8 1 3 4 6 9 1 3 4 6 9
9 1 25 6 9 1 2 5 6 9

10 1 2 4 7 9 1 2 4 7 9

11 1 2 3 8 9 1 2 3 8 9

12 1 3 4 510 1 3 4 510

13 1 2 4 6 10 1 2 4 6 10

14 1 2 3 710 1 2 3 710

15 1 2 4 5 11 1 2 4 511

16 1 2 3 6 11 1 2 3 6 11

17 1 2 3 5 12 1 2 3 5 12

18 1 2 3 413

58 __ 5,.(8=1) (5—1),8
W23 - W23 + W23—5—8

and 18 = 17 + 1. Table 3.10 lists the various ways of obtaining a total of 7 = 23
from W,; %, W,;7, and a total of T = 10 from W3 ®. For sums based on 5 integers
drawn from 13 consecutive integers, 18 out of a possible 1,287 sums equal T =
23; for sums based on 5 integers drawn from 12 consecutive integers, 17 out of a
possible 792 sums equal 77 = 23; and for sums based on 4 integers drawn from
12 consecutive integers, only 1 out of a possible 495 sums equals 77 = 10. In this
manner, White was able recursively to generate exact rank-sum totals for various
combinations of n| and n,.

3.21 Other Results for the Two-Sample Rank-Sum Test

In addition to the published tables already mentioned by Wilcoxon, Festinger, Mann
and Whitney, White, and van der Reyden, several other extensions of tables of
exact probability values appeared in the statistical literature during this period. Two
are worth mentioning. In 1955, Fix and Hodges published extended tables for the
Wilcoxon two-sample rank-sum W statistic [465].% If the sizes of the two samples

30For brief biographical sketches of Evelyn Fix and Joseph L. Hodges, see Lehmann’s wonderful
little book titled Reminiscences of a Statistician: The Company I Kept, published in 2008 [814, pp.
27-35].
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are designated as m and n with m < n, the tables include exact probability values
for m < 12. In 1953, Auble published extended tables for the Mann—Whitney
two-sample rank-sum U statistic [40]. If n; and n, denote the sizes of the two
samples, the tables from Auble give probability values for one- and two-sided tests
for ¢ = 0.05 and ¢ = 0.01 for n; and n;, from 1 to 20. In addition, many more
tables of exact probability values appeared for W and U after 1959 when computers
made generation of exact probability values much easier. Most notable among these
were tables for the Wilcoxon two-sample rank-sum W statistic by Jacobson in 1963
[677] and extended tables for the Mann—Whitney two-sample rank-sum U statistic
by Milton in 1964 [996].

Because the subject of interest is the historical development of permutation
methods rather than a general discussion of statistics, much has had to be omitted
in the discussion of the Wilcoxon and Mann—Whitney two-sample rank-sum tests.
Consider that many of those who published tables of exact probability values also
went on to provide approximate probability values for larger sample sizes. In
general, they used methods based on moments to fit an approximate probability
distribution. For example, in 1947 Wilcoxon provided tables of approximate
probability values for both the unpaired and paired two-sample rank-sum tests
[1454]. In addition, some of the published tables included adjustments for tied ranks,
while some did not. Finally, there were errors in several of the published tables that
were corrected in later articles; see especially the article by Verdooren [1398] that
contained corrections for the tables by White [1441] and Auble [40], and an erratum
to the article by Kruskal and Wallis [779] that contained corrections to the tables by
White [1441] and van der Reyden [1391].

While these were all important contributions, they are not directly related to
the focus on the structure and development of permutation statistical methods.
However, a final note may be of some interest. The permutation methods to produce
exact probability values introduced by Wilcoxon, Festinger, Mann and Whitney,
Whitfield, Haldane and Smith, and van der Reyden are quite complex, but the test
statistics W and U are relatively straightforward to compute. That does not mean,
however, that they are simple to implement. In 2000, Bergmann, Ludbrook, and
Spooren investigated the Wilcoxon—-Mann—Whitney (WMW) procedures provided
by eleven statistical packages. Some of the packages used large-sample approxima-
tions and some used exact permutation procedures. In the first case, some packages
corrected for continuity and some did not. Moreover, some packages adjusted for
tied ranks and some did not. Combinations of these choices led to very different
results. The authors concluded that the “only infallible way of executing the WMW
test is to compile the null distribution of the rank-sum statistic by exact permutation.
This was ... Wilcoxon’s (1945) thesis and it provided the theoretical basis for his
test” [100, p. 76].%!

SIn this regard, see an article by John Ludbrook on “The Wilcoxon-Mann-Whitney test
condemned” in British Journal of Surgery [851] as well as a rejoinder by G.D. Murray [1017].
See also an exact permutation computer program for the Wilcoxon-Mann—Whitney test by Berry
and Mielke in 2000 [155].
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3.22 David-Kendall-Stuart and Rank-Order Correlation

In 1951 S.T. David, M.G. Kendall (q.v. page 84), and A. Stuart published an article
concerning questions of distributions in the theory of rank-order correlation [328].
This article was motivated by three articles that had appeared the previous year
in Journal of the Royal Statistical Society, the first by P.A.P. Moran on “Recent
developments in ranking theory” [1005], the second by J.W. Whitfield on “Uses of
the ranking method in psychology” [1444], and the third by H.E. Daniels on “Rank
correlation and population models” [314]. Consequently, the article by David et al. is
not primarily concerned with permutation methods. That said, this article does make
a contribution of interest in a chronicle of permutation methods. David et al. noted
that the exact distribution for Spearman’s rank-order correlation coefficient had been
given by Kendall, Kendall, and Babington Smith in 1939 for n, the rank number,
fromn = 2 to 8, inclusive [746], and independently by Olds (q.v. page 83) in 1938
for n = 2 to 7, inclusive [1054]. David et al. then proceeded to provide tables of
the exact distribution of Spearman’s rank-order correlation coefficient forn = 9
and n = 10. In 1955 Litchfield and Wilcoxon provided a table of critical totals of
squared rank differences and a nomograph which permitted direct reading of the
rank-order correlation coefficient for 640 pairs of observations and two probability
levels, 0.05 and 0.01 [833].

What is of interest here are the comments by David et al. on the calculations of
the exact distributions, as they reflect the difficulty in computing exact probability
values in the years preceding the development of high-speed computers. David et al.
observed that the method of obtaining the distributions used by both Kendall et al.
in 1939 [746] and previously by Olds in 1938 [1054] were essentially the same, and
further noted that “the work of explicit expansion rapidly increases as n becomes
larger” [328, p. 131]. They went on to explain that they had been unable to find
any methods of alleviating the amount of work required other than those methods
previously described by Kendall et al. in 1939 and observed that the expansions to
n = 9 and n = 10 were about as far as a computer’s patience could be expected to
extend.>?

3.23 Freeman-Halton and an Exact Test of Contingency

In 1951 Gerald Freeman and John Halton published a short but influential article
in Biometrika that addressed exact methods for analyzing two-way and three-way
contingency tables, given fixed marginal frequency totals [480].

321t should be explained that “computer” was a common term that referred to the person who was
responsible for calculations, usually a woman or group of women. In this case the computer was
Miss Joan Ayling of the National Institute for Social and Economic Research who was given due
credit by the authors “for her customary patience and accuracy” [328, p. 131]. See also a discussion
by George Dyson in a 2012 book titled Turing’s Cathedral [370, p. 59].
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J.H. Halton

John H. Halton received his B.A. and M.A. degrees in mathematics and
physics from the University of Cambridge in 1953 and 1957, respectively,
and his Ph.D. from the University of Oxford in 1960. He held positions as a
physicist in several locations, including the English Electric Company, the
University of Oxford’s Clarendon Laboratory, the University of Colorado
in Boulder, the Brookhaven National Laboratory, and the University of
Wisconsin at Madison. In 1984 he joined the Department of Computer
Science at the University of North Carolina at Chapel Hill. In 2008 the
University of Cambridge presented Halton with a D.Sc. degree, an honor that
was based on forty of his published works.

In 1951 Gerald H. Freeman and John H. Halton published a short note on the
exact treatment of contingency and goodness of fit. The purpose of the note was
to present an exact method of analyzing r-way contingency tables with small cell
frequencies to replace the chi-squared approximation that was considered unsuitable
for small observed and expected values [480, pp. 141, 149]. The note is somewhat
unique, as it contained no references to previous literature. The note, however, did
include an exact treatment of r X ¢ and r X ¢ X s contingency tables with fixed
marginal frequency totals. The approach to the two-dimensional tables utilized the
conventional hypergeometric probability distribution and can be illustrated with a
2 x 3 contingency table. Given fixed marginal frequency totals a;,7 = 1,...,r, and
bj, j =1,...,c, let n denote the total number of objects and let x;; denote a cell
frequency fori = 1,...,r and j = 1,...,c. Finally, index each table by ¢. Then,
the probability of the #th r x ¢ contingency table is given by

lL[ai! li[bj'

i=1  j=1

n!ﬁli[x;f)! ’

i=1j=1

Px(t) -

which had previously been put forward by R.A. Fisher in 1935 in the “lady tasting
tea” experiment (q.v. page 58).% Freeman and Halton further defined

Or
Rx(r)

Pyo = , (3.11)

33 A rigorous derivation of the exact contingency formula was given by John Halton in Mathemati-
cal Proceedings of the Cambridge Philosophical Society in 1969 [578].
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where

r c
[Ta [T
i=1

Jj=1

0, =" 1= (3.12)

n!

and

Ryw = ]_[ ]_[ X (3.13)

i=1j=1

As Freeman and Halton explained, by using logarithms the calculations could then
be performed, with Q, being determined once for all tables and R y() separately for
each table. For an example, consider an observed contingency table L given by

0 3 2
L= .
o 5 )
For any k-dimensional contingency table with fixed marginal frequency totals, ry X
ry X -+ X 1y, there are v degrees of freedom, where

k k
V= l—[rm—Z(rm—l)—l.
m=1 m=1

Since, for the k-dimensional contingency table, L, with r; = 2 and r, = 3, there are
v=02)3)-2-H+B-1-1=2

degrees of freedom, only two independent cells need be manipulated, e.g., x;; and
X12, and the rest simply filled in, given the fixed marginal frequency totals. To

illustrate, the first six of the possible 18 cell configurations are listed here, with
the observed contingency table being L = X ®:

O _ [0 2 3} yO _ [0 3 2} $O _ [0 4 1}
6 6 0]’ 6 5 1]° 6 4 2]°
0 5 0 11 3 12 2

X® — L x9 = L X©® = _
6 3 3 5.7 0 5 6 1

Following Egs. (3.11)—(3.13), the computations for the observed table L =
X@ =932 are
651
_ 5121 6!8!3!
o 17!
Ry@ =0131216!5!1! =1,036,800,

= 28,148.4163 ,
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and

28,148.4163
Pyo) = ——— = 0.0271.
1,036,800
For reference, the exact probability values for the six 2 x 2 contingency tables listed
above are:

28.148.4163
Py = 27 ().0045
X0 = 76220.800
28.148.4163
Pyo = "2 = 0.0271,
1,036,800
28.148.4163
Pyo = ————— "~ =0.0339,
829.440
28.148.4163
Py = =" = 0.0090
3,110,400
28.148.4163
Py = "7 = 0.0078,
3,628.800
and
28.148.4163
Py = 27 = 0.0814 .
345,600

In an effort to expand Fisher’s exact probability test to higher dimensions, Freeman
and Halton examined three-dimensional contingency tables. A three-dimensional
contingency table is more complex, but the approach by Freeman and Halton was an
innovative permutation method. In the case, for example, of a 2 x 2 x 2 contingency
table, there are

k k
v=[Tm-Ytm-D-1=@@@-2-H-2-)-2-1)-1=4

m=1 m=1

degrees of freedom; thus, only four cells need be manipulated with the remaining
cells determined by the fixed marginal frequency totals. For Freeman and Halton,
this meant the cell frequencies in the front 2 x 2 panel and the cell frequencies in
the left uppermost cell of the rear 2 x 2 panel.>

34In many applications, “panels” are sometimes referred to as “slices” or “levels.”
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Consider the six 2 x 2 x 2 contingency tables listed here:

[0 00 3] o [0 01 2]
[0 5|3 14} [0 5/2 15]°
[0 0[2 1] [0 0[3 0]

X® — ) X = ,
[0 5|1 16 [0 5|0 17

® [0 00 3] o _[0 01 2]
1 4/2 15]° 141 16

where the vertical lines separate the front 2 x 2 panels from the rear 2 x 2 panels.
The expression for the probability of the ¢th three-dimensional contingency table
as given by Freeman and Halton is

[t]he product of all (border totals)!
Pyoy = 5 . (3.14)
(n)? x the product of all (cell totals)!

More formally, given an r X ¢ x s contingency table with fixed marginal frequency
totals @; fori = 1,...,r,b; for j = 1,...,c,and dy fork = 1,...,s,letn
denote the total number of objects and let x;; denote the cell frequency for i =
1,....,r,j=1,...,c,and k = 1,...,s. As before, index each table by 7. Then the
probability of the r X ¢ X s contingency table is given by

ﬁa,'ﬁbj'ﬁdk'
j= k=1

i=1

PX(” = r c K :
o TTIT T4
i=1 j=1 k=1
Thus, for example,
5120! 3! 221! 31 22! 1,938
Py = = = 0.1465,

(2512 0! 0! 0! 510! 3130 14! 13,225

where the panel marginalsare 0 +0+0+5 = 5and 0 + 3 + 3 + 14 = 20, the row
marginalsare 04+040+43 = 3 and 045+ 34 14 = 22, and the column marginals
are04+04+0+3 =3and 04 54 3 + 14 = 22. Note that “[t]he product of all
(border totals)!” in Eq. (3.14) and n! are constants for all tables, thus “the product of
all (cell totals)!” in Eq. (3.14) is operative here. For reference, the exact probability
values for the six 2 x 2 x 2 contingency tables listed above are

5.5189 x 10"
3.7661 x 1014
5.5189 x 10"
6.2768 x 1014

Pya) = =0.1465 ,

Pyo = =0.0879,
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5.5189 x 10'3

Py = 2222 — 00110,
X9 7 50215 % 1015

b _ 55189 107 0.0002

X9 = 55609 % 1017 ’
5.5189 x 10'3

Py = = 0.1465

3.7661 x 1014

and

p 35189 107 0.0550
X9 = 10043 x 1065 '

The recursive process described by Freeman and Halton simplified calculations
and enabled computation of the probability value of a specified table from the
probability value of a preceding table, provided the arrays were properly sequenced.
Consider first contingency tables X! and X®. Since the front panels of X
and X @ are identical, it is only necessary to evaluate the rear panels of the two
tables. Consider the ratio of the cell frequencies in the rear panel of XV to the cell
frequencies in the rear panel of X @; viz.,

0! 3!3!14! 3x3
Pyo = Py % () X [

112021150 1x15

which can easily be obtained from X and X® as follows. For the rear panel in

X consider the two diagonal values in the upper-right and lower-left cells, e.g., 3

and 3, and for the rear panel in X ® consider the two diagonal values in the upper-
3x3

left and lower-right cells, e.g., 1 and 15, yielding the ratio in square brackets [m]

Next, consider the ratio of X to X®. Again, the front panels are identical, so the
ratio of the cell values in the two rear panels is given by

9
= 0.1465 x — = 0.0879,
15

11212115! 2x2
Py = Pyo x@ X

4
1tat2115t ZX2 20,0879 x — = 0.0110.
111 16! 2 x 16:| oY)

As Freeman and Halton noted, when considering the two ratios in square
brackets, the ratio of X® to X® can be obtained from the preceding ratio of X (!
to X @ by subtracting one from each value in the numerator (3 x 3), e.g.,3—1 =2
and 3 — 1 = 2, and adding one to each value in the denominator (1 x 15), e.g.,
14+ 1 =2and 154 1 = 16, thereby yielding [22;126] Thus, to obtain the ratio of
X® to X@, subtract one from each value in the numerator (2 x 2), eg.,2—1=1
and 2—1 = 1, and add one to each value in the denominator (2x 16),e.g.,2+1 =3

and 16 + 1 = 17, yielding [ 3255 |. Thus,
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Ix1
3x 17
At this point, the sequencing breaks down as there are two 1s in the numerator.

However, as Freeman and Halton noted, X ® can be obtained in alternative ways.
For example,

1
PX(“) = PX(s) X |: i| =0.0110x 5—1 = 0.0002 .

1x16
PX(S) = PX(s) X 2% 3

where the numerator (1 x 16) is taken from the diagonal in the rear panel of Py
and the denominator 2 x 3 is taken from the diagonal in the rear panel of Py).
Note that the front panels are identical in Py« and Py and can therefore safely
be ignored. Alternatively,

16
= 0.0550 x <= 0.1465 ,

3x5
PX(s) = PX“) X |:

1
= 0.1465 x —5 = 0.1465,
1 x15 15

where the numerator (3 x5) is taken from Py, and the denominator (1x15) is taken
from Py . Here the front panels in Py and Py are different, thus the numerator
and denominator values cannot be taken from only the rear panels of Py and
Py ). The process is as follows with the eight cell frequency values of Py in the
numerator and the eight cell frequency values of Py ) in the denominator:

0!0!0!310!5!3!14!
010! 1!4!0!312!15!

3x5
—p
X“)X[IXIS

PX(S) = PX(l) X

15
= 0.1465 x — = 0.1465 .
15

Freeman and Halton concluded that the exact method they described was
generally useful in cases where a chi-squared test would normally be utilized, but
should not be used because the observed and expected cell frequencies were too
small. The method, they explained, was also useful when a chi-squared test was
wholly unsuitable, such as when the entire population contained so few members
that a chi-squared test was not appropriate, but still a test of significance was
required [480, p. 149]. Finally, they cautioned that a difficulty with the exact method
described was the amount of labor involved in obtaining the exact probability values,
thus setting an upper limit to the size of the sample that could be dealt with in a
reasonable amount of time [480, p. 141].

3.24 Kruskal-Wallis and the C-sample Rank-Sum Test

In 1952 William Kruskal and W. Allen Wallis proposed an exact multiple-sample
rank-sum test that they called H, and also provided tables for various levels of
significance [779].
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W.H. Kruskal

William Henry Kruskal earned his B.S. degree in mathematics and philosophy
from Harvard University in 1940 and his M.S. degree in mathematics from
Harvard University the following year. In 1941 Kruskal decided to take a job
at the U.S. Naval Proving Ground in Dahlgren, Virginia. In 1946, Kruskal
left the Navy and went to work in the family firm of Kruskal & Kruskal,
a major fur wholesale business. In 1950, W. Allen Wallis offered Kruskal a
position in the newly formed Department of Statistics at the University of
Chicago, which he enthusiastically accepted [429, p. 257]. Kruskal went on
to complete his Ph.D. in mathematical statistics from Columbia University
in 1955. In addition to teaching at the University of Chicago, Kruskal also
served as Chair of the Department of Statistics from 1966 to 1973, Dean of
the Division of Social Sciences from 1974 to 1984, and Dean of the Irving
B. Harris Graduate School of Public Policy Studies from 1988 to 1989 [429,
1484]. William Henry Kruskal died on 21 April 2005 in Chicago at age 85.

W.A. Wallis

Wilson Allen Wallis earned his Bachelor’s degree in psychology from the
University of Minnesota in 1932. He completed 1 year of graduate work at
Minnesota, followed by a second year of graduate studies at the University
of Chicago. In 1935 Wallis left the University of Chicago to study statistics
under Harold Hotelling at Columbia University. As Wallis described it, “the
only degree I ever got is a Bachelor’s degree at Minnesota, except for the
four honorary doctorates” [1056, p. 122]. From 1942 to 1946, Wallis was a
member of the Statistical Research Group at Columbia, where he worked with
such notables as Churchill Eisenhart, Milton Friedman, Fredrick Mosteller,
Jimmy Savage, Herbert Solomon, George Stigler, Abraham Wald, and Jacob
Wolfowitz, among others (q.v. page 69).

Wallis held faculty positions at Yale University, Stanford University,
and the University of Chicago, and administrative positions at Columbia
University, the University of Chicago, and the University of Rochester, where
he was President from 1962 to 1970 and Chancellor from 1970 to 1982. Wallis
served as the Under Secretary for Economic Affairs in the U.S. Department of
State from 1982 to 1989. Wallis also served as an advisor to U.S. Presidents
Dwight D. Eisenhower, Richard M. Nixon, Gerald R. Ford, and Ronald
W. Reagan [814, 1056]. Wilson Allen Wallis died on 12 October 1998 in
Rochester at the age of 85 [1410].
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In 1952 Kruskal and Wallis introduced a C-sample rank-sum test statistic that
they called H [779]. Although H is asymptotically distributed as chi-squared with
C — 1 degrees of freedom, Kruskal and Wallis provided tables based on exact
probability values for C = 3 with each sample less than or equal to 5 for « = 0.10,
0.05, and 0.01 levels of significance.

Kruskal and Wallis explained that the H test statistic stems from two statistical
methods: rank transformations of the original measurements and permutations of
the rank-order statistics. They explained that if, in the one-way analysis of variance,
the permutation method based on the conventional F statistic is combined with the
rank method, the result is the H test.

Consider C random samples of possibly different sizes and denote the size of the
ithsamplebyn;,i =1,...,C. Let

c
N = Zl’l i
i=1
denote the total number of measurements, assign rank 1 to the smallest of the N
measurements, rank 2 to the next smallest, and so on up to the largest measurement,
which is assigned rank N, and let R; denote the sum of the ranks in the ith sample,

i =1,...,C. When there are no tied ranks, test statistic H is given by
c
12 R?
H=——""" L _3(N+1).
N(N +1) ; n; ( )
Kruskal and Wallis observed that when C = 2, H was equivalent to the

Wilcoxon [1453], Festinger [427], Mann—Whitney [880], and Haldane—Smith two-
sample rank-sum tests [573]. In 1953, in an erratum to their 1952 paper [779],
Kruskal and Wallis documented the equivalence of the H test with the two-sample
rank-sum test by van der Reyden that had recently come to their attention [1391].
In terms of permutation methods, Kruskal and Wallis provided a table of the
distribution of H for C = 3 samples and sample sizes from one to five. They
compared the exact probability values with three moment approximations, one
based on the chi-squared distribution, one on the incomplete gamma distribution,
and one on the incomplete beta distribution.

3.25 Box-Andersen and Permutation Theory

George Box and Sigurd Andersen read a paper on permutation tests and robust
criteria before the Royal Statistical Society in November of 1954, which was
subsequently published in Journal of the Royal Statistical Society, Series B in 1955
[193].
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G.E.P. Box

George Edward Pelham Box, “Pel” to his friends, began college at the
University of London as a chemistry student, but that work was interrupted
by World War II when Box was called to military service. He served as
a chemist in the British Army, but based on the work he was doing he
quickly realized the importance of statistical training. Box had no background
in statistics and, unable to find appropriate correspondence courses, taught
himself the statistics he needed to conduct his work for the Army. Box
returned to school after the War with a new interest in statistics, earning a
B.Sc. degree in mathematical statistics from the University of Londonin 1947.
Box worked for Imperial Chemical Industries (ICI) while he was completing
his Ph.D. at the University of London, under the direction of Egon Pearson
and H.O. Hartley. He earned his Ph.D. in statistics in 1952 and took leave
from ICI to accept a visiting professorship at the Institute of Statistics, North
Carolina State College (now, North Carolina State University at Raleigh), at
the invitation of Gertrude Cox, 1953-1954.

In 1957, Box resigned from ICI to become Director of the Statistical
Research Group at Princeton University. Two years later, Box married
Joan G. Fisher, R.A. Fisher’s daughter. In 1960, Box joined the faculty at
University of Wisconsin at Madison to form a new department of statistics,
where he remained for the rest of his career [338, 1418]. As Box noted in his
memoirs, he was appointed to initiate and head a department of statistics as a
full professor even though he had never had an academic appointment at any
university [192, p. 95]. Box was elected Fellow of the Royal Society in 1985
and in 1992 Box retired from the University of Wisconsin. (Several sources
report the year in which Box received his ER.S. as 1979, but 21 March 1985
appears to be correct; see [192, p. 245].)

An interesting aside: Box is credited with coining the term “robustness”
in a 1953 article that appeared in Biometrika on non-normality and tests
on variances [190, p. 318]. However, John Hunter reported that Box had
remarked in his acceptance letter to Gertrude Cox that in addition to research
on the design of experiments he hoped to look into the problem of robust
statistics. Hunter stated “I believe that this is the first time the word ‘robust’
appears in a statistics context” [998]. George Box published over 200 journal
articles in his lifetime, the first at age 19 [192, pp. xviii, 17]. George Edward
Pelham Box FR.S. died at home on 28 March 2013 in Madison, Wisconsin,
at age 93. Just days before his death, advance copies of his autobiography
were flown out to him by his publisher John Wiley & Sons; interested readers
should consult An Accidental Statistician: The Life and Memories of George
E. P. Box [192].



182 3 1940-1959

S.L. Andersen

Sigurd Lokken Andersen was born in Silkeborg, Denmark, and at the age of
three, emigrated by ship to the United States with his parents. Andersen began
his education at Princeton University, but left when World War II began to
enlist in the Navy and later continued his education at Cornell University.
Upon graduation from Cornell, Anderson served at sea in the North Atlantic.
At the conclusion of World War II, Andersen enrolled at North Carolina
State University at Raleigh where he was assigned as a research assistant
to George Box, along with John Stuart (Stu) Hunter. [338, 998]. Andersen
received his Ph.D. from North Carolina State University at Raleigh in 1954
with a dissertation on robust tests for variances under the direction of Robert
John Hader. Possibly the reason why Hader is listed as Andersen’s dissertation
advisor instead of Box is because the research was funded by the Office of
Ordnance Research, United States Army, under contract DA-36-034-ORD-
1177, which was administered by Hader. After graduation, Andersen took a
position with the DuPont Corporation in Wilmington, Delaware, remaining
there for 35 years until his retirement in 1989 [874]. Sigurd Lokken Andersen
died on 5 August 2012 at the age of 88.

In November of 1954 Box and Andersen read a paper on “Permutation theory
in the derivation of robust criteria and the study of departures from assumption”
before the Research Section of the Royal Statistical Society, subsequently published
under the same title in Journal of the Royal Statistical Society, Series B in 1955
[193]. This is a lengthy paper and includes discussions by several members of the
Society. Unfortunately, the sheer length of the paper precludes anything but the
briefest summary and it is not possible to do justice to this important paper in
this limited space. Box and Andersen noted that in practical circumstances little
is usually known of the validity of assumptions, such as the normality of the error
distribution. They argued for statistical procedures that were insensitive to changes
in extraneous factors not under test, but sensitive to those factors under test, i.e.,
procedures both robust and powerful. In this context, they addressed permutation
theory as a robust method and applied it to comparisons of means and variances.

It is important to note that Box and Andersen found most of the standard normal-
theory tests to compare means to be “remarkably robust” and sufficient to fulfill
the needs of researchers. As they explained, “our object in discussing permutation
theory for these tests is to demonstrate this [robustness], and to consider more
clearly the behavior of the permutation tests in those cases with which we are
most familiar” [193, p. 33]. They emphasized, however, that their object was not
to suggest alternative tests for these research situations.

Box and Andersen pointed out that tests on differences between variances
could be so misleading as to be valueless, unless the resulting distribution was
very close to normal. They then stated “[t]he authors’ belief is that such an
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assertion [of normality] would certainly not be justified” [193, p. 2]. The solution,
they concluded, was in the use of “a remarkable new class of tests” called
permutation tests, such as introduced by R.A. Fisher in 1935 [451]. Box and
Andersen distinguished between two alternative views of the nature of inference
in permutation tests. In the first view, a data-dependent inference was confined only
to that finite population of samples produced by rearrangement of the observations
of the experiment. In the second view that was not a data-dependent inference,
the samples were to be regarded as being drawn from some hypothetical infinite
population in the usual way. It was the second alternative that was preferred by Box
and Andersen.

Like others in this era, Box and Andersen observed that evaluation of a
permutation distribution is laborious and in order to make permutation theory of
practical value, researchers such as Pitman and Welch used an approximation to the
permutation distribution based on the value of its moments, e.g., the beta distribution
[1129, 1130, 1428, 1430]. After defining a modified F' test where the degrees of
freedom were adjusted to compensate for non-normality and differences among
variances, they considered two questions:

1. How good is the moment approximation to the permutation test?
2. How much power is lost by using the modified F' test when the distribution
happens to be normal?

They then investigated the power and robustness of the standard F test and
the modified F test for the rectangular, normal, and double-exponential parent
distributions.

In the conclusion to the paper they noted that one of the simplest statistical
procedures was the test of hypothesis that the mean of a sample, ¥, is equal to the
mean of the population, ., when the population standard deviation, o, was known.
They explained that if a sample of n observations {x;, x3, ..., x,} was available,
the criterion usually chosen was /n X/0,, which was then referred to tables of
the unit normal distribution. Box and Andersen noted that the validity of this test
of the null hypothesis does not depend on the supposition that the observations
are exactly normally distributed, as the central limit theorem guarantees that, for
almost all parent distributions, the chosen statistic is asymptotically distributed in
the assumed form. They concluded that “for all but extremely small sample sizes
and ‘pathological’ parent distributions the null test is approximately valid” [193,
p- 25]. They further noted that a similar argument may be employed to analysis of
variance tests. However, if the analysis of variance lacks the central limit property, it
is necessary to seek alternative tests with greater robustness. One way of doing this
is by approximating to the appropriate permutation test. Thus, for Box and Andersen
the permutation test was implicitly treated as a gold standard against which the F
test was to be evaluated.
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Fig.3.12 A2x2
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3.26 Leslie and Small Contingency Tables

In 1955 Patrick Leslie proposed a new method for calculating the exact probability
value of a 2 x 2 contingency table that was based on ordinary binomial coefficients,
which could easily be obtained from Pascal’s triangle [821].

P.H. Leslie

Patrick Holt Leslie, known to his family and friends as “George,” was
educated at Westminster School and Christ Church College, University of
Oxford, where he obtained an honors degree in physiology in 1921, but was
prevented from pursuing a medical degree due to a serious lung disease.
After several years of research in bacteriology in the School of Pathology
at the University of Oxford, his remarkable flair for mathematics came to
be recognized and at age 35 he turned to statistical theory and population
dynamics with the Bureau of Animal Population. He continued that work
from 1935 until his retirement from the Bureau in 1967. Later in life, Leslie
received a D.Sc. from the University of Oxford based on the published results
of his various research projects. Born with the century, Patrick Holt Leslie
died in June 1972 at the age of 72 [23,43,298, p. 18].

In 1955 Leslie published a short paper of only one-and-a-half folio pages on “a
simple method of calculating the exact probability in 2 x 2 contingency tables with
small marginal totals” [821]. A 2 x 2 contingency table in Leslie’s notation is given
in Fig.3.12 where N denotes the total number of observations and the marginal
frequency totals fulfill

ny N —ny
na <N —ny, ng <N—np, ng <ny, a, = ,and b, = ;
X ng—x
then
np
N!
C = ab, = ————— .
x2=(:) T }13! (N—HB)!

Calculation of the exact hypergeometric one-tailed cumulative probability for
the appropriate tail of the distribution is then easily obtained from a, and
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Fig. 3.13 Example 2 X 2

contingency table with 5 2 ‘ 7
N = 16 cases 1 8 9
6 10 | 16
Fig. 3.14 Binomial = an b auba
coefficients for n 4 = 7 with
ay,x =0,...,npand b, 0 1 84 84
x=ng,...,0 1 7 126 882
2 21 126 2,646
3 35 84 2,940
4 35 36 1,260
5 21 9 189
6 7 1 7
by, x =0,...,np. Once the appropriate tail is determined, the sum of the a,b,

products for w < x for the left tail or w > x for the right tail are

1< 1 &
C Wz:;)aWbW for the left tail , or C W;C ab,, for the right tail ,
yielding a one-tailed exact cumulative probability value.

Consider a simple example withny = 7, ng = 6, N = 16, and x = 5; the
completed 2 x 2 contingency table is shown in Fig. 3.13. The essential values are
the binomial coefficients for n4 = 7, constituting a,, x = 0,...,np, and in reverse
order the binomial coefficients for N —n4 = 9, constituting b,, x = ng,...,0, as
given in Fig. 3.14. The required binomial coefficients can easily be obtained from
the first n + 1 terms of the expanded binomial series,

n nmn—-1) nn-1)mn-2) n! "\ (n
14+ — e — = =2".
+1!+ 2! + 3! + +n! ; i

Also, the required binomial coefficients can be obtained by enumerating Pascal’s

triangle up to the required marginal frequency total. For reference, Table 3.11
displays Pascal’s triangle containing the requisite binomial coefficients for n =
ng =7andn = N —ny = 9. To be faithful to Pascal, Fig. 3.15 shows Pascal’s
arithmetical triangle as he actually laid it out in Traité du triangle arithmétique in
1665 [399, Frontispiece].55

55 As noted by Edwards [399, p. x], it was Pierre Raymond de Montmort who, in 1708, first attached
the name of Pascal to the combinatorial triangle; however, he changed the form to a staggered
version [334]. Then, in his Miscellanea Analytica of 1730, Abraham de Moivre christened Pascal’s
original triangle “Triangulum Arithmeticum PASCALIANUM.”
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Table 3.11 Pascal’s triangle forn = 0, ..., 9

Binomial coefficients

n 1 2 3 4 5 6 7 8 9 10
0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

Fig. 3.15 Pascal’s
arithmetical triangle as
originally published in 1665

Pascal’s triangle
1 1 1 1

[399, Frontispiece] 3 4 5
6 10
10

U W N =

el e

The sum of the a, b, product column in Fig.3.14 is

np
C=) dab,=84+882+--+7=8008,
x=0
and since the observed cell frequency of x = 5 in the cell with the smallest
expectation is greater than the expectation given by (7 x 6)/16 = 2.625, x = 5 lies
in the right tail of the distribution. Thus a,b, forn = 5andn = 6,is 18947 = 196
and the one-tailed exact cumulative probability value is

1 & 1
ol Z awbh, = So0g |96 = 0.0245.

W=Xx

3.27 A Two-Sample Rank Test for Dispersion

Wilcoxon in 1945, Festinger in 1946, Mann and Whitney in 1947, Haldane and
Smith in 1948, and van der Reyden in 1952 had developed two-sample rank-
sum tests wherein the sum of the ranks of one of the samples was used in a
test of hypothesis that the two samples came from the same population, i.e., the
hypothesis of the equivalence of the two distribution functions [427,880,1391,1441,
1453]. Such tests are sensitive to possible differences in location between the two
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distribution functions. In the 1950s, two non-parametric tests were published for the
equivalence of parameters of dispersion, both assuming that the location parameters
were equal and both yielding tables of probability values. The first of the published
papers was by Sidney Rosenbaum in 1953 and the second was by Anant Kamat in
1956.

3.27.1 Rosenbaum’s Rank Test for Dispersion

In 1953 S. Rosenbaum proposed a rank test for the equivalence of parameters of
dispersion, assuming that the location parameters (mean or median) were equal
[1193].

S. Rosenbaum

Sidney Rosenbaum was born in London in 1918 and educated at the Uni-
versity of Cambridge. Rosenbaum received an emergency commission in the
Royal Regiment of Artillery in 1943 and 2 years later became a temporary
Captain. From 1951 to 1963 Rosenbaum served as the Principal Scientific
Officer, Army Medical Statistics Branch, War Office, and during that time he
also worked on his doctorate, earning his Ph.D. in Medical Statistics at the
London School of Hygiene & Tropical Medicine in 1960 [615]. He became
the Chief Statistician at the Department of the Treasury and transferred to
the Cabinet Office before his final appointment as Director of Statistics
and Operation Research at the Civil Service College in 1972 [24]. After
retirement, Rosenbaum worked as a consultant to the Department of Health
and Social Security (DHSS) and the Ministry of Technology. Rosenbaum was
one of the longest-serving Fellows of the Royal Statistical Society, having
been elected in 1948. He was elected a Fellow of the Royal Society of
Medicine in 1956. Sidney Rosenbaum passed away in March of 2013 at the
age of 94 [24].

To illustrate the Rosenbaum rank test for dispersion, consider a sample of n
points and a second sample of m points from a population with a continuous
distribution function. As Rosenbaum noted, the probability that r points of the
sample of m will lie outside the end values of the sample of n is given by

m! r+Dmn+m—r—2)!

P,.:n(n—l)(m_r)! x (n + m)!

:n(71—1)<m)B(71 +m—-1—-rr+2),
r

where B is the complete beta function.
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Then, for ro < m,

ro ro
ZP, = Zn(n— 1)(m)B(n+m—1—r, r+2)
r

r=0 r=0
is the probability that the value of r is not greater than ry. As was usual during this
time, traditional fixed levels of significance took precedence over exact probability
values. Thus, Rosenbaum fixed a probability level ¢ and arrived at an ry such
that

ro—1 ro
E P <e< E P,
r=0 r=0

Rosenbaum provided tables of r = ry + 1 for ¢ = 0.95 and 0.99 over the range
n=2,....,50and m = 2,...,50. The tables give the probability values, less than
0.05 and 0.01, that r or more points of a sample of size m lie outside the extreme
values of a sample of size n if the samples are drawn from the same population,
whatever its distribution [1193, pp. 665, 667].

3.27.2 Kamat’s Rank Test for Dispersion

Motivated by Rosenbaum’s 1953 article, in 1956 A.R. Kamat proposed an alter-
native rank test for the equivalence of parameters of dispersion, assuming that the
location parameters were equal [707].

A.R. Kamat

Anant Raoji Kamat was born in 1912 and completed his early education
in the Ratnagiri district of Maharashtra. Kamat was an exceptional student,
entering the University of Bombay (Mumbai) in 1929 where he received
his undergraduate and M.Sc. degrees. In 1953, Kamat earned his Ph.D.
in mathematical statistics at the University of London. Kamat was drawn
to political activism, but also worked as an academic, teaching courses in
mathematics and statistics. A gifted social scientist, Kamat joined the Gokhale
Institute of Politics and Economics, University of Poona (Pune), in 1959,
retiring from there as Joint Director in 1974. After his retirement, Kamat
received a fellowship to the Indian Council of Social Science Research to
continue to work on issues of education. Anant Raoji Kamat passed away on
9 July 1983 at the age of 71 [1019].

To illustrate Kamat’s rank test for dispersion, consider two samples x;, i =
I,...,n,and y;, j = 1,...,m, with m > n. Pool and rank the measurements
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in order and let R, and R, denote the range of ranks of x and y, respectively. The
test statistic proposed by Kamat was

Dn,m =R, — R, +m,

where D, ,, can take values 0, 1,...,m + n. For example, if n = 4 with ranks
{2, 4, 6,8} and m = 5 with ranks {1, 3,5,7,9},then R, = R, = 8—-2 = 6,
Ry =Rs=9—-1=8,and D,,, = D45 = 6 —8+ 5 = 3. Large and small
values of D, ,, indicate possible divergence from the hypothesis that the parameters
of dispersion of the populations from which the samples were drawn are equal
[707, p. 377]. Kamat provided a table of percentage points of D, ,, based on exact
probability values for m + n < 20 with ¢ = 0.05, 0.025, 0.005, and 0.001.

The technique used by Kamat to generate the permutation distribution of D,, ,,
was based on simple combinatorial rules and is worth explaining in some detail. The
total number of ways that the m 4 n ranks can be arranged is given by

[27)

thus providing the total number of values of D, ,,. However, as Kamat explained,
the total number of ways can be constructed in another manner, from four separate
procedures:
@ R,=n—-1;R,=m—1;D,,, =n.

This result can be achieved in only two ways.

® R,=n—-14+1,i=0,....m—L;R,=m—1+n;D,,, =1.
This result can be achieved in

(m—l—i)(n :i;z) ways . (3.15)

© Ry=n—14+mRy=m—1+j,j=0,....n—1;Dypy=n—m-—j.
By symmetry, this result can be achieved in

(n—1 —j)(m +J _2) ways . (3.16)
m—2

DR, =n—-14+i,i =0,....m—1; Ry, =m—-1+j,j=0,....,.n—1;
Dyyy=n+i—j.
This result can be achieved in

S
2(”“,]1 )Ways, (3.17)
i

wherei =1,....m—1landj =1,...,n—1.
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= 3 at a time with

7 ranks considered n

Table 3.12 Combinations of m +n = 4 + 3

associated R,, R,,, and D, ,, values

Sequence

Ry D3y

R;

Number

4567

2
6

1234
1567
1467
1367
1267
1457
1357
1257
1347
1247
1237

3456

4
4

6
6
6
6
6
6
7
7
7
7
7
4
4

4
4

10
11
12
13
14
15
16
17
18
19
20
21

2

2456

1
1
1
1

2356
2346
2345
3567
2567
3467
2467

4

6
2

1

2

1
1

2367
3457

4

22
23

6
6
6
6

2

1 2457

1

24
25

2357
2347
1456
1356
1256
1 346
1246
1236
1345
1245
1235

4

26
27

4
4

28

29
30

31

32
33

6
6
6

34
35

3 and m = 4 measurements,
pooled and ranked from 1 tom +n = 4 4 3 = 7. Table 3.12 lists the 35 possible
sequences, divided into n = 3 and m = 4 ranks, with values for R3, R4, and D3 4.
Sequences 1 and 2 in Table 3.12 are the two ways possible under (a).

To illustrate Kamat’s technique, consider n
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Sequences 3 through 12 in Table 3.12 are the ten ways possible under (b), i.e.,
following Eq. (3.15) fori = 0,

340-2 1
(4-1—0)( I )=(3)(1):3ways;
3+1-2 2
(4-1-1)( :_2 )=(2)<1)=4way8;
3+2-2 3
(4—1—2>< I )=(1><1)=3ways;

(4-1 —3)(34;352) = (0)(‘11) = 0 ways .

Sequences 13 through 17 in Table 3.12 are the five ways possible under (c), i.e.,
following Eq. (3.16) for j = 0,

(3—1—0)(41352) - (2)(2) = 2 ways :

(3-1-1)(4;2;2) = (1)(2) = 3 ways ;

3-1 —2)(41552) = (0)(;) = 0 ways .

Sequences 18 through 35 in Table 3.12 are the 18 ways possible under (d), i.e.,
following Eq. (3.17) fori = 1 and j = 1,

1+1-2 0
(2)< T—l ) = (2)(0) = 2 ways ;
(2)(1 ;sz) - (2)(1) = 2 ways

fori =1,

fori =2,

and fori = 3,

for j =1,

and for j = 2,

fori =1land j =2,
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fori =2and j =1,

24+1-2 1
(2)( T—l =(2) (O) = 2 ways
fori =2and j =2,
242-2 2
(2)( 5_1 ) (2)(1) = 4 ways
fori =3and j =1,
34+2-2 2
(2)< 1 ) = (O) = 2 ways
andfori =3 and j =2,
34+2-2
(2)< ’ ): <)=6ways.

Kamat then showed that by combining these four cases, (a)—(d), the probability
of D, ,, would be given by

Jj=1

1 “ - 2j -2
P{Dyw} = 124, Tt
<m+n) » r—n+j—1

n
‘ —r42i-2 -2
+ 2B, " r+_l +C(m—1-r) nEr
P n—r+i-—1 n—2
2 2
+D,(r—m—1)(m+n " )+2E ,
m—2
where
1 ifr<m, 1 ifr>m, 1 ifr<m,
A = B, = C, =
0 otherwise , 0 otherwise , 0 otherwise ,
andr=n+i—j.
1 ifr>m, 1 ifr=m,
Dr: Er:

0 otherwise , 0 otherwise,
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Exhibiting some frustration with calculation difficulties in the absence of
high-speed computers, Kamat noted that calculation of percentage points from
the exact distribution becomes impractical when the sequence becomes large
[707, p. 379]. The remainder of Kamat’s article was devoted to finding a suitable
approximation based on the first three moments of D, ,,. Finally, Kamat noted that
when one sample (say, the m sample) is wholly included within the extreme values
of the other sample, then the Rosenbaum test statistic 7 and the Kamat test statistic
D, ,» are connected by the relation D, ,, = m + r.

3.28 Dwass and Modified Randomization Tests

Meyer Dwass is often credited with introducing resampling procedures for permu-
tation tests, which he termed “modified permutation tests” [1431].

M. Dwass

Meyer Dwass earned his B.A. degree in mathematics from George Wash-
ington University in 1948, his M.A. degree in mathematical statistics from
Columbia University in 1949, and his Ph.D. in statistics from the Univer-
sity of North Carolina at Chapel Hill in 1952 under Wassily Hoeffding.
Dwass immediately took a position as Assistant Professor of Mathematics
at Northwestern University where he remained for the rest of his academic
career, with the exception of a brief time spent at the University of Minnesota
from 1961 to 1962. Dwass was Chair of the Department of Mathematics at
Northwestern from 1978 to 1981 and established the Department of Statistics
at Northwestern in 1986. Meyer Dwass retired from Northwestern in 1989
and passed away on 15 July 1996 at the age of 73 [562, 1485].

While researchers prior to Dwass certainly utilized resampling to provide
approximate probability values, such as Eden and Yates in their 1933 investigation
into height measurements of Yeoman II wheat shoots in which they drew a sample
of 1,000 out of a possible 4,586,471,424 permutations (q.v. page 39) [379], Dwass
provided the first rigorous investigation of the precision of resampling probability
approximations. In 1957 Dwass published an article on modified randomization
tests for non-parametric hypotheses [368], which relied heavily on the theoretical
contributions of Lehmann and Stein’s 1949 article [818]. Dwass noted that a
practical shortcoming of exact permutation procedures was the great difficulty
in enumerating all the possible arrangements of the observed data. To illustrate,
consider as Dwass did, two samples of sizes m and n. Dwass observed that even
after elimination of those permutations yielding the same value of the statistic, the



194 3 1940-1959

number of permutations could still be prohibitively large.’® Thus, for sample sizes
m = n = 5, there are

(m+n)! = (5+ 5)! = 10! = 3,628,800

permutations of the observed data to be considered, but only

|
m+n _ 545 _ 10! _ 757
m 5 515!

combinations of the observed data to be examined. However, for sample sizes as
small as m = n = 10, there are still

10 + 10 201
mam) (PO 2 22 54756
m 10 101 10!

combinations of the observed data to be examined.

Dwass then proposed “the most obvious procedure” of examining a random
sample drawn without replacement from all possible permutations and “making the
decision to accept or reject the null hypothesis on the basis of those permutations
only” [368, p. 182], as suggested by Eden and Yates much earlier [379]. Dwass
determined bounds for the ratio of the power of the original procedure, in this case
a two-sample test, to the resampling procedure and provided a table containing
numerical values of the bounds. Note that in this table Dwass did not compare
bounds from exact and resampling permutation procedures, but unfortunately
compared bounds from a resampling probability procedure with those from a normal
distribution. Letting s denote the number of resamplings, Dwass made computations
for only those values of s such that o(s + 1) was an integer. Thus the table provided
bounds for the ratio of the power of a two-sample test with a resampling test for
values of s = 19, 39, 49, 59,79, 99, 119, 149, 199, 299, 499, and 999 and for o« =
0.01, 0.02, 0.05, and 0.10. Examination of the table by Dwass reveals reasonably
close agreement between the resampling approximate probability values and the
approximate probability values obtained from a normal distribution. For example,
let s = 99, then for « = 0.01 the resampling and normal approximate bounds are
0.634 and 0.618, respectively; for o« = 0.02 the resampling and normal approximate
bounds values are 0.732 and 0.726, respectively; for « = 0.05 the resampling
and normal approximate bounds are 0.829 and 0.827, respectively; and for ¢ =
0.10 the resampling and normal approximate bounds are both 0.881 and 0.881
[368, p. 182].

3 As Box and Andersen noted in 1955, although there are (m + n)! possible arrangements of
a sample, there are only (m + n)!/(m!n!) arrangements that result in possibly different mean
differences [193, p. 7].
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The main point made by Dwass was that instead of basing a statistical decision
on all possible permutations of the observations, the statistical test could be based
instead on a smaller number of permutations randomly selected from the set of
all permutations and the power of the test would be “close” to that of the most
powerful non-parametric test. Dwass observed that while it is true that s has to be
very large, the optimum exact test is usually completely impossible. He posited that
if m = n = 20, then

m+n 20 4+ 20 40! 1
= = > 10
m 20 20! 20!

(actually, 137,846,528,820) and if a machine existed that could check 10 permuta-
tions per second, the job would run something on the order of 1,000 years [368, p.
185].%7

Monte Carlo Methods

Stanislaw Marcin Ulam, Polish refugee and celebrated mathematician who
worked on the Manhattan Project at the Los Alamos National Laboratory in
Los Alamos, New Mexico, spent hours playing games of Canfield solitaire
while recuperating from encephalitis in 1946. In so doing, he speculated
about the odds of any randomly dealt hand. He filled page after page with
probabilistic equations, but the problem proved intractable and he decided it
was better to play a hundred random hands and tabulate what percentage of
the time he won [372]. Unlike an experiment, the results were not certain,
but the probability was sure to be very close. In later years, Ulam explained
that the approach was named “Monte Carlo” in memory of an uncle who
liked to gamble on the “well-known generator of random integers...in the
Mediterranean principality [of Monte Carlo]” [712, pp. 109—-111]. The term
“Monte Carlo method” was coined in 1946 by Ulam, John von Neumann, and
Nicholas Metropolis while they were working on nuclear weapons projects
at the Los Alamos National Laboratory [927, 1419]. However, George Dyson
attributes the coining of the term “Monte Carlo” to Nicholas Metropolis [370,
p- 192].

The Monte Carlo method was quickly brought to bear on problems
pertaining to thermonuclear as well as fission devices, and in 1948 Ulam
reported to the Atomic Energy Commission about the application of the

(continued)

STPresently, resampling permutation routines, which are essentially sampling without replacement
routines, generate hundreds of thousands of permutations per second when powered by an efficient
uniform pseudorandom number generator (PRNG) such as the Mersenne Twister (MT) or the
SIMD-oriented Fast Mersenne Twister (SFMT) on high-speed work stations [905, 1214].
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Monte Carlo method for such things as cosmic ray showers and the study of
the Hamilton Jacobi partial differential equation [372]. By 1949, applications
of the Monte Carlo method discussed in the literature were many and varied
and in that year a symposium on the Monte Carlo method—sponsored by the
RAND Corporation, the National Bureau of Standards’ Institute for Numer-
ical Analysis, and the Oak Ridge Laboratory—was held at the University
of California, Los Angeles [370, p. 198]. Later, a second symposium was
organized by members of the Statistical Laboratory at the University of
Florida in Gainesville [654, 926]. By 1987 it was reported that 10 billion
uniform pseudorandom numbers were being generated on computers around
the world for Monte Carlo solutions to problems that Ulam first dreamed
about 40 years previously [359].

While Dwass is usually credited with the introduction of Monte Carlo resampling
procedures for permutation tests, he was not the first to develop such procedures.
Today, Monte Carlo methods in physics are used in the design of nuclear reactors,
criticality analysis, oil well logging, health-physics problems, determinations of
radiation doses, spacecraft radiation modeling, radiation damage studies, and
research on magnetic fusion [359]. In addition, Monte Carlo methods are popular
in statistics, economics, chemistry, astronomy, engineering, and even stock market
analysis. For an extensive survey of Monte Carlo methods, including a bibliography
of some 251 references, see a 1970 article on “A retrospective and prospective
survey of the Monte Carlo method” by John Halton in SIAM Review [579].

Finally, in the context of the rank-order tests so common in the 1940s and 1950s,
and on which Dwass did his dissertation, Dwass posed the following question: “For
what value of s is the modified [resampling] test already better than some given
rank order test, or in particular, than the rank order test which is best against the
alternative under consideration?>% [368, p. 185].

3.29 Looking Ahead

Permutation methods are by their very nature computationally-intensive and per-
mutation methods in the period between 1940 and 1959 were characterized by
researchers expressing frustration over difficulties in computing a sufficient number
of permutations of the observed data in a reasonable time. To compensate for
the difficulty, many researchers turned to rank-order statistics, which were much
more amenable to permutation methods. Thus, this period was distinguished by a
plethora of rank-order tests. Examples included the Kendall rank-order correlation
coefficient [728, 734], the Friedman two-way analysis of variance for ranks [485,

S8Emphasis in the original.
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486], the Wilcoxon two-sample rank-sum test [1453], the Festinger two-sample
rank-sum test [427], the Mann—Whitney two sample rank-sum test [880], and the
Kruskal-Wallis one-way analysis of variance rank test [779]. This led ipso facto to
the publication of numerous tables of exact probability values for rank-order tests.
Examples include tables for testing randomness by Swed and Eisenhart [1337]; for
2 x 2 contingency tables by Finney [434]; for the Spearman rank-order correlation
coefficient by David, Kendall, and Stuart [328]; for the Wilcoxon—-Mann—Whitney
two-sample rank-sum test by Wilcoxon [1453, 1454], White [1441], and Fix and
Hodges [465]; and for the two-sample rank-sum Mann—Whitney statistic by van der
Reyden [1391] and Auble [40]. The end of the period saw an emphasis on the power
of permutation tests compared with their conventional parametric counterparts by
Hoeffding [636], Silvey [1275,1276], and Box and Andersen [193], and the formal
introduction of resampling techniques by Dwass in 1957 [368].

The development of computing continued unabated in the 1960s and 1970s
with increases in memory, speed, and availability to researchers. New computer
programming languages, interpreters, and operating systems were released in this
period and the personal computer became generally available. The advent of
accessible and efficient computers by researchers in the 1960s meant that the
next two decades witnessed a proliferation of computer routines and algorithms
designed to generate all permutation sequences of observed data sets, random
permutation sequences of observed data sets, and permutations of cell frequencies
in contingency tables. Many of these routines were designed by computer scientists
and not by statisticians, but statisticians applied them to statistical problems such
as permutation versions of paired and unpaired ¢ and F tests, as well as various
analyses of cross-classification contingency tables.

In addition, this period saw the introduction of a number of permutation tests,
including the Siegel-Tukey test for relative spread in 1960 [1273]; the Mielke—
Siddiqui matrix occupancy test in 1965 [988]; the Baker—Collier analysis of variance
F test in 1966 [51,52]; the Fisher—Yates exact probability test by Ghent in 1972
[510]; multi-response permutation procedures by Mielke, Berry, and Johnson in
1976 [971]; the Fisher exact probability test by Soms and the Baker—Hubert test
of ordering theory in 1977 [53, 1296]; the Agresti-Wackerly—Boyett test for r x ¢
contingency tables in 1979 [8]; and a variety of permutation-generating algorithms
by Page [1085], Boothroyd [180, 181], Bratley [206], Ord-Smith [1065], Phillips
[1124], and Langdon [799] in 1967; Ord-Smith in 1968 [1067]; Chase in 1970
[247,248]; Liu and Tang in 1973 [837]; Dershowitz in 1975 [344]; Rohl and Ives in
1976 [675,1183]; Rohl in 1978 [1184]; and Payne and Ives in 1979 [1091].



Permutation methods were still not completely accepted in the early 1960s, even
by some prominent and influential statisticians. The idea that permutation statistical
tests constituted a standard against which conventional normal-theory tests could be
evaluated continued to be questioned, and permutation tests were not regarded by
many as legitimate alternatives to normal-theory tests. Recall that Frank Yates joined
the Rothamsted Experimental Station in 1931, succeeding R.A. Fisher as the head
of the Statistical Laboratory when Fisher left Rothamsted in 1933 to assume the post
of Galton Professor of Eugenics at University College, London. R.A. Fisher passed
away in Adelaide, Australia, in 1962 and in 1963 in a memorial issue of Biometrics
commemorating the contributions of Fisher, Yates wrote that Fisher did not regard
the regular use of permutation tests as reasonable, remarking “unfortunately tests of
this nature, under the name of ‘non-parametric tests’, later came to have a certain
vogue, which is not yet ended” [1474, p. 318]. Later, Yates reaffirmed his position,
arguing that Fisher did not regard the regular use of randomization and other non-
parametric tests as reasonable [1475, p. 782], citing Fisher from the last section of
Chap. Il in The Design of Experiments as saying:

[permutation tests] were in no sense put forward to supersede the common and expeditious
tests based on the Gaussian theory of errors. The utility of such non-parametric tests consists
in their being able to supply confirmation whenever, rightly or, more often, wrongly, it is
suspected that the simpler tests have been appreciably injured by departures from normality
[451, p. 48].

In defense of normal-theory tests, in 1964 Yates pointed out that in very small
samples, the level of significance provided by a permutation test often will not
agree with the level of significance provided by the corresponding normal-theory
test, even on many samples of values from a normally-distributed population, and
argued that “disagreement between the two tests.. . .1is not in itself evidence that the
normal-theory test is inappropriate” [1474, p. 318]. An alternative point of view
was provided in 1937 when Bernard Welch (q.v. page 74) published a paper on the
use of Fisher’s variance-ratio z test in randomized block and Latin square designs
in which he compared permutation and normal-theory procedures, concluding
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that the permutation procedure should be followed whenever the permutation and
normal-theory tests yielded different results [1428]. In 1963 Yates addressed this
recommendation by Welch, commenting: “[f]ortunately practical experimenters
have never taken this suggestion seriously” [1474, p. 318].!

In spite of the resistance to permutation statistical methods, work continued in
the field and much progress was recorded between 1960 and 1979. Interestingly, an
area that contributed significantly to the growth of permutation tests during this era
was not statistical, but rather occurred in an area only indirectly related to statistics
at that time: computer science.

4.1 Overview of This Chapter

As is readily apparent, permutation statistical methods are computationally-
intensive and ultimately depend on the efficient generation of permutation
sequences. In the case of exact permutation tests, all possible permutation sequences
are generated, but for Monte Carlo (resampling) permutation tests only a random
sample of permutation sequences is required. Although the first explicit description
of computer algorithms for the generation of permutation sequences was given by
Tompkins in 1956 [1364], many algorithms were presented for the generation of
permutation sequences in the period from 1960 to 1979, each touting increased
speed, efficiency, or both.

Early in this period in 1961, C.R. Rao published a non-computer procedure for
the generation of pseudorandom permutation sequences using a table of uniform
pseudorandom numbers [1154]. Following the publication by Rao, many computer-
based algorithms for permutation sequences were developed. Among them were
sequence algorithms published by Coveyou and Sullivan [290], Wells [1435],
Howell [658], Trotter [1372], Peck and Schrack [1112], Johnson [693], Heap [608],
Durstenfeld [367], Sag [1213], Boothroyd [178, 180, 181], Bratley [206], Langdon
[799], Robinson [1177], Ord-Smith [1065, 1067], Chase [247, 248], Dershowitz
[344], Fike [432], Ives [675], Woodall [1469], Rohl [1184], and Payne and Ives
[1091]. In addition, Ord-Smith in 1970 and 1971 [1068, 1069], Rabinowitz and
Berenson in 1974 [1149], Sedgewick in 1977 [1242], and Lipski in 1979 [832]
provided extensive summaries of the literature on the generation of permutation
sequences in this period.

While computer algorithms to generate permutation sequences were important,
other researchers turned their attention to computing exact probability values for
established statistical tests. Gregory [553] and Tritchler and Pedrini [1371], for
example, confined their applications to the Fisher exact probability test for 2 x 2
contingency tables, while Agresti and Wackerly [7], Agresti, Wackerly, and Boyett
[8], Fleishman [466], Howell and Gordon [657], and March [890] attempted to

! Authors’ note: it is abundantly evident from reading the many publications of Frank Yates that
although he contributed significantly to the literature of permutation methods, he considered
normal-theory tests as sacrosanct.
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extend the Fisher hypergeometric procedure to contingency tables that were larger
than 2 x 2, and other researchers applied permutation procedures to, for example, the
Pitman test for two independent samples [30], the F test for completely randomized
designs [52], the F test for randomized block designs [268], the chi-squared test
for goodness of fit [1150], the Kruskal-Wallis analysis of variance rank test [779],
and alternative choices of rank scores [932, 944]. On the topic of choices of
rank scores, in 1972 Mielke investigated the asymptotic behavior of two-sample
linear tests associated with infinite classes of distinct rank-order statistic functions
[932,933,987]. The study was motivated by the asymptotic behavior and tied-value
moment adjustments for linear tests based on specific sums of distinct, squared,
rank-order statistic functions; see also papers by Taha in 1964 [1339], Mielke [931]
and Grant and Mielke in 1967 [545], and Duran and Mielke in 1968 [366]. Finally,
in 1969 Edgington provided permutation procedures and examples for an extensive
inventory of statistical tests [391, pp. 93—159], and 10 years later Boyett published
an important resampling algorithm for r x ¢ contingency tables [199].

In 1976 Mielke, Berry, and Johnson [971] introduced multi-response permutation
procedures (MRPP), techniques designed especially for data-dependent permutation
methods per se, in contrast to permutation alternatives to standard statistical tests.
Based on ordinary Euclidean distances rather than the squared Euclidean distances
of conventional tests, MRPP provided highly robust, distribution-free, Euclidean-
distance-based permutation alternatives for analyzing classical experimental designs
that normally employed such established tests as analysis of variance (ANOVA) or
multivariate analysis of variance (MANOVA) [940,978].

During the period from 1960 to 1979, researchers were focused on defining effi-
cient methods for calculating probability values using existing computing machin-
ery. Computing inefficiencies were largely due to inadequate numerical algorithms,
low computer clock speeds, small and slow core memories, and inefficient data
transfers. Mielke, Berry, and Johnson [971] and Mielke [936] pioneered moment-
approximation permutation procedures implemented with the use of symmetric
means, introduced by Tukey in 1950 [1375], and provided the exact first three
moments of a continuous distribution that approximated the underlying discrete
permutation distribution. Since asymptotic invariance procedures did not exist for
many cases of MRPP, the three-moment approximation was essential for most cases
when no asymptotic invariance procedure, such as normality, existed [220]. The
moment-approximation permutation procedure immediately eliminated many of the
computing difficulties that had plagued the computation of permutation probability
values, provided an approximation to the underlying permutation distribution, and
circumvented the extensive calculations of an exact permutation approach.

4.2 Development of Computing
The invention and development of the modern computer is one of the seminal events

of humankind, ranking alongside the inventions of movable type and mechanical
timepieces in advancing civilization. The ability to compute and to search for



202 4 1960-1979

information accurately and efficiently was a major driver in transforming the
developed world from an inefficient, error-plagued, uninformed society to one that
was efficient, knowledgeable, and technologically sophisticated.

In the early years, computers allowed computations to be done faster and more
precisely. Thus, tasks that formerly required several hours took only minutes on
an early computer, such as ENIAC, EDSAC, MANIAC, or the Harvard Mark [—a
quantitative difference in that complex problems could be solved faster, efficiently,
and more accurately. Later, computers could compute in a few seconds what would
formerly have taken 100 people 100 years to calculate. Thus, problems could be
solved that could previously be only imagined—a qualitative difference in that
problems that were impossible to solve could now be worked out in a few minutes.
As Kenneth Appel was famously quoted as saying, “[w]ithout computers, we would
be stuck only proving theorems that have short proofs” [1074, p. A19].2

Miniaturization of computer components and the development of the desktop
computer made the computer more portable and more accessible to the average
citizen. Along with accessibility and convenience, miniaturization led to greater
precision. Today, high-speed computing is well within an individual’s grasp with
desktops, laptops, tablets, notebooks, netbooks, pads, and pods widely available at
a reasonable cost.

Given the computationally-intensive nature of permutation methods, it took the
development of high-speed computers for permutation-based statistical tests to
achieve their potential. Thus, the parallel development of permutation tests and
computing is an essential part of the chronology of permutation methods [695].
While this is not the proper place for a history of computing, some notable
highlights of the development of computing between 1960 and 1979 are important
for understanding the advancement of permutation statistical methods, especially
those related to computing speed.

As Thisted and Velleman noted in 1992, statistical practice has long combined
mathematical theory, methodological research, and applications to scientific prob-
lems [1353, p. 41]. Over time, as computers became more powerful and more
accessible to researchers, they came to play an increasingly important role in all
three areas. Further advances in computational power motivated the development
of new statistical methods, such as permutation methods. Thisted and Velleman
expressed it very succinctly when they wrote in 1992:

[c]omputational advances have changed the face of statistical practice by transforming what
we do and by challenging how we think about scientific problems [1353, p. 41].

In the 1940s, computing was called “automatic computation” and in the 1950s,
“information processing.” In the 1960s, computing acquired the name “computer
science” in the United States and “informatics” in the United Kingdom. By the
1980s, computing was comprised of a complex of related fields, including computer

2Kenneth Appel and Wolfgang Haken used an IBM 370 mainframe at the University of Illinois to
solve the four-color map problem in 1977.
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science, informatics, computer engineering, software engineering, numerical
analysis, and information technology. As noted by P.J. Denning, by 1990 the term
“computing” had become the standard for referring to this core group of disciplines
[343].

The leaders of the field struggled with the essential identity of computing
from the very beginning. In the 1960s it was argued that computing was unique
among all the sciences in its study of information processes. In the early 1970s,
computing came to stand for algorithmic analysis and the catch phrase at this time
was “computer science equals programming.” In the late 1970s, computing was
redefined as the automation of information processes. Finally, in the 1980s, the view
was adopted that computing was not only a tool for science, but a new method of
thought and discovery in science [343]. For the most part, permutation statistical
methods developed by subscribing to this latter view.

Prior to 1960 computers were large, slow, expensive, and in large part their use
was restricted to military and industrial applications. For example, consider the
SAGE (Semi-Automatic Ground Environment) computer system that was initiated
in the late 1950s, became operational in 1963, and served until 1983. The SAGE
system used 30 large mainframe Whirlwind II computers built by IBM to coordinate
the United States air defense systems [370, pp. 310,330]. Each Whirlwind II
computer was 50 ft wide and 150 ft long, weighed 250 tons, and contained 60,000
vacuum tubes.’ The SAGE system was the largest, heaviest, and most expensive
computer system ever built, yet the computing power of each Whirlwind II computer
was less than that of a single netbook computer of today [1243].

No account detailing the development of computing in this period would be
complete without mention of Bill Joy, the co-founder of Sun Microsystems, the
author of the vi editor, and the developer of csh, the C shell for UNIX platforms.

Bill Joy

William Nelson (Bill) Joy Jr. graduated from high school at age 15 in Farm-
ington Hills, Michigan, and entered the University of Michigan, graduating
with a B.S. degree in computer science in 1975. As late as the 1960s,
computers were the size of small rooms and were quite rare. What is more,
even if you could find a computer it was difficult to gain access to it, and if you
could gain access, renting time on it could cost several thousands of dollars
an hour [515,702, 1394].

Programming, at the time, meant working with cardboard punch cards,
with many programs consisting of hundreds, sometimes thousands, of
cards. Since mainframe computers could handle only one task at a time

(continued)

3The Audion vacuum tube was invented by electrical engineer Lee de Forest and patented on 25
October 1906.
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(batch-processing), the computer operator scheduled an “appointment” for
a specified job and it might take hours, or even a day, to get a job run
and returned. The University of Michigan, however, was one of the first
universities in the world to switch from batch-processing to time-sharing. At
the time that Joy was there, the University of Michigan possessed sufficient
computing power that a hundred people could be logged on to the university
mainframe and programming simultaneously. The University of Michigan
Computer Center was in the North Campus where Joy lived. Joy had 24/7
access to the Computer Center and, through a bug in the Computer Center
software, Joy was able to exploit the system and program without incurring
any computing charges [515].

In 1975 Joy entered the University of California at Berkeley, graduating in
1979 with an M.S. degree in electrical engineering and computer science.
While at Berkeley, Joy updated the department’s UNIX operating system
and won a contract to adapt the Berkeley version of UNIX for a project
called “the Internet” from the United States Department of Defense Advanced
Research Projects Agency (DARPA). Joy’s development group adapted and
reinvented two networking protocols: TCP (Transmission Control Protocol)
and IP (Internet Protocol), and in 1976 Joy developed the vi editor for UNIX
platforms. In 1982 Joy joined Vinod Khosla, a graduate of Stanford Univer-
sity, Scott McNealy, and Andreas Bechtolsheim to found Sun Microsystems,
Incorporated, and to develop SUN (Stanford University Network) worksta-
tions. In 1991 Bill Joy relocated to Aspen, Colorado, where presently he
works on assorted projects for Sun Microsystems under the rubric Aspen
Smallworks, located high above Aspen in the shadows of Smuggler, Bell, and
Shadow Mountains [1021, pp. 325-326]. Joy retired from Sun Microsystems
as vice president of research and development on 9 September 2003.

As with Bill Joy, no account of the development of computing in this period
would be complete without mention of Bill Gates, who with his long-time friend
Paul Allen co-founded Microsoft, Incorporated, who also co-founded with his wife
Melinda French Gates the Bill & Melinda Gates Foundation to reduce inequities in
the United States and around the world, and who is the author of The Road Ahead
first published in 1995 [497] and Business @ the Speed of Thought first published in
1999 [498].

Bill Gates
William Henry (Bill) Gates III was born on 28 October 1955 in Seattle,
Washington. When Gates was 13, his parents removed him from Seattle’s
public schools and enrolled him in the seventh grade at Seattle’s Lakeside

(continued)
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School, an exclusive, all-boys, preparatory, private school that catered to
Seattle’s elite families located on 30 acres near the Jackson Park Golf Course
in north Seattle [515].*

In 1968, The Mother’s Club at Lakeside School raised and donated 3,000
dollars to purchase a computer terminal and computing time for the school;
actually, an Teletype ASR-33 (for Automatic Send and Receive), which was
a time-sharing terminal with a direct link to a computer in downtown Seattle;
actually, a GE-634 mainframe built by General Electric. It is striking that Bill
Joy got the early opportunity to learn programming on a time-share system as
a freshman at the University of Michigan in 1971, while Bill Gates learned
programming on a time-share system as an eighth-grade student at Lakeside
School in Seattle in 1968 [496].

Gates spent countless hours programming at Lakeside, then was able,
through the mother of another student at Lakeside, to acquire free computer
time at the Computer Center Corporation (C-Cubed) on weekends, where a
DEC PDP-10 resided. After C-Cubed went bankrupt, Gates found free com-
puter time at Information Sciences, Incorporated, in exchange for working
on software to automate company payrolls. As Gates once remarked, he had
better exposure to software development than anyone else at that time. In
the fall of 1973, Gates enrolled at Harvard University, having scored 1,590
out of a possible 1,600 on the College SAT test. It was at Harvard that
Gates shared a dormitory room with Steven Anthony (Steve) Ballmer, who
succeeded Gates as CEO of Microsoft in January of 2000. (On 23 August
2013, Ballmer announced his pending retirement as CEO of Microsoft.) In
1975, Gates dropped out of Harvard to found Micro-Soft (the hyphen was
dropped after 1 year) with Paul Gardner Allen, a long-time childhood friend
from Lakeside School who had dropped out of Washington State University in
1974 and moved to Boston to work for Honeywell as a computer programmer.
After a somewhat shaky beginning, Microsoft’s growth exploded between
1978 and 1981. In 1981 Gates and Allen incorporated Microsoft with Gates
as president and chairman of the board and Allen as executive vice-president.
In 1986, Gates took Microsoft public and in 2008 Gates transitioned out of a
day-to-day role in Microsoft to spend more time at the Bill & Melinda Gates
Foundation that was founded in 2000 [496, 515].

4The class of 1971 was Lakeside’s last as an all-boys school; it merged with St. Nicholas, an
all-girls school, to be co-educational that fall [13, p. 51].
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Paul Allen

Paul Gardner Allen was born on 21 January 1953 in Seattle, Washington. Like
Bill Gates, Allen attended Lakeside School, although he was two grades ahead
of Gates. And like Gates, it was on the ASR-33 that Allen leaned to program.
After graduation, Allen went to Washington State University in Pullman,
Washington, where he was a member of Phi Kappa Theta (PK®) fraternity.
In 1974 Allen left Washington State three semesters shy of graduating to join
Honeywell Corporation in Boston, Massachusetts, as a programmer. This put
him close to Gates, whom he persuaded to leave Harvard and found Microsoft.

Paul Allen was diagnosed with Hodgkin’s lymphoma in 1982. Although
the cancer was successfully treated, he did not return to Microsoft and in 2000
he resigned from the Microsoft Board of Directors. Presently Paul Allen, in
addition to his many business interests, is the owner of the Seattle Seahawks
of the National Football League (NFL) and the Portland Trailblazers of the
National Basketball Association (NBA). In 2011 Allen published Idea Man:
A Memoir by the Cofounder of Microsoft [13].

In the late 1960s and early 1970s, mainframe computers became widely available
to researchers at major research universities. In 1962 the LINC (Laboratory
INstrument Computer) began processing data in the Lincoln Laboratory at the
Massachusetts Institute of Technology to assist with biomedical research. The LINC
was a small, stored-program, digital, 12-bit, 2,048-word computer designed to
accept analog as well as digital inputs directly from experiments [1350]. In 1963
Douglas Engelbart invented the mouse in his research lab at the Stanford Research
Institute SRI and a patent was issued in 1967. In September of 1964 the Control Data
Corporation (CDC) introduced the first supercomputer, the CDC 6600, designed by
Seymour Roger Cray and James Edward Thornton in Chippewa Falls, Wisconsin.

In 1960 Kenneth Iverson and Adin Falkoff at IBM created APL (A Programming
Language) based on a non-conventional notational scheme that Iverson had created
in 1957 while a faculty member at Harvard University. APL is an interpretive
language based on a unique non-standard character set composed of symbols rather
than words,? and has only one recursive precedence rule: all operators have equal
precedence and all operators associate right to left.” The first personal computer
implementation of APL was on the Intel 8008-based MCM/70 (Micro Computer
Machines/70) personal computer in 1973.

In 1963 John George Kemeny (originally, Kemény Janos Gyorgy) and Thomas
Eugene Kurtz, both in the Mathematics Department of Dartmouth College in

5Some representative APL symbols are: [], [T}, 0, A, ®, and B
SFor examples of APL statistical programs, see [109, 110, 124,128, 132].

7 A unique feature of APL is that any value divided by itself is equal to one, including zero divided
by zero.
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Hanover, New Hampshire, developed the BASIC (Beginners All-purpose Symbolic
Instruction Code) computer language, which gave Dartmouth undergraduate stu-
dents easy access to computing.® In 1965 the PDP-8, made by Digital Equipment
Corporation (DEC), made its début and became the first microcomputer success;
price: $18,000. In 1966 Maurice George Kendall, commenting on electronic
computers, concluded that “for most practical purposes the out-of-core memory
storage . .. 1is unlimited” and projecting ahead said “the process and access times
of the next generation of computers will be reckoned in nano-seconds” [737, p. 1].

In 1969 the Department of Defense (DOD) established the first computer
network, ARPAnet, and in 1971 ARPAnet transmitted the first email message.9 In
the period between 1969 and 1973, Dennis MacAlistair Ritchie and Kenneth
Lane Thompson developed the UNIX operating system at Bell Laboratories (now,
Alcatel-Lucent) in Murray Hill, New Jersey. Originally written in assembly lan-
guage, the UNIX operating system was rewritten in C, a new general-purpose
computer programming language developed by Ritchie and Thompson for use with
the UNIX operating system. Subsequently, C was introduced to the public in 1978
with the publication of The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie. In 1975 Popular Electronics put the Altair 8800 computer kit on
its January cover and its maker, Micro Instrumentation Telemetry Systems (MITS),
was flooded with requests; memory was only 256 bytes.

Somewhat prior to the introduction of the C programming language in 1978, a
so-called “canned” Statistical Package for the Social Sciences (SPSS) was released
in 1968 by Norman H. Nie, Hadlai (Tex) Hull, and Dale H. Bent. Development of
SPSS began at Stanford University where Nie was a doctoral candidate in political
science, Bent was a doctoral candidate in operations research, and Hull was a
recent graduate of Stanford University with an MBA degree. SPSS incorporated
in 1975, establishing its headquarters in Chicago, Illinois, and was publicly traded
in August of 1993 [1422]. In 1976 another statistical package called Statistical
Analysis System, or SAS, was released by the SAS Institute. SAS had its birth
as a statistical analysis system in the late 1960s. SAS grew out of a project in the
Department of Experimental Statistics at North Carolina State University at Raleigh.
This project led to the formation of the SAS Institute in 1976 [1422]. SAS was
originally developed by Anthony J. Barr, James H. Goodnight, John P. Sall, and
Jane T. Helwig, in addition to a number of other early contributors. In the same year,
1976, the s programming language was developed at Bell Laboratories under the
direction of John Chambers and Trevor Hastie, along with Richard A. Becker, Alan
Wilks, and William S. Cleveland. S was written in C as a higher-level programming

8For a history of the development of the BASIC computing language, see the 1978 recollections of
Thomas Kurtz in the special issue of ACM SIGPLAN Notices on the history of programming [782].

9A precursor to the Internet, ARPAnet was the first operational packet-switching network and
was created for the United States Defense Advanced Research Projects Agency (DARPA) in
1969. ARPAnet was decommissioned in 1990 when it was superseded by the National Science
Foundation Network (NSFNET).



208 4 1960-1979

language with separate algorithms developed for different statistical procedures
[618].1°

As with Bill Joy, Bill Gates, and Paul Allen, no history of computing in this
period would be complete without mention of Gordon Moore, co-founder of Intel
Corporation with Robert Noyce and Andrew Grove, and author of Moore’s law
[1002].

G.E. Moore

Gordon Earl Moore received his B.S. degree in chemistry from the University
of California at Berkeley in 1950 and his Ph.D. in chemistry and physics
from the California Institute of Technology in 1953. In 1957 he co-founded
Fairchild Semiconductor with Julius Blank, Victor Grinich, Jean Hoerni,
Eugene Kleiner, Jay Last, Robert Noyce, and Sheldon Roberts, known as
the “traitorous eight” because they left William Bradford Shockley and the
Shockley Semiconductor Laboratory to form their own company, Fairchild
Semiconductor, in 1957 [103, Chap. 5]. In 1965 Moore published a short
article in the 19 April issue of Electronics with the title “Cramming more
components onto integrated circuits” [1002]. In this 1965 article Moore
described a trend in the history of computing where the number of transistors
that could be placed on an integrated circuit had doubled every year. He
initially projected that the doubling would continue every year, but later
revised the projection to doubling every 2 years [13, p. 2]. According to
Moore, the trend later was labeled “Moore’s Law” by computer scientist
Carver Mead at the California Institute of Technology. The trend has been
maintained more or less consistently for over 50 years. In July 1968 Moore
left Fairchild Semiconductor and founded Intel Corporation with partners
Robert Noyce and Andrew Grove [103, Chap. 7]. Moore retired from Intel
in 1997.

As Michael Kanellos has related, Moore once extrapolated that if the car
industry followed the same rules of progress, cars would get 100,000 miles
per gallon, travel at millions of miles per hour, and be so cheap that it would
cost less to buy a Rolls—Royce than to park it downtown for a day. However,
as a friend pointed out, Moore also said, “[the car] would only be a half-inch
long and a quarter-inch high” [708] (Moore, quoted in Seel [1243, p. 15]).

Beginning in 1975 with the success of Paul Allen, who at the time was a
Honeywell programmer in Boston, Massachusetts, and Bill Gates, a freshman
at Harvard University, who together wrote an interpreter for a subset of BASIC

105-PLUS® is a commercial implementation of the computing language S and was first produced
in 1988 by Statistical Sciences, Incorporated, a Seattle-based start-up company founded by
R. Douglas Martin, a professor of statistics at the University of Washington, Seattle.
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commands to the Altair 8800 personal computer, BASIC accelerated the personal
computer revolution [598]. By the end of this period in 1979, personal computers,
although not common, were available to many researchers, with the PDP-8, the
first affordable mini-computer, introduced by the Digital Equipment Corporation in
1963; the Altair computer, the very first full-flexed personal computer on the market,
introduced in 1975; and the Commodore PET introduced in 1977. In 1976 Steven
Paul Jobs and Stephen Gary Wozniak, two college dropouts,'! released the Apple
I computer, which they had developed in the garage belonging to Jobs’ parents. A
year later in 1977, Jobs and Wozniak introduced the Apple II computer that included
color graphics and housed its electronics inside a plastic case. The Apple II soon
became the first mass-marketed personal computer.

During this same period, the speed of computing increased greatly. For example,
in 1971 Intel introduced the 4004 microprocessor with 2,300 transistors and a
clock speed of 108 KHz, but by 1979 the Intel 8088 microprocessor with 29,000
transistors was running at a speed of 5MHz. By the mid-1970s, John Kemeny,
who was then president of Dartmouth College, was quoted as saying that “the
average undergraduate at Dartmouth with a pocket calculator was holding more
computing power in his left hand than existed in the entire world just 15 years
earlier,” and in comparing his experiences as a young mathematician working in the
theoretical division of the Manhattan Project at the Los Alamos National Laboratory
in 1946 with those of a Dartmouth undergraduate in 1975, was quoted as saying
that “[i]t took twenty of us working 20h a day for an entire year to accomplish
what one student can now do in an afternoon.” In retrospect, the speed of computing
increased greatly between 1960 and 1979, paving the way for the rapid development
of permutation statistical methods.

4.3 Permutation Algorithms and Programs

Exact permutation statistical methods ultimately depend on the generation of
the n! possible permutations of the n consecutive integers from 1 to n (q.v.
page 4). Alternatively, resampling-approximation permutation methods depend on
the Monte Carlo generation of a random subset of the n! possible permutations of
the n consecutive integers from 1 to n. In both cases, the permutation sequences
are used as subscripts to the observed measurement values so that the values can be
shuffled in all n! possible ways for an exact permutation analysis, or so that the n!
possible ways can be randomly sampled in a predetermined number of ways for a
resampling-approximation permutation analysis. The 1960s and 1970s witnessed a
proliferation of algorithms and programs to generate permutation sequences, each
designed to be faster, more efficient, or more elegant than previous algorithms.

ISteve Wozniak eventually returned to college and completed his B.S. degree in Electrical
Engineering and Computer Science at the University of California at Berkeley in 1987.
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1111112 22222333333 44 4 4 4 4
223344113344 112244112233
34 2 42 33 414132 41412231312
4 3 4232 43413142 41213231271

Fig. 4.1 Example permutation sequences for the first four consecutive integers {1, 2, 3, 4},
where the sequences are to be read vertically

Figure 4.1 illustrates lexicographical sequences of 4! = 24 permutations based
on an initial sequence of the first four consecutive integers {1, 2, 3, 4}, where the
permutations sequences are listed vertically.

Most of the algorithms published in this time period resulted in an exhaustive list
of the n! possible permutations of the consecutive integers from 1 to n, but several
were designed to generate a random subset of all n! possible permutations. It should
be noted that, for the most part, these algorithms were not specifically designed with
permutation statistical methods in mind, appearing as they did primarily in computer
science journals. There are simply too many algorithms to examine here in detail,
or even to list completely; however, a number of them should be mentioned, and a
few deserve a thorough description.

In 1938 R.A. Fisher and Frank Yates published a method for obtaining random
permutations of the consecutive integers from 1 to n utilizing tables of random digits
[463]. Unfortunately, the process described by Fisher and Yates was inefficient,
rejecting on average 75 % of the random numbers generated. In 1961 C.R. Rao
presented a more efficient method of generating random permutations of the integers
1 to n for any n from a table of random digits that did not waste any random number
generated [1154]. In 1962 M. Sandelius described a randomization procedure that
consisted of distributing a deck of cards into ten decks using random decimal digits
and repeating this step with each deck consisting of three or more cards [1220].
The procedure by Sandelius was essentially a special case of the general procedure
described by Rao in 1961 [1154].

While the approaches described by Fisher and Yates [463], Rao [1154], and
Sandelius [1220] utilized tables of random digits, in 1961 Coveyou and Sulli-
van described a computer algorithm utilizing a computer-based pseudorandom
number generator that produced all permutations of the integers from 0 to n
[290]. Also in 1961 Wells [1435], following on the work of Tompkins [1364],
presented a scheme to generate all n! permutations of n marks whereby each
step consisted of merely transposing two marks (q.v. page 218), a procedure that
was considerably faster than the Tompkins—Paige method presented by Tompkins
in 1956[1364].

The transposition algorithm of Wells is typical of the permutation algorithms of
this time. First, let P, represent a permutation sequence of length n and place an

. e . . .
arrow above every number in P,, e.g., 1 2 3 4. Any number in P, is considered
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Fig. 4.2 Implementation of

the Wells permutation ]?_1 (p_Q 1(7_3 {7_4 M
algorithm by adjacent 1 2 3 4 4
transposition withn = 4 T ) T T 4
— — — —
1 4 2 3 4
— — — —
4 1 2 3 3
— «— — —
4 1 3 2 4
— — — —
1 4 3 2 4
— — — —
1 3 4 2 4
— — — —
1 3 2 4 3
— — — —
3 1 2 4 4
— — — —
3 1 4 2 4
— — — —
2 1 4 3 4
— “— — —
2 1 3 4 0

to be in an “active state” when the adjacent number in the arrow direction of the

number is smaller than the number itself. Thus, the numbers (2_, (3_, and (4_ are in an

active state in this example [cf. 1492]. The Wells adjacent transposition permutation

algorithm can be described in three simple steps [1492]:
Fig. 4.2 illustrates implementation of the Wells permutation algorithm by adja-

<<

cent transposition with Py = {1 2 3 4}.

1. If there is no number in P, in an active state, stop; otherwise go to Step 2.

2. Find the maximum number in P, in an active state and label it M . Transpose M
and the adjacent number in the arrow direction of M and go to Step 3.

3. Change the arrow direction of all the numbers in P, that are larger than M and
goto Step 1.

Random Number Generators
Prior to the widespread availability of computers, random numbers were
obtained from mechanical devices such as well-stirred urns, dice, roulette
wheels, or other instruments of chance, and the results were recorded in
tables [355]. Up to 1955, tables of uniform pseudorandom number digits were
published by Tippett [1362], Fisher and Yates [463], Kendall and Babington
Smith [740], Peatman and Shafer [1111], Hald [570], Royo and Ferrer [1201],
and Steinhaus [1316], among others. The total number of random digits in
these tables ranged from 1,600 to 250,000. Beginning in 1947, the RAND
Corporation compiled a million random digits by electronic simulation of a
roulette wheel attached to a computer [225]. The device had 32 slots, of which

(continued)
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12 were ignored; the others were numbered from 0 to 9 twice [1417]."2 The
results were published in 1955 as A Million Random Digits with 100,000
Normal Deviates [1152].

Pseudorandom number generation by computer was in its infancy at
this time when scientists began to explore efficient methods of obtaining a
sequence of independent uniform random numbers with computer programs
by deterministic functions with a specified distribution. Unfortunately, the
sequences of digits produced at this time were not always very random;
see articles by Behrenz in 1962 [92], Marsaglia and Bray in 1968 [895],
and Grosenbaugh in 1969 [559]. A notable example was the “middle-square
method” developed by John von Neumann at the Los Alamos National
Laboratory that had a very short period and other weaknesses [1402]. As
Knuth noted:

[t]he authors of many contributions to the science of random number generation were
unaware that particular methods they were advocating would prove to be inadequate
[763, p. 173] (Knuth, quoted in Dodge [355, p. 331]).

The middle-square method of von Neumann for the generation of pseudo-

random numbers is quite elementary and can be described in just four steps:

1. Define a seed number of length 7.

2. Square the seed number to obtain a 2n-digit number, adding leading zeroes
if necessary.

3. The next pseudorandom number is the middle » digits.

4. Repeat as necessary to obtain the required number of pseudorandom
numbers.

For the interested reader, Sowey [1298] provides an extensive bibliography
on random number generation in the period 1927 to 1971; Niederreiter [1037],
Rubenstein [1204], Ripley [1172], L’Ecuyer [807], and Tezuka [1348] provide
surveys on uniform pseudorandom number generators; Teichroew provides a
history of distribution sampling prior to the era of the computer [1344], and
Knuth [763] provides a complete chapter of 177 pages on the generation of
uniform pseudorandom numbers [355].

The year 1962 marked the beginning of a proliferation of computer-based
permutation sequence generators. In 1962 Peck and Schrack presented algorithm
PERMUTE [1112], which inspired algorithm PERM by Trotter [1372]. Although it
was only 1962, Trotter noted that the excuse for adding PERM to the “growing
pile of permutation generators” was that PERM offered an advantage in speed over
previous algorithms [1372, p. 435]. Rather tongue-in-cheek, Trotter also noted that

2European roulette wheels have 37 slots (0-36), while American roulette wheels have 38 slots
(0, 00, 1-36).
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PERM “also has the (probably useless) property that the permutations it generates
are alternatively odd and even” [1372, p. 435].

The Peck and Schrack [1112] and Trotter [1372] algorithms were quickly
followed by a plethora of other algorithms to generate permutations or combina-
tions, including algorithm PERMUTATION by Howell [658], PERMULEX by Schrack
and Shimrat that produced permutations in lexicographical order [1238], PERMUTE
by Eaves [371], COMBINATION by Kurtzberg [783], and an unnamed algorithm
by Lotto [843], nearly all published in Communications of the ACM in 1962. In
addition, in 1962 Shen [1258] published a new method to generate permutations and
combinations in lexicographical order that proved superior to a well-known method
of generation by addition utilized by Howell in algorithm PERMUTATION [659].

In 1963 Wolfson and Wright [1467], Wright and Wolfson [1470], and Mif-
sud [992, 993] presented algorithms to generate all possible combinations of n
objects, Shen published algorithm PERLE that generated all possible permutations
in lexicographical order [1259], Johnson published a paper on the generation of
permutations by adjacent transposition wherein each permutation was derived from
its predecessor by a single interchange of two marks in adjacent positions [693],
and Heap presented methods for obtaining all possible permutations of a number
of objects, in which each permutation differed from its predecessor only by the
interchange of two of the objects [608]. The Heap algorithm was later described by
Lipski in 1979 as “probably the most efficient method known” [832, p. 358].

The year 1964 turned out to be an important year for permutation sequence
generators, in general, and random permutation sequence generators, in particular.
First, Sag introduced an algorithm to generate all permutations of a set with
repetitions [1213]. Second, Durstenfeld put forth procedure SHUFFLE that generated
random permutations of a sequence {1, 2, ...,n}. The procedure by Durstenfeld
was based on the shuffling method first described by Fisher and Yates in Statistical
Tables for Biological, Agricultural and Medical Research in 1938, but more
importantly it was popularized by Donald Knuth, Professor of Computer Science,
Stanford University, when he included it in Volume 2 of his exhaustive four volume
work on The Art of Computer Programming in 1969 [762].

D.E. Knuth
Donald Ervin Knuth is Emeritus Professor at Stanford University and author
of The Art of Computer Programming (TAOCP), which consists of four
volumes on Fundamental Algorithms, Seminumerical Algorithms, Sorting
and Searching, and Combinatorial Algorithms. A fifth volume on Syntactic
Algorithms is in preparation and expected in 2020. In 1999, American
Scientist named The Art of Computer Programming as among the best twelve

(continued)
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Table 4.1 Tllustration of the Fisher—Yates and Durstenfeld shuffling procedures with N = 6

Fisher—Yates Durstenfeld
LIMIT 1 J ARRAY STORE SWAP ARRAY
6 0.54 4 123456 4 46 123456
5 0.46 3 123 56 34 35 123654
4 0.82 4 12 56 634 44 125634
3 0.37 2 12 5 2634 2<3 125634
2 0.16 1 1 5 12634 12 152634
1 5 512634 512634

physical-science monographs of the century [1007]. For completeness, the
other eleven books were:
1. Paul Dirac, Quantum Mechanics (1930)
2. Albert Einstein, The Collected Papers of Albert Einstein: The Swiss Years:
Writings, 1902—1909 (1930)
. Benoit B. Mandelbrot, Fractals (1977)
. Linus Pauling, Nature of the Chemical Bond (1939)
5. Bertrand Russell and Alfred North Whitehead, Principia Mathematica,
Volumes 1, 2, and 3 (1910-1913)
6. Cyril Smith, Search for Structure (1981)
7. John von Neumann and Oskar Morgenstern, Theory of Games and Eco-
nomic Behavior (1944)
8. Norbert Weiner, Cybernetics (1948)
9. Richard B. Woodward and Roald Hoffmann, Conservation of Orbital
Symmetry (1970)
10. Albert Einstein, The Meaning of Relativity (1922)
11. Richard Feynman, QED (1985)

V]

Durstenfeld’s algorithm differed from that proposed by Fisher—Yates in that
instead of removing elements of ARRAY to storage array STORE, he swapped each
selected element with the last unswapped element at each step. The algorithm by
Durstenfeld is known as an in situ procedure as it shuffled the numbers of the array
in place, rather than storing them elsewhere.'? Table 4.1 illustrates the Fisher—Yates
and Durstenfeld shuffling procedures for the sequence {123456}.

13Another difference between the Fisher—Yates and Durstenfeld shuffling procedures is that
Fisher—Yates obtained their pseudorandom numbers from tables of random digits, while Dursten-
feld used a computer-based pseudorandom number generator.
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The Fisher-Yates Shuffle

The Fisher—Yates shuffle was designed to generate a random permutation of

the consecutive integers 1, 2,..., N and can be summarized in just a few

steps:

1. Store the numbers from 1 to N in array ARRAY and set the value of
LIMIT = N.

2. Choose a pseudorandom number, /, on [0, 1) and scale it so it lies between
1 and LIMIT, which is N on the first selection. Denote the rescaled
pseudorandom number J, where J = Int(/ x LIMIT) + 1.

3. Starting from the low end, remove the Jth remaining element of ARRAY
and store it in array STORE.

4. Set LIMIT to LIMIT-1 and go to step 2, repeating until all the elements of
ARRAY numbers have been moved to array STORE.

In 1965 Hill and Pike designed an algorithm for computing tail-area probability
values for 2 x 2 contingency tables that was based on the exact method for fixed
marginal frequency totals [622]. It was interesting because it provided a one-tailed
probability value by summing the individual probability values equal to or less than
the observed probability value, and then provided two quite different two-tailed
exact probability values. One two-tailed probability value was obtained from the
sum of the one-tailed probability value and a probability value calculated in similar
fashion from the second tail. The second two-tailed probability value was obtained
by including in the second tail all those terms that gave an inverse odds-ratio statistic
as least as great as the odds-ratio statistic for the observed table.'*

In 1967 algorithms to generate permutation sequences were presented by Page
[1085], Boothroyd [178-181], Bratley [206], Ord-Smith [1065], Phillips [1124],
and Langdon [799, 800]. The procedure by Langdon prompted a criticism by Ord-
Smith [1066] and a defense by Rodden [1181], both based on Langdon’s use of
a rotational scheme designed to capitalize on the hardware design of computers
of the time instead of the more conventional transpositional scheme. In 1991,
Rohl showed that the pseudo-lexicographical algorithm of Ord-Smith [1065] was
essentially equivalent to the Tompkins—Paige algorithm, given by Peck and Schrack
[1112].15

In 1968 Ord-Smith introduced algorithm BESTLEX based on transpositions that
produced all n! permutations of n marks in lexicographical order [1067], and
Plackett published an extensive article on permutations in which he described
an algorithm that minimized the amount of randomization necessary to generate

14 Almost 20 years later, in 1984, Hill explained that he and Pike could not agree on how to compute
the two-tailed probability value. Pike argued for the odds-ratio method and Hill for the first method.
In the end, as Hill noted “our algorithm included both and gave the user the choice” [620, p. 452].

15Schrack is variously misspelled in the literature as Schrank [1185] and Schrock [270].
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a random permutation [1136]. In addition, Plackett described the probability
distributions for the number of digits required by standard methods of generation
from a sequence of random digits [1136].

In 1970 Chase published algorithm TWIDDLE designed to generate combinations
of M out of N objects, which was based on an unpublished procedure discovered
by Leo Lathroum in 1965 [248]; see also a remark by Chase in 1970 [249,
p. 368]. Algorithm TWIDDLE was the combination equivalent to the Johnson—
Trotter permutation generator [693, 1372]. Also in 1970, Ord-Smith published Part
1 (of two parts) of an overview on the generation of permutation sequences in which
he detailed algorithms based on the Tompkins algorithm, nested cycle algorithms,
the Wells, Johnson, and Trotter algorithms, lexicographic algorithms, and pseudo-
lexicographic algorithms [1068]. Part 1 was quickly followed by Part 2 in 1971
[1069]. Here, Ord-Smith presented what he considered to be the six fastest general
permutation algorithms; the article concluded with an extensive bibliography on
published permutation sequence generators available at the time.

In 1971 Thomas presented an algorithm and FORTRAN subroutine for exact
confidence limits for the odds-ratio statistic in 2 x 2 contingency tables [1355].
Assuming fixed marginal frequency totals, an iterative process was employed. In
1975 Thomas extended his work on the odds-ratio statistic to include exact and
asymptotic methods for a series of 2 x 2 contingency tables [1356]. He provided an
option for computing exact one- or two-tailed confidence limits for the odds-ratio
statistic. As Thomas noted, since this was a discrete problem it was not possible
to obtain a predetermined confidence interval of exactly 1 — «, but rather 1 — «,
where &’ < « and o’ depended on the fixed marginal frequency totals. Thus, the
results were “exact” in the sense that the confidence limits were at least 1 — « and,
consequently, always conservative [1356, p. 425, fn. 1].

In 1973 Liu and Tang developed subroutine NXCBN in FORTRAN that generated
all combinations of m out of n objects [837]. Also in 1973, Ehrlich presented
four new combinatorial algorithms [403]. The four algorithms had in common
the important property that they used neither loops nor recursion; thus, the time
needed for producing a new configuration was unaffected by the size of the
configuration. The listing of these four algorithms was followed by a more lengthy
discussion on loop-free algorithms for generating permutations, combinations, and
other combinatorial configurations [403].

In 1975 Dershowitz described a simplified loop-free algorithm for generating
all n! permutations of a set of n elements (q.v. page 4). This was a simplification
of Ehrlich’s loop-free version of Johnson’s and Trotter’s algorithms [693, 1372].
Each permutation was generated by exchanging two adjacent elements of the
preceding permutation. Also in 1975, Bebbington presented a simple method of
drawing a random sample without replacement that was essentially a Fisher—
Yates shuffle of elements [90]. Finally in 1975, Fike described a new method for
generating permutation sequences [432]. Timing experiments indicated that the
method proposed by Fike was competitive with the interchange methods of Wells
[1435], Johnson [693], and Trotter [1372].
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In 1976 Rohl presented programming improvements based on recursion
procedures for Fike’s algorithm for generating permutations that improved the
performance of Fike’s algorithm by a factor of two [1183]. Also in 1976 Hu and
Tien noted that when all items were distinct the algorithms developed by Johnson
[693] and Trotter [1372] generated all permutations by adjacent transposition, but
the method did not provide a solution if not all items were distinct. To this end,
Hu and Tien proposed an algorithm to generate all permutations when not all items
were distinct [661]. The algorithm of Hu and Tien was an extension of the 1963
algorithm of Johnson [693] and was based on a series of binary sequences.

In 1976 Ives introduced four new algorithms for generating the n! permutations
of n marks [675] (q.v. page 4). Performance checks by Ives showed superiority of
the new algorithms over Boothroyd’s implementation of the algorithm by Wells and
Ehrlich’s implementation of the Johnson—Trotter algorithm.

In 1977 Woodall noted that Fike’s algorithm had proved to be one of the fastest
known, but he was able to develop a new algorithm that was even faster [1469].
Woodall’s algorithm LEXPERM was a lexicographic procedure where recursion was
eliminated, yielding an algorithm with a very fast procedure time. In the same year,
Buckles and Lybanon presented a new algorithm COMB to generate a random set
of combinations of # items taken p at a time and arranged in lexicographical order
[228]. Finally in 1977, Sedgewick produced an extensive survey of permutation
generation methods in which he surveyed the numerous methods that had been
proposed for permutation generation by computer, described the various algorithms
that had been developed over the years in considerable detail, and implemented
them in a modern ALGOL-like language [1242]. In addition, as Sedgewick noted,
the paper was intended not only as a survey of permutation methods, but also as a
tutorial on how to compare a number of different algorithms for the same computing
task [1242, p. 137].

In 1978 two articles were published that are worth mentioning. The first article
by Rohl provided a simple, general algorithm to produce arrangements of n
marks taken r at a time, where the marks need not be distinct [1184]. Various
procedures based on the new algorithm were presented by Rohl, some producing
arrangements in lexicographical order, some not. As Rohl noted, more important
than the algorithm itself was the technique involved in its implementation—the
use of a procedure that contained within itself a second procedure that was highly
recursive. Thus, the algorithm effectively simulated a nest of r loops by means of a
recursive procedure that called itself r times [1184, p. 305].'¢

The second article, by Roy, evaluated permutation algorithms with special
attention to those published since Ord-Smith’s review of algorithms in 1970 and
1971 [1199]. These included new algorithms by Fike [432] and Ives [675] and

161t should be noted that most of these procedures were written in computing languages that did
not permit recursion, such as FORTRAN; therefore, it was necessary to generate all combinations by
simulating nested loops. The problem was addressed by Jane Gentleman in 1975 with subroutine
ALLNR, written in FORTRAN, that generated a complete set of all yCg combinations of N things
considered R at a time using simulated nested loops instead of recursion [507].
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improvements to previously published algorithms by Ehrlich [403], Lenstra [820],
and Rohl [1183]. Roy noted that there were a number of different permutation
sequences that were widely used: one by Ives, another by Wells, those that were
lexicographic, and those that were pseudo-lexicographic.!” However, Roy found that
all the different permutation sequences were generated from only two fundamental
schemes.

The first scheme generated the n! permutations of the n marks from knowledge of
the (n —1)! permutations of the first (n — 1) marks. Each of the (n — 1) permutations
yielded n of the n-permutations [1199, p. 296]. The second scheme was described
by Roy as follows. Suppose a procedure can generate only the (kK — 1)! permutations
of k — 1 marks (k < n). The k! permutations of the first ¥ marks can then be
generated by repeating the procedure k times by taking (k — 1) of the k marks at a
time and the remaining mark occupying the kth position.

Roy termed algorithms using the first scheme A-type algorithms, and those using
the second scheme, B-type algorithms. Roy determined that the Ives procedure was
the best A-type algorithm, the Wells procedure the best B-type algorithm, and that
A-type algorithms were, in general, superior to B-type algorithms.

In 1979 Payne and Ives reconsidered the 1973 Liu—Tang combination enumera-
tion algorithm that produced a cyclic sequence of combinations [1091]. While the
Liu-Tang algorithm relied on generating combinations from marks, Payne and Ives
considered pointers to the marks [1091].

Marks and Pointers to Marks

Combination and permutation sequences can be specified in two fundamental
ways: marks and pointers to marks. First, the marks can be specified. For
example, the combination (2) can be written with 5 Os and 8 — 5 = 3
Is, e.g., {00000111}, which is the sum of binary 5 {00000101} and binary
3 {00000011}, yielding binary 8 {00001000}. Then, the original sequence
of marks {00000111} can be systematically rearranged, e.g., {00001011},
{00001101}, {00001110}, and so on, always maintaining 5 Os and 3 1s.

Second, the serial location specified by pointers to the marks can be spec-
ified. For this example, 678, locating the positions of the 1s for {00000111},
i.e., the ls are in positions 6, 7, and 8, from the left, and the Os are in
positions 1, 2, 3, 4, and 5, from the left. Then, the pointers for rearrangement
{00001011} are 578, the pointers for rearrangement {00001101} are 568, and
the pointers for rearrangement {00001110} are 567, and so on. Alternatively,
the pointers can refer to the Os: 12345, 12346, 12347, and 12348, respectively,
but it is customary, and more efficient, to point to the less numerous marks.

(continued)

In general, ordered permutations, such as lexicographic sequences, are of no consequence in
permutation methods, either exact or resampling.
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Fig. 4.3 Robertson’s

notation for an observed LCL Z ‘ Z _—:__ 2
2 x 2 contingency table
a+c b+d | at+b+c+d

Most combination generators use only the pointers to the marks rather than
the marks themselves, as the pointers represent the ranks of one set of two
combined ordered samples [1091].

Payne and Ives developed a pointer-programmed version of the Liu-Tang
algorithm that greatly improved the speed of execution compared to the original
coding, when k or n — k was small as they appear in (Z) They compared their
implementation not only to the Liu—Tang algorithm based on rearrangements of
marks, but also with other combination enumeration generators by Kurtzberg
[783], Chase [247], Bitner, Ehrlich, and Reingold [167], Mifsud [992], and Ehrlich
[403,404].

4.3.1 Permutation Methods and Contingency Tables

In work that was to prove to be a harbinger to the extensive contributions to come
in the 1980s and 1990s, a number of articles were introduced on the computation
of exact probability values for contingency tables and goodness-of-fit tests between
1960 and 1979. In 1960 Robertson published an article on programming Fisher’s
exact probability method of comparing two percentages [1174]. In this paper,
Robertson described the application of a high-speed computer for determining
the exact probability associated with the problem of comparing two percentages
utilizing the Fisher—Yates exact probability method.'® In programming the Fisher—
Yates exact probability method, Robertson relied on stored logarithms of factorials.
Robertson’s notation for the cell frequencies and marginal frequency totals is given
in Fig. 4.3 and the Fisher—Yates exact probability of any 2 x 2 contingency table was
given by

po (a+b)(c+d)(a+c)b+d)!
T albleldl(a+b+c+d)

"8The “high speed computer” in this case was a Royal McBee LGP-30. The Royal McBee
Librascope General Purpose (LGP) computer was considered a desktop computer, even though
it weighed 740 pounds, contained a 4,096 word magnetic drum memory and had a clock rate of
120 kHz.
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Fig. 4.4 Feldman and

Klinger’s representation of an a0 ZO ‘ a0 j__ 20
observed 2 X 2 contingency co 0 0 0
table ao+co  bo+do | N

Robertson found that the computing time required for his program varied directly
with the magnitudes of a and ¢, but was independent of the magnitudes of b and d.
Consequently, the speed of the program depended largely on the number of division-
multiplication cycles involved, which he calculated to be precisely (¢ + 1)(3a +
2¢)/2.

In 1963 Feldman and Klinger published an efficient method for calculating the
Fisher—Yates exact probability test for 2 x 2 contingency tables [424]. By that time,
however, Finney had already published tables in 1948 for the Fisher—Yates exact
test with marginal frequency totals up to 15 [434], Latscha had extended Finney’s
tables for marginal frequency totals up to 20 in 1953 [804], Armsen had extended
Latscha’s tables for marginal frequency totals up to 50 in 1955 [34], and in 1963
Finney, Latscha, Bennett, and Hsu published Tables for Testing Significance in a
2 x 2 Contingency Table [439]. Also, Finney’s tables had already been incorporated
into the widely-distributed Biometrika Tables for Statisticians by E.S. Pearson and
H.O. Hartley in 1954 [1101]. However, Feldman and Klinger felt the need for a
solution that fell outside the scope of the published tables [424, p. 289]. They argued
that the tabled values suffered from two limitations. First, the tables reported critical
values only for selected levels of significance, e.g., 0.05, 0.025, 0.01. Second, for
N > 30 the tables listed critical values only for cases with equal marginal frequency
totals [553, p. 698].

Given a 2 x 2 contingency table as illustrated in Fig. 4.4, the procedure suggested
by Feldman and Klinger was to apply the usual formula for the hypergeometric
probability value,

p o (ot bo)! (ao + co)! (bo + do)! (co + d)!
O =

)

N! ao! b()' C()! d()'
only to the observed table. Since
ap d()
P = 0
b1 C1
and, in general,
a; d;
Py =———FP;,
bit1¢i+1

the solution proposed by Feldman and Klinger was a recursive procedure based
on the observed probability value, where a researcher need only determine Py
and then multiply it and each subsequent P; by the product of the ith diagonal
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that was reduced, divided by the product of the (i + 1)th diagonal that was
increased. Then, summing the probability values that were as or more extreme
than the observed probability value yielded the appropriate probability estimate for
the observed contingency table [424, p. 291]. However, Johnson noted that while
Feldman and Klinger recommended that the data be arranged such that ay < by, co,
dy, this was in error as it provided the complement of the desired probability value
[689].

In 1964 Arnold investigated the multivariate generalization of Student’s ¢ test
for two independent samples [35]. The first four permutation cumulants were
determined for a statistic that was a simple function of Hotelling’s T2 test given by

TZ
= —m—mm,
(m—1)+T?

where m was the number of blocks, and applied by Arnold to samples from bivariate
normal, rectangular, and double exponential distributions. The samples examined
ranged in size from n = 48 for m = 4 ton = 800 for m = 8. The results suggested
that a test utilizing Hotelling’s generalized 7' statistic, when applied to non-normal
data, was not likely to be biased by more than 1 or 2 percentage points at the 5 %
level of significance.

In 1968 Hope introduced a simplified Monte Carlo test procedure for significance
testing [649]. Noting that exact permutation tests were unnecessarily complicated
due to the excessive number of permutations required, Hope advocated Monte
Carlo (resampling) test procedures with smaller reference sets than required by
exact permutation tests. Hope was able to demonstrate that the necessary number
of Monte Carlo permutations could be determined from the level of significance
adopted. For additional articles with a similar theme in this period, see a 1977 article
by Besag and Diggle [164] and a 1979 article by Marriott [894].

In 1969 Kempthorne and Doerfler published a paper examining the behavior of
selected tests of significance under experimental randomization [725]. They selected
three tests for a matched-pairs design and concluded that the Fisher randomization
test was to be preferred over the Wilcoxon matched-pairs rank-sum test, which
in turn, was to be preferred over the sign test. All comparisons were based on
Monte Carlo test procedures with 50 sets of randomly-generated data from eight
distributions for experiments on 3—6 pairs of observations.

While the purported purpose of the paper was to compare matched-pairs designs,
the paper actually contained a great deal more. First, Kempthorne and Doerfler
objected to the use of specified cut-off points for the significance level «, and
to classifying the conclusion as being simply significant or not significant, i.e.,
less than or greater than «. They argued that the use of such a dichotomy was
inappropriate in the reporting of experimental data as it resulted in a loss of
information [725, p. 239]. Second, they objected to the common practice of adding
very small values such as 107'% to measurements so as to avoid ties when
converting to ranks. They referred to this practice as “fudging” the data. Third,
they suggested that the term “significance level” of a test be eliminated from
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the statistical vocabulary; see also a 2012 article by Megan Higgs on this topic
in American Scientist [616]. Finally, they dismissed the assumption of random
samples in comparative populations and praised randomization tests for their ability
to answer the question “What does this experiment, on its own, tell us?” [725,
p. 235]." For a concise summary of the Kempthorne and Doerfler paper, see
Kempthorne [720, pp. 22-25].

In 1971 Zelen considered the problem of analyzing data arranged into k > 2
contingency tables, each of size 2 x 2 [1487]. The principal result was the derivation
of a statistical test for determining whether each of the k contingency tables has the
same relative risk. Zelen noted that the test was based on a conditional reference set
and regarded the solution as an extension of the Fisher—Irwin exact probability test
for a single 2 x 2 contingency table [1487, p. 129].%°

In 1954 Cochran [260] had investigated this problem with respect to testing
whether the success probability for each of two treatments was the same for
every contingency table, recommending the technique whenever the difference
between the two populations on a logit or probit scale was nearly constant for
each contingency table. Note that the constant logistic difference is equivalent to
the relative risk being equal for all k tables.?!

Mantel and Haenszel had previously proposed a method very similar to
Cochran’s, except for a modification dealing with the correction factor associated
with a finite population [887]. Zelen investigated the more general problem when
the difference between logits in each table was not necessarily constant [1487].
The exact and asymptotic distributions were derived by Zelen for both the null and
non-null cases.

4.4 Ghent and the Fisher-Yates Exact Test

No account of the analysis of contingency tables would be complete without
mention of the work of Arthur Ghent, who in 1972 extended the method of binomial
coefficients first proposed by Patrick Leslie in 1955 [510].

YFor Kempthorne and Doerfler, while randomization tests are based on permutations of the
observations, they reserved the term “permutation tests” for the comparison of random samples
from unspecified distributions and “randomization tests” for the comparison of the material
actually used in an experiment.

20Recall that Fisher in 1935 [452], Yates in 1934 [1472], and Irwin in 1935 [674] independently
developed the exact permutation analysis of a 2X 2 contingency table with fixed marginal frequency
totals (qq.v. pages 25, 37, and 48). Thus, references to either the Fisher—Yates or the Fisher-Irwin
exact probability test are quite common.

2IIn general, when considering multiple 2 X 2 contingency tables the relative risk for each table
must be in the same direction, e.g., measures of relative risk such as odds-ratios must all be greater
(less) than 1 and approximately equal in magnitude.
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Fig. 4.5 Example Ghent

1 7 8
observed 2 X 2 contingency 6 6 ‘ 12
table

T 13 | 20

A.W. Ghent

Born in Canada, Arthur W. Ghent earned his B.Sc. and M.A. degrees in
zoology from the University of Toronto in 1950 and 1954, respectively, and
his Ph.D. in zoology at the University of Chicago in 1960. Ghent worked
as a forest ecologist with the Canada Department of Agriculture while he
was a student and upon his graduation, joined the faculty at the University of
Oklahoma to begin an academic career as Assistant Professor of Quantitative
Zoology. In 1964 Ghent moved to the University of Illinois where he was
appointed Assistant Professor of zoology, achieving the ranks of Associate
Professor and Professor in 1965 and 1970, respectively. In 1973 he accepted
an appointment as Professor, School of Medical Sciences, at the University of
Illinois. Arthur W. Ghent retired from the University of Illinois in 1997 and
passed away on 27 April 2001 in Urbana, Illinois, at the age of 73 [509].

In 1972 Ghent examined the literature on the alignment and multiplication of
appropriate binomial coefficients for computing the Fisher—Yates exact probability
test for 2 x 2 contingency tables with fixed marginal frequency totals [510]. In
an exceptionally clear and cogent presentation, Ghent reviewed the method of
binomial coefficients first proposed by P.H. Leslie in 1955 [821] and independently
discovered by Sakoda and Cohen in 1957 [1216].

The method of binomial coefficients, as described by Leslie [821], was a
computational procedure involving, first, the selection of the appropriate series
of binomial coefficients; second, their alignment at starting points in accord with
the configuration of integers in the observed contingency table; and finally, the
multiplication of adjacent coefficients that constitute the numerators of the exact
hypergeometric probability values of all 2 x 2 contingency tables equal to or more
extreme than the probability of the observed contingency table, given fixed marginal
frequency totals [510, pp. 18-19].

An example will illustrate the binomial-product method as described by Ghent.
Consider the example observed 2 x 2 contingency table in Fig. 4.5, where it is only
necessary to examine the first row, as the second row is redundant, given the fixed
marginal frequency totals.

For Cell (1,1) in Fig.4.5, the cell frequencies can vary from a minimum of 0
to a maximum of 7, the first column marginal frequency total. The possible cell
frequencies for Cell (1, 1) are listed in the first column of Table 4.2. On the other
hand, the cell frequencies in Cell (1,2) can vary only from a maximum of 8 to a
minimum of 1, and not from the column marginal frequency total of 13 down to
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Table 4.2 Illustration of the Ghent method of binomial coefficients to obtain Fisher—Yates exact
probability values for a 2 X 2 contingency table

Cell Binomial coefficients

an 1,2) (p+9q) (p+9t Product Probability
0 8 1 X 1,287 = 1,287 0.0102
1 7 7 X 1,716 = 12,012 0.0954
2 6 21 X 1,716 = 36,036 0.2861
3 5 35 X 1,287 = 45,045 0.3576
4 4 35 X 715 = 25,025 0.1987
5 3 21 X 286 = 6,006 0.0477
6 2 X 78 = 546 0.0043
7 1 1 X 13 = 13 0.0001
Total 125,970 1.0000

a minimum of 0, as the frequencies for Cell (1,2) are constrained by the marginal
frequency total of 8 in the first row i.e., the two cells, (1, 1) and (1, 2), must sum to
the row marginal frequency total of 8. The corresponding possible cell frequencies
for Cell (1, 2) are listed in the second column of Table 4.2.

Because the frequencies for Cell (1, 1) can vary over the entire range of 0 to
7, the full complement of binomial coefficients of (p + ¢)’ is listed in the third
column of Table 4.2. However, the binomial coefficients of (p + ¢)'*, which are
{1,13,78,286,715,1,287,1,716,1,716, 1,287,715, 286,78, 13, 1}, are constrained
by the range of possible cell frequencies for Cell (1,2), i.e., from 8 to 1. Since 9, 10,
11, 12, and 13 are not possible cell frequencies for Cell (1, 2), eliminate the first five
terms from the binomial coefficients for (p +¢)'3, i.e., 1, 13,78, 286, and 715, and
since 0 is not a possible cell frequency for Cell (1, 2), eliminate the last term from
the binomial coefficients for (p + ¢)'3, i.e., 1. The remaining binomial coefficients
are listed in the fourth column of Table 4.2. The required binomial coefficients can
easily be obtained from the first # + 1 terms of the expanded binomial series,

1+%+n(n—1)+n(n—1)(n—2)+'“+n_!zz(i?>:2n

| | |
2! 3! n! —\i

or, for small samples, from Pascal’s triangle (q.v. page 185). The two binomial series
are then multiplied together and totaled, as illustrated in the fifth (Product) column
of Table 4.2. Dividing each binomial product by the total yields the exact probability
values, as listed in the last (Probability) column of Table 4.2.

The procedure is also described in some detail in Chap. 1940-1959 in the section
on Patrick Leslie (q.v. page 184). Ghent extended the Leslie procedure to 2 x 3
and 2 x ¢ contingency tables, requiring 3 and ¢ series of binomial coefficients,
respectively. Finally, he extended these results to 3 x 3 and r X ¢ contingency tables
using a two-step procedure that collapsed the larger contingency tables into smaller
tables, then reassembled the results.
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Since the 1930s, some controversy has existed over how correctly to compute
a two-tailed probability value for the Fisher—Yates—Irwin exact probability test for
2 x 2 contingency tables. One approach is to sum the tail probability values equal to
or less than the observed probability value for the tail in which the observed table
fell, then simply double that probability value (doubling rule); see for example, an
article by D.J. Finney in 1948 [434, p. 146]. The second approach is to sum the
tail probability values in the “observed” tail, then add to that sum the sum of the
probability values equal to or less than the observed probability value in the other
tail (Irwin’s rule) [674].

The difference can be illustrated with the listings in Table 4.2. The observed
table containing cell values (1,7) with a binomial product of 12,012 is in the upper
tail of the distribution of products. Thus, its one-tail exact probability value is
(1,287 4+ 12,012) /125,970 = 0.1056, since 1,287 is less than 12,012. Doubling
that probability value yields a two-tailed probability value of 2 x 0.1056 = 0.2112.
On the other hand, the binomial products less than 12,012 in the lower tail are 13,
546, and 6,006. Then, the two-tailed probability value is (1,287 4+ 12,012 + 13 +
546 + 6,006)/125,970 = 0.1577.

Ghent was unequivocal on this matter, noting that “it is the sum of the equally,
or more, extreme probabilities separately calculated in both tails that is logically
continuous with the procedure by which Freeman and Halton (1951) obtain
probabilities for 2 x 3 and larger contingency tables in their extension of the Fisher
exact test principle” [510, p. 20].22

4.5 Programs for Contingency Table Analysis

In 1973 Gregory developed a FORTRAN computer program for the Fisher—Yates
exact probability test that yielded a one-tailed exact probability value [553]. In
this article Gregory made the controversial statement that since the Fisher—Yates
statistic was inherently one-tailed, “the derived probability is simply doubled to test
a two-tailed hypothesis™ [553, p. 697]. This, of course, is certainly true if the two
sets of marginal frequency totals are identical, resulting in a symmetric probability
distribution; otherwise, it is a subject of some considerable debate. On this matter,
see also articles by Cormack [279, 280], Haber [564], Healy [604], Jagger [678],
Lloyd [838], Mantel [884, 885], Plackett [1139], and Yates [1476].

In 1975 Tritchler and Pedrini published a computer program for the Fisher—Yates
exact probability test that yielded a one-tailed probability value and could evaluate
samples up to size n = 500 [1371]. Also in 1975, Hays presented a FORTRAN
procedure for the Fisher—Yates exact probability test [603]. The program relied on
logarithms of factorials and produced the exact probability value associated with the
observed 2 x 2 contingency table, the exact probability values associated with each

22Emphasis in the original.
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of the more extreme possible tables, and the two-tailed probability of observing a
result as or more divergent than that in the observed 2 x 2 contingency table.

In 1978 J. Berkson published a controversial article titled “In dispraise of the
exact test” [102] and a second article questioning whether the marginal frequency
totals of the 2 x 2 contingency table contain relevant information regarding the
table proportions [101]. In these two articles, Berkson disagreed with Fisher’s
assertion that the marginal frequency totals of a 2 x 2 contingency table were
“ancillary statistics” and therefore the observed marginal frequency totals provided
no information regarding the configurations of the body of the table. However,
Berkson’s argument was incorrect. Berkson compared one-sided probability values
from the Fisher—Yates exact probability test for 2 x 2 contingency tables with the
normal test for the nominal significance levels 0.05 and 0.01, i.e., an exact versus
asymptotic comparison. He showed that the effective level was closer to the nominal
level with the normal test than with the exact test and concluded that the power of
the normal test was considerably larger than the power of the exact test. Needless to
say, the article by Berkson prompted several replies, most notably by Barnard [69],
Basu [85], Corsten and de Kroon [286], and Kempthorne [722]; see also a 1984
article by Yates [1476, pp. 439-441].%

Permutations of cell frequencies for contingency tables in this period were not
limited to determination of the exact Fisher—Yates probability value for 2 x 2
contingency tables. In 1970 Pierce developed an ALGOL computer program for
computing the Fisher—Yates exact probability value for a 2 x 3 contingency table
[1127, pp. 129-130, 283-287]. Pierce used a recursive procedure that essentially
eliminated all factorial expressions and provided the opportunity to combine groups
of constants for storage in the computer memory.

In 1972, March published algorithm CONP in FORTRAN for computing exact
probabilities for r x ¢ contingency tables. As March noted, if a sample of size
N is subjected to two different and independent classifications, A and B, with R
and C classes, respectively, the probability P, of obtaining the observed array of
cell frequencies X (x;;), under the conditions imposed by the arrays of marginal
frequency totals A(r;) and B(c;), is given by

R C
[ [Ter
i=1  j=I

P, T C .

NUTT T =

i=1j=1

ZThe controversy was to become a long-standing argument as to the proper method to analyze
2 X 2 contingency tables when both marginal frequency distributions were considered to be fixed,
only one marginal frequency distribution was considered to be fixed, or neither marginal frequency
distribution was considered to be fixed. In this regard, see also two articles by Barnard in 1947
[66,67], an article by Plackett in 1977 [1137], an article by Yates in 1984 [1476], and an article by
Campbell in 2007 [239].
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The method utilized by March was to redefine Py as

_ 0

Py R.

3

where

R C
[ [Ter

i=1  j=1

0x = N1 :

which, as March noted, was constant for the given set of marginal frequency totals,
ri and c;, and

R C
Re=T]TTxt!
i=1 j=1

which varied depending on the array of cell frequencies (x;). March then used
floating point logarithms (base 10) to compute the factorial expressions up to 100;
above 100 he used Stirling’s approximation. He tested the program using 2 x 3
contingency tables with N = 30, 2 x 4 contingency tables with N = 7, and 3 x 3
contingency tables with N = 7.

James Stirling

James Stirling was born in May 1692 in Garden, Stirlingshire, approximately
20km from the town of Stirling, Scotland. Nothing is known of Stirling’s
early childhood, but it is documented that he enrolled in Balliol College,
University of Oxford, in 1710 as a Snell Exhibitioner and was further awarded
the Bishop Warner Exhibition scholarship in 1711.>* Stirling lost his funding
when, because he was a Jacobite, he refused to swear a loyalty oath to the
British Crown. His refusal to swear the oath meant that Stirling could not
graduate; however, he remained at Oxford for 6 years, until 1717 [1046].

In 1717 Stirling published his first paper extending a theory of plane curves
by Newton, who was provided a copy of the paper. That same year, Stirling
traveled to Venice where it is thought that he expected to become Chair of
Mathematics, but for reasons unknown the appointment fell through. In 1722

(continued)

24 At the University of Oxford, and other universities in England, an Exhibition is a financial grant
or bursary awarded on the basis of merit. The recipient is an exhibitioner. The amount awarded is
usually less than a Scholarship.
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Stirling returned to Scotland and in late 1724 moved to London to teach
mathematics at William Watt’s Academy, in part on the recommendation of
Newton. In 1730, Stirling produced Methodus Differentialis sive Tractatus
de Summatione et Interpolatione Serierum Infinitarum (Differential Method
with a Tract on Summation and Interpolation of Infinite Series) [1046]. It was
Example 2 to Proposition 28 that became Stirling’s most important and
enduring work, his asymptotic calculation for n! or “Stirling’s approxima-
tion.” Stirling’s formula, given by

n\”"
n! = 2nn (—) ,
e

is in fact the first approximation to what is called “Stirling’s series” given by

1l = <2 (f) (1+L+ L1
e 12n ~ 288n2  51,840n3
571 163,879
T2.488.320n% | 209,018,880n° )

[2, p. 257]. The asymptotic expansion of the natural logarithm of n! is also
referred to as “Stirling’s series” and is given by

1 1
121 360m° T 126015
1 N 1 691
1,680n7 ' 1,18817°  360,360n1!

1
Inn! =nlnn—n + Eln(Znn) AF

[1173]. Sir Isaac Newton was elected President of the Royal Society in
1724 and served until his death in 1727. Stirling, on the recommendation
of Newton, was elected Fellow of the Royal Society in 1726. James Stirling
FER.S. died in Edinburgh on 5 December 1770 at age 78.

The procedure by March [890] prompted several comments. Boulton noted
that the method proposed by March was rather inefficient as it operated by
generating all combinations that satisfied a weakened set of constraints, rejecting
those combinations that violated the constraints imposed by the observed marginal
frequency totals [185, p. 326]. Boulton modified the algorithm by March, utilizing

21t should be noted that in 1730 Abraham de Moivre published his Miscellanea Analytica de
Seriebus et Quadraturis in which de Moivre first gave the expansion of factorials now known as
Stirling’s series, which should probably be referred to as the de Moivre—Stirling series [361, p. 8].
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a procedure by Boulton and Wallace [187]. In 1975 Hancock [583] also revised the
algorithm by March and compared the two methods. Hancock found his proposed
modification to be much faster than the March algorithm. As Hancock illustrated, for
a 4 x 4 contingency table with all cell frequencies equal to 1, the March algorithm
examined 1,953,125 contingency tables before it reached a result, compared with
only 10,147 contingency tables for Hancock’s revised method. In 1976 Boulton also
compared times for his 1973 algorithm with the algorithm of Hancock and found the
Boulton procedure to be faster than the Hancock procedure [186].

In 1976 Howell and Gordon [657] published FORTRAN subroutine CONTIN,
which was just a special case of the general method for an  x ¢ contingency table
with fixed marginal frequency totals described previously by Freeman and Halton
in 1951 [480]. The Howell and Gordon procedure enumerated all possible r x ¢
contingency tables, given fixed marginal frequency totals, and calculated the exact
probability of the observed contingency table or one more extreme. The subroutine
relied on the inefficient calculation of factorials and was based on the formula for the
exact probability of a single r x ¢ contingency table, given the marginal frequency
distributions,

IL[R,;! ]_[ C;!
=1

i=1
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where R; and C_; denoted the fixed row and column marginal frequency totals, N
was the total number of observations, X;; denoted the observed cell frequencies, and
Py was the probability of contingency table k.

The year 1977 was to be important for calculating exact probability values for
r X ¢ contingency tables. First, Fleishman developed a program for calculating the
exact probability for r x ¢ contingency tables [466]. The program by Fleishman
was based on an extension of the Fisher—Yates exact probability test and utilized the
general method of Freeman and Halton [480] (q.v. page 172). As Fleishman noted,
for a 4 x 3 contingency table with a total frequency of 82 there were over 804,000
contingency tables enumerated, and the execution time was over 40 min on an IBM
360/75, graphically illustrating the difficulties of computing at the time.

Second, Agresti and Wackerly published an article on exact conditional tests
of independence for r x ¢ contingency tables with fixed marginal frequency
totals [7]. In this case, Agresti and Wackerly were less concerned with the exact
hypergeometric probability and more concerned with the exact probability of
established statistics, such as Pearson’s chi-squared statistic. They were able to show
that exact tests of independence using the chi-squared formula, or any measure of
association as the test statistic, were manageable, i.e., required less than a minute of
CPU times on an IBM 360/165 mainframe computer for a variety of 2 x 3, 2 x 4,
2x5,2x6,2x7,3x3,3x4,3x5,and4 x 4 contingency tables.



230 4 1960-1979

Agresti and Wackerly noted that procedures that ordered sample points solely on
the basis of the probability of occurrence had received strong criticism, especially
from Radlow and Alf in 1975 [1150]. The rationale of the criticism was that some
configurations of cell frequencies may be less likely than the observed table under
the null hypothesis, but exhibit less discrepancy from the null hypothesis than the
observed table. Thus, Agresti and Wackerly defined the attained significance level
to be the sum of the probability values of all tables for which the value of the test
statistic was at least as large as the value of the test statistic for the observed table
[7, p. 114]. This was destined to become an important observation.

Third, Bedeian and Armenakis developed a program for computing the Fisher—
Yates exact probability test and the coefficient of association lambda (A) for r x ¢
contingency tables [91]. The stated purpose of the Bedeian and Armenakis paper
was to provide a mathematical algorithm for the Fisher—Yates exact test that was
adaptable to r x ¢ contingency tables and also provided the user with A, an index of
predictive association designed for cross-tabulation of two nominal-level variables
developed by Leo A. Goodman and William H. Kruskal at the University of Chicago
in 1954 [534].%¢

Goodman-Kruskal’s Lambda
Lambda was developed by Leo A. Goodman and William H. Kruskal in 1954
at the University of Chicago [534]. Lambda was designed to measure the
degree of association between two categorical (nominal-level) variables that
had been cross-classified into an 7 X ¢ contingency table.

Three lambda coefficients were defined: two asymmetric and one sym-
metric. The first, Aoysjcols> Was for cases when the column variable was the
independent variable and the row variable was the dependent variable; the
second, Acoislrows, Was for cases when the row variable was the independent
variable and the column variable was the dependent variable; and the third,
Asymmetric, Was essentially an average of Arows|cols a0 Acolsfrows-

Perfect association between the row and column variables resultsin A = 1,
and A = 1 implies perfect association. On the other hand, independence of
the row and column variables results in A = 0, but A = 0 does not necessarily
imply independence. The reason for this is that A is ultimately based on modal
values and if the modal values of one variable all occur in the same category
of the other variable, A defaults to zero, a serious deficiency of Goodman and
Kruskal’s A.

26The 1954 article by Goodman and Kruskal was the first of four articles on measures of association
for cross classifications published in Journal of the American Statistical Association in 1954, 1959,
1963, and 1972 [534-537]. Robert Somers referred to the first of these papers as “a landmark to
those working with statistics in the behavioral sciences” [1295, p. 804] and Stephen Fienberg was
quoted as saying that the series constituted “four landmark papers on measures of association for
cross classifications” [538, p. v].
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Fig. 4.6 The2 x 3

contingency table of Bedeian 2 2 142 146
. 0 2 106 108

and Armenakis
2 4 248 | 254

The table used by Bedeian and Armenakis to illustrate their procedure is given in
Fig.4.6 [91, p. 256]. Based on the 2 x 3 contingency table in Fig. 4.6, Bedeian and
Armenakis calculated the Fisher—Yates exact probability value to be 0.11944, and
the lambda values to be A,owsjcotls = 0.00, Acoisirows = 0.00, and Agymmeric = 0.00.

Unfortunately, 0.11944 is the point-probability value for the observed table in
Fig. 4.6 rather than the two-tailed probability value.?’” For the table in Fig. 4.6, there
are 15 possible cell configurations given the fixed marginal frequency totals, of
which 13 are as or more extreme than the observed cell frequencies, resulting in
an exact two-tailed probability value of 0.6636.

Even more unfortunate was the poor choice by Bedeian and Armenakis for the
example 2 x 3 contingency table depicted in Fig. 4.6. Since the modal values of the
row variable (142 and 106) both occur in the same category of the column variable
(third column), and the modal values of the column variable (2, 2, and 142) all occur
in the same category of the row variable (first row), then all three lambda coefficients
are necessarily zero.

Finally in 1977, Baker introduced FORTRAN subroutine TABPDF that evaluated
an r x ¢ contingency table for three models [55]. The first model considered both
sets of marginal frequency totals as fixed. The second model considered the row
marginal frequency totals only as fixed, so that the summation of the probability
values was over all r x¢ contingency tables with marginal frequency totals consistent
with just the row marginal frequency totals. The third model considered neither
row nor column marginal frequency totals as fixed, so that the summation of the
probability values was over all r x ¢ contingency tables with the same frequency
total 28

4.6 Siegel-Tukey and Tables for the Test of Variability

To this point, Chap. 4 has primarily considered the decades of the 1960s and 1970s
in terms of computing power, concentrating on the contributions of researchers
who provided algorithms for generating random permutation sequences, computing
exact and resampling-approximation probability values, the analysis of contingency
tables, and a moment-approximation approach designed specifically for permutation
tests, per se. The remainder of the chapter is dedicated to the statistical permutation

2TThe correct point-probability value for the table in Fig. 4.6 is 0.11946.

28The three research designs were first described by George Barnard in a 1947 Biometrika article
[67] (q.v. page 130).
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literature that was developed in the same period. It begins with a 1960 article on
two-sample rank tests by Sidney Siegel and John Tukey.

Work on the publication of tables that listed exact probability values for a variety
of rank tests that had begun in the 1950s continued in the 1960s. In 1960 Siegel
and Tukey developed a non-parametric two-sample test based on differences in
variability between the two unpaired samples, rather than the more conventional
tests for differences in location [1273]. The Siegel-Tukey test was designed to
replace parametric F tests for differences in variances that depended heavily on
normality, such as Bartlett’s F' and Hartley’s Fi,ax tests for homogeneity of variance
[78,596]. Within this article Siegel and Tukey provided tables of one- and two-sided
critical values based on exact probabilities for a number of levels of significance.?’

S. Siegel

Sidney Siegel received his B.A. degree from San José State College (now,
San José State University) in 1951 and his Ph.D. in psychology from Stanford
University in 1953 [1271]. It was while Siegel was a graduate student
at Stanford that he was first exposed to statistics, studying under Quinn
McNemar, Lincoln Moses, George Polya, Albert Bowker, Kenneth Arrow,
and John Charles Chenoweth (J.C.C.) McKinsey. He served for 1 year as
a Fellow at the Center for Advanced Study in the Behavioral Sciences at
Stanford, thereafter he was employed at Pennsylvania State University. He
was the author of Nonparametric Statistics for the Behavioral Sciences, which
ultimately became one of the best selling statistics books of all time, appearing
in English, Japanese, Italian, German, and Spanish [1272]. Sidney Siegel
passed away on 29 November 1961 at the early age of 45 from coronary
thrombosis [1271, p. 16]. His book was resurrected and revised in 1988 by
N. John Castellan and published as a second edition with authors Siegel
and Castellan. N. John Castellan died at home on 21 December 1993 at the
age of 54.

J.W. Tukey
John Wilder Tukey received his B.A. and M.A. degrees in chemistry from
Brown University in 1936 and 1937, respectively, and his Ph.D. in mathemat-
ics from Princeton University in 1939 under the supervision of the algebraic
topologist Solomon Lefschetz, followed by an immediate appointment as

(continued)

2In 1960 A.R. Ansari and R.A. Bradley published an article titled “Rank sum tests for dispersion”
that provided tables of critical values for the symmetrical version of the Siegel-Tukey test and also
discussed the normal approximation to the null distribution [812, p. 52].
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Henry B. Fine Instructor in Mathematics [425]. A decade later, at age 35,
he was advanced to Professor and in 1976 he was awarded the Donner
Professor of Science chair. Tukey spent his entire academic career at Princeton
University, but simultaneously worked for 40 years in the Department of
Statistics and Data Analysis at the AT&T Bell Laboratories (now, Alcatel—
Lucent) in Murray Hill, New Jersey, until his retirement in 1985. In 1956
Tukey assumed the directorship of the newly founded Statistical Research
Group at Princeton and then Head of the Department of Statistics at Princeton
when it was established in 1965. In 1973, President Nixon awarded Tukey the
National Medal of Science.

Among his many accomplishments, Tukey is known for his work on
exploratory data analysis (EDA), his coining of the word “software” in the
January 1958 issue of American Mathematical Monthly [1256, p. 772], and
his invention of the word “bit” to represent a binary digit in 1946.%" His
collaboration with fellow mathematician James William Cooley resulted in
the discovery of the fast Fourier transform (FFT), which was to become
important in permutation methods in the 1990s. Tukey held honorary degrees
from the Case Institute of Technology, the University of Chicago, and Brown,
Temple, Yale, and Waterloo Universities; in June 1998, he was awarded an
honorary degree from Princeton University [425]. The eight volumes of The
Collected Works of John W. Tukey provide an excellent compendium of the
writings of John Tukey, as well as a rich source of biographical material
[207,212,213,258,294,700,701,871]. John Wilder Tukey passed away from
a heart attack that followed a brief illness on 26 July 2000 at the age of 85
[214,704].

Let the two sample sizes be denoted by n and m with n < m and assign ranks to
the n +m ordered observations with low ranks assigned to extreme observations and
high ranks assigned to central observations. More specifically, assign rank 1 to the
smallest value, rank 2 to the largest value, rank 3 to the second largest value, rank 4
to the second smallest value, rank 5 to the third smallest value, and so on, alternately
assigning ranks to the end values two at a time (after the first) and proceeding toward
the middle. Since the sum of the ranks is fixed, Siegel and Tukey chose to work with
the sum of ranks for the smaller of the two samples, represented by R,. They also
provided a table with one- and two-sided critical values of R, forn < m < 20 for
various levels of «.

30The first use of the acronym “bit” for “binary digit” is often attributed to Claude Elwood Shannon
of Bell Laboratories, the father of information science, as it was contained in his 1948 paper on
“A mathematical theory of communication,” e.g., [1166, p. 199]. However, in this seminal paper
Shannon gave full credit to John Tukey for first suggesting the term [1254].
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Fig. 4.7 Observations and
dispersion ranks for ten
graduate students

20 22 23 24 25 27 28 30 32 45
1 4 5 8 9 10 7 6 3 2

For an example, suppose that there are n = 5 male and m = 5 female students
in a graduate seminar and the observations are the ages of n + m = 10 students,
where the ages of the male graduate students are {20, 22,23, 28,32} and the ages
of the female graduate students are {24,25,27,30, 45}. The dispersion ranks are
depicted in Fig. 4.7 where the ages of the male graduate students are underlined and
R,=14+44+54+7+3=20.

A serious problem with the Siegel-Tukey test is its lack of symmetry. Another
test with exactly the same properties can be obtained by reversing the pattern of
Fig. 4.7, assigning rank 1 to the largest observation, rank 2 to the smallest, and so on
[812, p. 33]. For the data in Fig. 4.7 this would yield R, = 2+3+6+8 +4 = 23.
In 1962 Klotz [759] demonstrated the equivalence of the Siegel-Tukey test and
comparable tests by Barton and David [82] and Freund and Ansari [481].

Siegel and Tukey noted that their choice of ranking procedure, with low ranks
assigned to extreme observations and high ranks assigned to central observations,
allowed the use of the same tables as were used for the Wilcoxon two-sample
rank-sum test for location [1453]. Thus, they explained, their new test might
“be considered a Wilcoxon test for spread in unpaired samples” [1273, p. 431].
Alternatively, as they explained, the Siegel-Tukey tables were equally applicable
to the Wilcoxon, Mann—Whitney, White, and Festinger rank-sum procedures for
relative location of two independent samples [427, 880, 1441, 1453], and were
appropriate linear transformations of the tabled values published by Auble in 1953
[401.3!

4.7 Other Tables of Critical Values

In 1961 Glasser and Winter published a paper containing approximate critical values
for Spearman’s rank-order correlation coefficient, ry, for one-tailed o levels of
0.001, 0.005, 0.010, 0.025, 0.050, and 0.100 with n = 11,12,...,30 for use in
testing the null hypothesis of independence [516]. Noting that exact probability
values for ry had been calculated for samples up to size n = 10 by Olds in 1938
[1054], Kendall, Kendall, and Babington Smith in 1939 [746], and David, Kendall,
and Stuart in 1951 [328], Glasser and Winter used a Gram—Charlier Type A series
approximation to the distribution function of r first given by David, Kendall, and
Stuart in 1951 [328] to extend the tables of r; to n = 30.

31Siegel and Tukey did not mention, and were apparently unaware of, the equivalent tests by J.B.S.
Haldane and C.A.B. Smith, published in 1948 in Annals of Genetics (q.v. page 154), and by D. van
der Reyden, published in 1952 in Rhodesia Agricultural Journal (q.v. page 165).
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In 1963 Verdooren published new tables of exact critical values for the
Wilcoxon—Mann—Whitney two-sample rank-sum sample statistic for lower
significance levels 0.001, 0.005, 0.01, 0.025, 0.05, and 0.10 for sample sizes
m<n=1,2,...,25[1398]. In an appendix to the article, Verdooren listed errata
correcting a few of the values provided in the earlier tables published by White
in 1952 [1441], Auble in 1953 [40], and Siegel and Tukey in 1960 [1273]. Also
in 1963, Bennett and Nakamura published tables for testing significance in 2 x 3
contingency tables [94]. If A; for j = 1,2, 3 denotes the three column marginal
frequency totals and A; = A, = As, then four significance levels were tabulated by
Bennett and Nakamura using the randomized test principle of Freeman and Halton:
0.05, 0.025, 0.01, and 0.001.

In 1964 Milton published a new table of critical values for the Wilcoxon—-Mann—
Whitney two-sample rank-sum sample statistic [996], extending previous tables
published by Wilcoxon [1454], White [1441], van der Reyden [1391], Auble [40],
Siegel [1272], Riimke and van Eeden [1206], Jacobson [677], Verdooren [1398], and
Owen [1075]. The extended tables were for one-tailed « levels of 0.0005, 0.0025,
0.005, 0.001, 0.01, 0.025, 0.05, 0.10, and for sample sizes of n < 20 and m < 40.

4.8 Edgington and Randomization Tests

Beginning in the early 1960s, Eugene Edgington at the University of Calgary
published a number of books and articles on permutation methods and was an
influential voice in promoting the use of permutation tests and measures, especially
to psychologists and other social scientists. Edgington was especially critical of the
use of normal-theory methods when applied to nonrandom samples.

E.S. Edgington

Eugene S. Edgington, “Rusty” to his friends, received his B.S. and M.S.
degrees in psychology from Kansas State University in 1950 and 1951,
respectively, and his Ph.D. in psychology from Michigan State University
in 1955. He has enjoyed a long career in the Department of Psychology
at the University of Calgary, Alberta, where he is now Emeritus Professor.
Edgington has published many books and articles dealing with permutation
methods, the best known of which is Randomization Tests, first published in
1980 and continued through four editions, the last co-authored with Patrick
Onghena at the Katholieke Universiteit, Leuven, in 2007. Edgington has been
instrumental in the development of permutation tests for experimental designs
and an influential voice in the promotion of permutation methods, especially
among psychologists. Eugene S. Edgington is presently Professor Emeritus at
the University of Calgary, Alberta.
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In 1964 Edgington published a descriptive article on randomization tests in The
Journal of Psychology [387]. This article marked the beginning of an important
series of articles and books on methods and introduced permutation statistics to a
wide audience of psychologists, who subsequently found permutation methods both
popular and useful.*>:33 In this brief article, Edgington defined a randomization test
as a statistical test that derives a sampling distribution of a statistic from repeated
computations of the statistic for various ways of pairing or dividing the scores
[387, p. 445]. He considered three types of randomization tests: tests for differences
between independent samples, tests for differences between paired samples, and
tests of