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Abstract

We study the application of a widely used ordinal regression model, the cumulative probability 

model (CPM), for continuous outcomes. Such models are attractive for the analysis of continuous 

response variables because they are invariant to any monotonic transformation of the outcome and 

because they directly model the cumulative distribution function from which summaries such as 

expectations and quantiles can easily be derived. Such models can also readily handle mixed type 

distributions. We describe the motivation, estimation, inference, model assumptions, and 

diagnostics. We demonstrate that CPMs applied to continuous outcomes are semiparametric 

transformation models. Extensive simulations are performed to investigate the finite sample 

performance of these models. We find that properly specified CPMs generally have good finite 

sample performance with moderate sample sizes, but that bias may occur when the sample size is 

small. CPMs are fairly robust to minor or moderate link function misspecification in our 

simulations. For certain purposes, the CPM are more efficient than other models. We illustrate 

their application, with model diagnostics, in a study of the treatment of HIV. CD4 cell count and 

viral load 6 months after the initiation of antiretroviral therapy are modeled using CPMs; both 

variables typically require transformations and viral load has a large proportion of measurements 

below a detection limit.
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1. Introduction

Continuous data are also ordinal, and ordinal regression models can be fit to continuous 

outcomes [1, 2]. The first ordinal regression model was developed by Walker & Duncan [3] 

as an extension of logistic regression to ordered categorical data. This class of models was 

later studied by McCullagh [4] and referred to as proportional odds models for the logit link 

and proportional hazards models for the complementary log-log link (cloglog). To 
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distinguish this class of models from other ordinal regression models (e.g., continuation ratio 

models [5, 6], adjacent-categories models [7, 8], and ordinal stereotype models [9]), these 

models have been referred to as cumulative link models [10]. However, this nomenclature is 

problematic because probabilities, not link functions, are added. Hence, we refer to this class 

of models as cumulative probability models (CPMs).

The use of ordinal CPMs for continuous outcomes has many attractive features. First, 

ordinal regression models are robust because they only incorporate the order information of 

response variables and are therefore invariant to any monotonic transformation of outcomes. 

This is particularly useful when the distributions of continuous responses are skewed and 

different transformations may give conflicting results. Second, CPMs directly model the 

conditional cumulative distribution function (CDF), from which other components of the 

conditional distribution (e.g., mean and quantiles) can be easily derived. Therefore, one can 

examine various aspects of the conditional distribution from a single CPM, whereas other 

regression models often only focus on one aspect. Finally, CPMs can handle any orderable 

response, including those with mixed types of continuous and discrete ordinal distributions. 

This may be particularly useful when dealing with detection limits, e.g., measurements 

censored at an assay detection limit resulting in a mixture of an undetectable category and 

detectable quantities.

Although the idea of using ordinal CPMs for continuous outcomes is attractive and has been 

around for a while, we have not seen it used very often in practice. This may be in part due 

to computing limitations, as most software that fit CPMs are currently designed for ordered 

categorical outcomes with relatively small numbers of possible response values, and hence a 

small number of intercepts. This need not be the case anymore. With modern computing 

power and improved algorithms, software capitalizing on the sparse information matrix of 

CPMs can handle thousands of intercepts [1, 11], as will be demonstrated below. However, 

we believe the primary reason for limited use of these models with continuous outcomes is a 

lack of awareness. CPMs were first invented to handle discrete ordinal outcomes, and their 

potential utility for the analysis of continuous outcomes has been largely unrecognized. 

Furthermore, we are unaware of any in-depth study of the use of CPMs for continuous 

outcomes.

The goal of this manuscript is to describe and study the application of CPMs to continuous 

outcomes. In Section 2 we describe details of the approach including the motivation, 

estimation, inference, assumptions and model diagnostics. In particular, we motivate the use 

of semiparametric transformation models for continuous outcomes and show how they lead 

to CPMs. In Section 3, we investigate the finite sample performance of CPMs with and 

without proper link function specification through simulations. In Section 4, we illustrate 

their application to an HIV study modelling CD4 cell count and viral load 6 months after the 

initiation of antiretroviral therapy. Both variables typically require transformations and viral 

load has a large proportion of measurements below a detection limit. Section 5 contains a 

discussion. Additional simulation results are given in Supplemental Materials. R code for all 

simulations and analyses is posted at http://biostat.mc.vanderbilt.edu/ArchivedAnalyses.
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2. Cumulative Probability Models for Continuous Outcomes

2.1. Motivation

Regression analyses of continuous outcomes often require an assumption on the outcome 

distribution or a transformation of the outcome so that it is more amenable for analysis. 

Because the correct transformation is often unknown, it is desirable to model the relative 

positions of the outcome values instead of picking a transformation. In addition, it would be 

appealing to estimate the outcome distribution instead of assuming it.

One approach to achieving these goals is to model the observed outcome Y as a monotonic 

transformation of a latent variable Y∗, Y = H(Y∗), where the function H(·) is strictly 

increasing but unknown otherwise (the “strictly” part will be relaxed later) and Y∗ = βT X + 

ε, with βTX a linear combination of the input variables X and ε ~ Fε, where Fε is a specified 

distribution. The intercept is unnecessary in Y∗ = βTX + ε because a shift can be reflected in 

the transformation H(·). This approach leads to the linear transformation model,

(1)

This model is semi-parametric because the effect of X is modeled parametrically while the 

functional form of H(·) is unspecified. The model has been studied by others, including Zeng 

& Lin [12]. The cumulative probability function of Y conditional on X can be written as

For simplicity, let  and α = H−1. Then, we have

(2)

where G(·) is a link function and α(·) is an intercept function. In other words, the linear 

transformation model (1) is also a CPM (2). When focused on the observed values {yi; i = 1, 

…, n}, the CPM can be expressed as

(3)

where αi = α(yi) for i = 1, ⋯ , n. Here the parameters are (β, α1, …, αn). Without loss of 

generality, we assume y1 ≤ ⋯ ≤ yn. Since α−1(·) is increasing, we have the constraint α1 ≤ 

… ≤ αn, and αi = αj whenever yi = yj.

The above derivation also works when H(·) is increasing but not strictly increasing. For 

mathematical clarity, we assume H(·) is left continuous and define H−1(y) = sup{z : H(z) ≤ 

y}. It can be shown that H(H−1(y)) ≤ y, and that H(z) ≤ y if and only if z ≤ H−1(y). In 

practice, the direction of the continuity of H() does not matter as long as Y∗ follows a 
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continuous distribution. If H(·) is constant on an interval, the observed response variable Y 
can be a mixed type of continuous and discrete ordinal variables. In the extreme case where 

H() is a step function, Y is a discrete ordinal variable. Therefore, the linear transformation 

model (1) and the associated CPM (2) can be used to model continuous, discrete ordinal, and 

mixed types of ordinal and continuous variables.

The CPM (2) has several nice properties. Unlike other commonly used continuous 

regression models which only focus on one aspect of the conditional distribution, e.g., the 

conditional mean for linear regression models or a conditional quantile for quantile 

regression models, the entire conditional distribution is modeled by the CPM. Since α−1(y) 

= G[P (Y ≤ y|X = 0)], the intercept function α−1() is the link function transformed CDF at 

baseline X = 0. The intercept function is also the transformation needed for Y such that Y∗ = 

α−1 (Y) can be fit with a linear regression model (with error term ε ~ G−1). The association 

between Y and X is captured by β: a positive βj means that with the values for all other X 
variables fixed, an increase in Xj is associated with a stochastic increase in the distribution of 

Y. As shown in Figure 1, CPMs have an assumption of parallelism. That is, the difference 

between link function transformed conditional CDFs for different values of covariates is 

constant, i.e.,  which is free of y. 

Depending on the link function chosen, β can have a nice interpretation, e.g., as a log-odds 

ratio if G is the logit link function or as a log-hazard ratio if G is the cloglog link function. 

Table 1 summarizes commonly used link functions, G, and their corresponding error 

distributions, Fε, in the transformation model.

When expressed at the observed values {yi}, the model (3) is very similar to the traditionally 

defined CPM for ordinal outcomes. In fact, the latter can be viewed as a special case of the 

linear transformation model. For an ordinal outcome Y with K categories (denoted as C1, 

C2, …, CK in ascending order), a CPM is traditionally defined as

where G is a link function [4, 10]. It is well known that this model is equivalent to having an 

underlying continuous variable Y∗ from a linear model Y∗ = βT X + ε, where ε ~ Fε = G−1 

and then generating the observed outcome Y∗, i.e., Y = H (Y*) = Cj when αj − 1 < Y* ≤ αj, 

where −∝ = α0 < α1 < … < αK − 1 < αK = +∞. Here H(·) is a left-continuous non-

decreasing step function.

2.2. Nonparametric Maximum Likelihood Estimation

We now describe an approximate nonparametric likelihood function for the CPM (3). The 

nonparametric likelihood for the outcome values is 

 where . We 

approximate this likelihood by replacing F (yi − |xi) with F (yi−1|xi); this approximation is 

good when the outcome values are densely placed. Therefore, the nonparametric likelihood 

is approximately
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Here we added an auxiliary parameter α0 (< α1). The NPMLEs can be obtained by 

maximizing L∗(β, α). Since α0 and αn are only present in the first and the last terms of L∗, 

respectively, and also since G−1 is a monotonic increasing function, L∗ is maximized when 

 and . Plugging in  and , L∗(β, α) can be simplified as

(4)

We maximize (4) to obtain the NPMLE for β and (α1, …, αn−1).

Note that (4) has the same structure as the multinomial likelihood of the CPM for a discrete 

outcome variable with only one observation in each category. Therefore, maximizing (4) can 

be easily achieved by treating Y as a discrete variable and fitting the discrete CPM using 

standard statistical software. Although this is convenient in practice, computational 

challenges arise with large sample sizes because the Newton-Raphson algorithm typically 

used for maximization requires inverting the Hessian matrix whose dimensions ((n − 1 + p) 

× (n − 1 + p) when there are no ties) tend to increase with the sample size. However, as 

shown in Figure 2, due to the special – structure of the likelihood function (4), the portion of 

the Hessian matrix with respect to the intercepts is tridiagonal. This structure allows matrix 

inversion efficiently through Cholesky decomposition [1]. Taking advantage of these facts, 

Harrell implemented a computationally efficient algorithm to obtain the NPMLE with the 

orm() function in the rms package [11] in R software [13].

We note that the orm() function assumes a slightly different model formulation, 

 This formulation is equivalent to (3) if we define 

G(t) = −G1(1 − t), α = −αorm and β = βorm. Therefore, to fit model (3) using the orm() 

function, for symmetric error distributions such as normal and logistic distributions, since 

G(t) = −G(1 − t), the same link function can be used in orm() and the regression 

coefficients αorm differ from α in (3) only by sign. For non-symmetric error distributions 

with a link function G (e.g., G is cloglog or loglog), we specify its complementary version 

G1(t) = −G(1 − t) as the link function in orm() (e.g., G1 is loglog or cloglog, respectively).

Once we have the NPMLE , the conditional CDF, F (y|X), can be estimated at {y1, …, 

yn}: . The entire conditional CDF can be approximated using a 

step function connecting ; corresponding distribution is discrete with probability at 

yi being  when i > 1 and . With the 
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estimated CDF, some properties of the conditional distribution can be easily derived. For 

example, we can estimate the conditional mean as . With the 

estimated variance-covariance matrix for , the standard errors for  and 

 can be obtained by the delta method [14]. Figure 3(a) shows an example of an 

estimated conditional CDF and its pointwise 95% confidence interval. Also, as illustrated in 

Figure 3(b), the conditional quantiles and their confidence intervals can be obtained from 

linear interpolation of the inverse of the conditional CDF and its pointwise confidence 

intervals, respectively.

It should be noted that there is no general theory for the asymptotic properties of NPMLEs. 

Zeng & Lin [12] studied these types of semiparametric transformation models. They only 

proved the consistency, asymptotic normality, and asymptotic efficiency for censored data 

and their proofs rely on the boundedness of the estimator of H(·). Based on personal 

communication, these authors have been working on establishing the asymptotic properties 

of NPMLEs for semiparametric transformation models with uncensored data [12]. However, 

for a general continuous response, both the true value of H(·) and its estimator can be 

unbounded. This imposes tremendous technical difficulties in the proofs. In this manuscript 

we do not attempt to fill this gap in the theory. Instead, we rely on the facts that this 

approach is fully likelihood-based and that the effective degrees of freedom of the intercepts 

are small due to order constraints. We bolster this by performing extensive simulations 

(Section 3 and additional simulations in Supplemental Materials). Our simulations suggest 

that with proper model specification (i.e., correctly specifying the link function and the mean 

model, but leaving H(·) unspecified), the NPMLE procedure just described results in 

consistent, asymptotically normal estimators with well-approximated variance estimates.

2.3. An Illustration

We illustrate CPMs and compare them with nonparametric and parametric models in the 

following simple example. Consider a single binary covariate X ~ Bernoulli(0.5), the latent 

response Y∗ = βX + ε, where β = 1 and ε ~ N(0, 1), and the observable response Y = H(Y∗). 

For simplicity, we set H(y) = y, that is, no transformation is needed. We order the 

observations so that y1 < y2 < … < yn. In this setting, since the covariate is binary, both 

nonparametric and parametric models can be easily applied to estimate the conditional CDF. 

Nonparametrically, we can compute the empirical CDFs for the subgroup X = 0 and the 

subgroup X = 1, respectively. Parametrically, we can fit a linear regression model to estimate 

the conditional mean and variance, and then calculate the conditional CDF using the 

cumulative probability function of the normal distribution. The CPM is semiparametric: we 

use a probit link function, which assumes the data are normally distributed after some 

monotonic transformation, but leaves this transformation unspecified. Figure 4 shows the 

estimation of conditional CDFs with these three approaches when the sample size is 10, 100 

and 1000, respectively.

The nonparametric approach only uses information from each subgroup to estimate its 

conditional CDF, i.e., the empirical CDF is a step function with jumps only at the observed 

values within each subgroup, e.g., 6 jumps for X = 0 and 4 jumps for X = 1 in the specific 
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example with the sample size of 10 in Figure 4 (a). The parametric approach (the normal 

linear regression model) pools information from all observations and also uses the 

assumption of a normal error distribution to provide smooth estimates for the conditional 

CDFs. The CPM (semiparametric) provides something in between, i.e., the estimates are 

step functions but with jumps at observed values from both subgroups, e.g., 10 jumps for 

both X = 0 and X = 1 as shown in the middle panel of Figure 4 (a). The nonparametric 

approach does not make any assumptions about the conditional distributions; therefore, it is 

the most robust estimation procedure. But it is not efficient because it only uses information 

within each subgroup and it is not easily extended to continuous or multivariate X. The 

parametric approach assumes normality for the conditional distribution. It is most efficient if 

the assumption is correct, but not robust to model misspecification. The CPM does not make 

full parametric assumptions about the conditional distributions (i.e., it only assumes that 

after some unspecified transformation, the data are normal), but still pools information by 

assuming a shared shape for the conditional distributions. Therefore, the CPM provides a 

compromise between efficiency and robustness.

2.4. Model Diagnostics

As with discrete variables, the link function of CPMs for continuous responses should 

ideally be pre-specified based on preliminary scientific knowledge and convenience of 

interpretation. This may be challenging in application since it requires the specification of 

the error distribution on the unknown transformed scale. Therefore, model diagnostics, 

especially for the choice of link functions, are important. A goodness-of-link test has been 

developed by Genter & Farewell to discriminate the model fit between probit, cloglog, and 

loglog link functions for discrete variables [15]. The main idea is that these three link 

functions can be considered as special cases of a generalized log-gamma link function with 

an extra parameter. Then, a likelihood ratio test comparing the full model (using the log-

gamma link) with the reduced model (using the probit, cloglog, or loglog link) could provide 

information about the goodness of fit. To avoid the computational burden of fitting the full 

model, Genter & Farewell proposed to compare the log-likelihoods of probit, cloglog, and 

loglog models directly as a conservative approximation to the formal likelihood ratio test 

[15]. Specifically, they claim that if twice the difference of two log-likelihoods exceeds the 

appropriate percentile of a chi-square distribution with 1 degree of freedom, one can infer 

that the link with the smaller likelihood is inappropriate. This approach is also applicable to 

continuous responses. However, an automated link function selection procedure based on the 

largest log-likelihood should be used with caution because it seems to share the problems of 

step-wise selection procedures [16, 17] according to our simulations (see Table S.1 in 

Supplemental Materials S.1), i.e., type I error rates are inflated, standard error estimates are 

too small, and the confidence intervals are too narrow.

The model fit of CPMs can also be examined graphically with residuals. As described in 

Section 2.1, the intercept function α(y) can be interpreted as the best transformation needed 

to fit a linear model. Therefore, we can transform the observed yi to  and explore 

the model fit with residuals, , on the transformed scale. Alternatively, we can use 

probability-scale residuals, which were originally proposed for discrete ordinal variables 

[18, 19]. Probability-scale residuals are functions of fitted conditional CDFs. They are 
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approximately uniformly distributed with proper model specification of continuous 

outcomes, and are therefore particularly useful in this setting. We illustrate the application of 

this new residual with details in Section 4.

3. Simulation Studies

3.1. With Proper Link Function Specification: Bias, Coverage, and Relative Efficiency

In this section, we first conduct simulations to evaluate the finite sample performance of 

CPMs for continuous response with proper link function specification. We generated data 

from Y = exp (β1X1 + β2X2 +ε), where X1 ~ Bernoulli(0.5), X2 ~ N(0, 1), β1 = 1 and β2 = 

−0.5, and with two error distributions: (i) ε ~ N(0, 1) and (ii) ε generated from the extreme 

value distribution (type I) as in Table 1. The corresponding properly specified link functions 

for these two error distributions are probit and cloglog, respectively. We conducted 

simulations for different sample sizes with n = 25, 50, 100, 200, 500, and 1000. For each 

sample size, simulations were replicated 10, 000 times. For the purpose of better 

visualization, we summarize the results with figures. More details of simulation results can 

be found in Supplemental Materials S.2.1.

As discussed in Section 2.1, when the link function is properly specified, the intercept 

function α(y) of CPMs corresponds to the proper transformation needed for the parametric 

linear model, which is log (y) in this case. With NPMLE, α(y) is estimated using a step 

function with jumps at observed values of Y. We plot  versus the proper transformation 

log(y) from the first simulation replicate with n = 100 in Figure 5. The average of the step 

function estimates  over all 10, 000 simulation replicates is also plotted. According to 

Figure 5, in our simulations with sample size of 100, the NPMLE  shows little bias 

compared with the true transformation except in tail regions, where little information is 

observed. The range of near agreement between average  and log(y) becomes wider as n 
increases.

Figure 6 summarizes the performance for estimating the regression coefficients, including 

slopes β1, β2, and a few intercept values α(y) evaluted at y1 = e−1 ≈ 0.368, y2 = e−0.33 ≈ 
0.719, y3 = e0.5 ≈ 1.649, y4 = e1.33 ≈ 3.781, and y5 = e2 ≈ 7.389 (also shown in Figure 5 in 

logarithm). At those values, the marginal cumulative probabilities of Y with the error 

distribution (i) are close to 0.1, 0.25, 0.5, 0.75, 0.9, and are close to 0.23, 0.39, 0.63, 0.84, 

0.95 with the error distribution (ii), respectively. Our simulations demonstrate that when the 

link function is properly specified, the NPMLE has good performance for estimating the 

regression coefficients with moderate to large sample sizes (e.g., n ≥ 50), i.e., bias is small 

and the standard error estimators agree well with the empirical standard errors. Although we 

do observe some bias (up to 20%) when the sample size is small (e.g., n = 25), the biases in 

estimating regression coefficients and their standard errors decrease quickly with increasing 

sample size. For example, in our two simulation settings, the bias for regression coefficient 

is < 8% when n = 50, < 5% when n = 100, and < 2% when n = 200. When the sample size 

gets to 1, 000, the average of estimates are almost identical to the true parameters.
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We also investigated the relative efficiency of the properly specified CPMs compared with 

other commonly used parametric or semiparametric models. For error distribution (i), we 

compared the CPM with the linear regression model after a Box-Cox transformation [20]:

The usual practice of Box-Cox transformation is to first find the  which gives the highest 

profile likelihood for the transformed linear regression model, and then to treat  as known 

(which is potentially problematic because it ignores uncertainty in its estimation) and 

transform the response y to , and finally, to fit linear regression with y∗ as the 

outcome. In our simulations, we performed the Box-Cox transformation using the 

boxcox() function in the MASS R package [21]. We used its default option in which λ is 

estimated by a grid search algorithm searching in the range of −2 to 2 with increments of 

0.1.

In our simulation setting, the proper transformation, log(y), is a special case of the Box-Cox 

transformation with parameter λ = 0. With the latent scale error ε ~ N(0, 1), the Box-Cox 

transformation model is a properly specified parametric transformation model. Figure 7 (i) 

shows the relative efficiency of the properly specified CPM compared with the Box-Cox 

transformation model on estimating the slopes β1 and β2. Since the estimates from the CPM 

show small bias when the sample size is small, we estimate the relative efficiency with the 

ratio of mean squared errors (MSE) instead of the ratio of variances. As expected, the 

properly specified CPM is generally less efficient than its parametric counterpart. However, 

the relative efficiency increases with the sample size. Specifically, in our simulation setting, 

the relative efficiency is over 80% when n = 100, and over 90% when n = 1, 000, indicating 

only a small efficiency loss when using properly specified CPMs with moderate or large 

sample sizes.

For error distribution (ii), we compared the properly specified CPM with the Cox 

proportional hazards model. In this scenario, both models assume proportional hazards and 

are properly specified semiparametric models. However, their estimation procedures are 

different. The Cox proportional hazards model maximizes the partial likelihood which is 

only a function of slopes, whereas the CPM maximizes the full likelihood L∗ which is a 

function of both intercepts and slopes. The intercepts (i.e., baseline log-cumulative hazard) 

of the Cox model can be estimated post hoc with the Breslow estimator [22], from which 

one can compute the cumulative probabilities. Usually, the Cox proportional hazards model 

is applied to right censored data, but it can also be fitted to uncensored data with negative 

values. Figure 7 (ii) shows the relative efficiency (again, measured with MSE ratio) of the 

CPM and Cox proportional hazards model on estimating β1 and β2, and baseline cumulative 

probabilities (i.e., X1 = X2 = 0) at y1,…, y5. In our simulations, the CPM with the cloglog 

link function has similar performance with the Cox proportional hazards model when the 

sample size is moderate or large. With smaller sample sizes, however, the CPM is generally 

less efficient for estimating the slopes, but more efficient for estimating the cumulative 

probabilities.
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As described in Section 2.2, the conditional CDF and other properties of the conditional 

distribution can be derived with the regression coefficients from CPMs. Figure 8 summarizes 

the performance for estimating conditional CDFs when the link function is properly 

specified. The performance of CPMs for estimating conditional means and conditional 

quantiles are summarized in Supplemental Materials Figure S.1 and Figure S.2, respectively. 

Similar patterns are observed as in estimating the regression coefficients. Generally, the 

CPMs have good performance for estimating different aspects of the conditional distribution 

with moderate or large sample sizes (e.g., n ≥ 50 in our simulation settings). But when the 

sample size is relatively small (e.g., n = 25), there may be substantial bias both in estimating 

the parameters and their standard errors. Presumably this is because the NPMLE 

approximation is more accurate with bigger sample sizes.

Although the CPM is usually less efficient than the properly specified parametric models, it 

may still have some advantage when estimating some properties that are easier to derive 

from the conditional CDF. For example, with the error distribution (i) where the Box-Cox 

transformation model is properly specified, although the CPM is generally less efficient for 

estimating the slope parameters, it has good performance for estimating the conditional 

mean with moderate to large sample sizes when the link function is properly specified. 

However, for the Box-Cox transformation model, we often only consistently estimate the 

conditional mean on the transformed scale, i.e., Ŷ ∗ → E[B(Y, λ)|X]. Performing a simple 

back transformation, , usually does not yield a consistent estimator for the 

conditional mean on the original scale because , 

which is well known from Jensen’s inequality to not equal E(Y|X) except when λ = 1.

3.2. Estimation with Link Function Misspecification

Although the commonly used link functions represent various types of error distributions, 

e.g., the probit and logit link functions correspond to bell-shaped and symmetric error 

distributions with different tail densities, whereas cloglog and loglog link functions represent 

error distributions skewed in opposite directions, in practice there is no guarantee that the 

latent error has exactly the same CDF as the inverse of the link function. Therefore, it is of 

interest to study the robustness of CPMs with link function misspecification, especially 

when the misspecification is only moderate, e.g., using the probit link function when the true 

latent error distribution is the t-distribution or using the cloglog/loglog link functions when 

the true error distribution is skewed in the same direction but does not have exactly the same 

shape as the specified link function. We generated data from Y = H(β1X1 + β2X2 + ε), 

where X1 ~ Bernoulli(0.5), X2 ~ N(0, 1), β1 = 1 and β2 = −0.5. For simplicity, we set H(y) = 

y, that is, no transformation is needed. The error term ε is generated from: (a) the standard 

normal distribution, (b) the standard logistic distribution, (c) the Type I extreme value 

distribution, (d) the Type II extreme value distribution, (e) t5, the t distribution with 5 

degrees of freedom, (f) the uniform distribution with range from −5 to 5, (g) the 

standardized beta distribution with parameters α = 5 and β = 2 (standardized by subtracting 

the mean and then dividing by the standard deviation), and (h) the standardized beta 

distribution with parameters α = 2 and β = 5. The probability density functions (PDFs) of 

these error distributions and the extent of violation to the parallelism assumption with probit, 

logit, cloglog, and loglog link functions are shown in Supplemental Materials S.2.2 (see 
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Figures S.3 and S.4). The proper link functions for (a) – (d) are probit, logit, cloglog, and 

loglog, respectively, whereas, there are no proper link functions with existing software for 

(e) – (h), i.e., no perfect parallelism.

We fitted CPMs with probit, logit, cloglog, and loglog link functions for each scenario with 

sample sizes of 50, 100, and 200, respectively. With different link functions, the regression 

coefficients are not in the same scale, and therefore are not directly comparable. Instead, we 

compared the estimated conditional means and conditional medians for (X1 = 0, X2 = 0), 

(X1 = 1, X2 = 0), (X1 = 0, X2 = 1), and (X1 = 1, X2 = 1). For the purpose of comparison, we 

also obtained the estimates for these conditional means and medians from linear regression 

and median regression models. The efficiency of the CPM on estimating conditional means 

and medians is compared with the properly specified linear regression and median 

regression models, respectively.

Figures 9 and 10 summarize the performance for estimating conditional means and medians, 

respectively, for sample sizes of 100. More details of these simulation results, as well as 

those for sample sizes of 50 and 200 (which yielded similar results), are reported in 

Supplemental Materials S.2.2. In summary, we find with moderate or large sample size (e.g., 

n ≥ 50), the CPMs with properly specified link functions have good performance for 

estimating conditional means and medians, i.e., the bias is small and the coverage 

probability of 95% confidence intervals is close to 0.95. It is worth pointing out that CPMs 

with properly specified link functions seem to be more efficient than median regression, i.e., 

MSE ratios are generally greater than 1. CPMs with properly specified link functions may 

also be more efficient than linear regression when the error distribution is skewed, e.g., error 

distribution (c) (Type I extreme Value) with the cloglog link function and error distribution 

(d) (Type II extreme value) with the loglog link function. The CPMs seem to have 

reasonable performance under minor or moderate link function misspecification, e.g., error 

distribution (a) (Normal) with the logit link function, (b) (Logistic) with the probit link 

function, (e) (t5) with the logit or probit link function, (g) (standardized Beta(5, 2)) with the 

cloglog link function, and (h) (standardized Beta(2, 5)) with the loglog link function. 

However, with severe link function misspecification, i.e., the error distributions have totally 

different shapes or are skewed in opposite directions, the CPMs may have poor performance, 

e.g., error distributions (a) (Normal) and (b) (Logistic) with the cloglog or loglog link 

functions, error distributions (c) (Type I extreme value) and (g) (standardized Beta(5, 2)) 

with the loglog link function, and error distributions (d) (Type II extreme value) and (h) 

(standardized Beta(2, 5)) with the cloglog link function.

As one of the reviewers suggested, we also conducted simulations to explore the 

performance of CPMs with more extreme covariate distributions, with the inclusion of an 

interaction term between X1 and X2, and with different choices of β. The results were 

generally similar with those already reported, except that larger sample sizes were needed to 

obtain stable and unbiased estimates in these more complicated settings. Details of these 

simulation results can be found in Supplemental Materials S.2.3.
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3.3. Computation Time

Because estimation requires inverting a Hessian matrix whose dimensions increase with the 

sample size, computation time of CPMs with continuous outcomes substantially increases 

with n, even when taking advantage of the block tridiagonal nature of the Hessian (see 

Section 2.2). For example, generating data as described in Section 3.1 with normal errors, 

the average computation times based on 100 replications with the properly specified model 

using the orm () function in R software were 1.3, 21, 82, and 338 seconds for sample sizes 

of 1000, 5000, 10000, and 20000, respectively. (These and all other simulations in this 

subsection were performed using a 2012 iMac with 3.4 GHz Intel Core i7 and 16 GB 1600 

MHz DDR3.) In contrast, properly transforming the data and then fitting a linear model took 

an average of 0.013 seconds for n = 20000.

Computation time decreases as the number of unique outcomes decreases. We repeated the 

simulation described above, but reduced the number of unique outcomes by binning the 

continuous response variables evenly into a large number of bins, varying from 100 to 

10000, based on quantiles of the simulated data. Figure 11 shows the length of time for 

estimation in these simulations as a function of the number of unique outcomes. For 

example, with n = 20000, average computation time went from 338 seconds with no binning 

to 1.2 seconds binning to 100 outcomes. Estimates using the binned data tended to be similar 

to those without binning, even when binning to as few as 100 unique categories, with bias 

remaining about the same and only minor increases in the MSE for most parameters (see 

Tables S.23 and S.24 in Supplemental Materials). After binning, we were able to fit 

cumulative probability models to data with very large n; with n = 10 million and binning to 

200 unique outcomes based on quantiles, model fitting took approximately 25 minutes.

It should be noted that in practice continuous data are usually obtained in rounded forms. 

For example, time is often recorded in days, body-mass index rounded to one decimal, and 

so forth. Hence, in practice the number of unique outcomes typically does not equal the 

sample size as n gets very large, even with unbounded data. However, if data are truly 

continuous, these results suggest that with very large n, an analyst might consider binning 

the outcomes prior to fitting CPMs with little sacrifice in accuracy of estimation.

4. Application Examples

We illustrate the application of CPMs for continuous outcomes using a dataset of 4,776 

persons living with HIV starting antiretroviral therapy (ART) in Latin America [23]. CD4 

count and viral load are important measures of an HIV-positive patient’s immune system 

function and control of the virus. We are interested in modeling CD4 count and viral load 6 

months after the initiation of ART using patients’ demographics and baseline covariates, 

summarized in Supplemental Materials Table S.25. Both variables’ distributions are 

typically skewed. When modeling them with linear regression models, transformations are 

often applied, e.g., square root transformation for CD4 count and log transformation for viral 

load, although other transformations are sometimes used and different transformations may 

yield conflicting results. With CPMs, the proper transformation can be estimated 

semiparametrically or ignored. In addition, measurements of viral load are often censored at 

assay detection limits, especially when patients are on ART. To deal with this issue, common 
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practice is to categorize the viral load (e.g., “undetectable” versus “detectable”) or to impute 

particular values for those measurements below the detection limit (e.g., if the detection 

limit is 400 copies/mL, then to record all measurements below the detection limit as 399 

copies/mL). However, these strategies either ignore the information of viral load above the 

detection limit or make assumptions for viral load below the detection limit. We believe that 

CPMs are particularly useful in these settings.

4.1. CD4 Count

We fit CPMs for CD4 count 6 months after ART initiation with the probit, logit, cloglog, 

and loglog link functions, including age, gender, treatment class, study site, probable 

infection route, year of ART initiation, baseline nadir CD4, baseline viral load, and baseline 

AIDS status as covariates. These CPMs have a total of 831 intercepts for 832 unique CD4 

values. The baseline nadir CD4 was square-root transformed, and then modeled with 

restricted cubic splines using 5 knots. The baseline viral load was log transformed, and then 

modeled with restricted cubic splines using 5 knots. All other continuous predictors were 

transformed with restricted cubic splines using 5 knots directly. The CPM with the loglog 

link function did not converge after 12 iterations, suggesting poor model fit, and was not 

considered further.

Figure 12 (a) plots the estimated intercepts â(y) resulting from the CPMs, which can be 

interpreted as semiparametric estimates of the best transformation for the 6-month CD4 

count. For purpose of comparison, we also plot the estimated Box-Cox transformation, 

which was estimated to be (y0.421 − 1)/0.421, close to the commonly used square-root 

transformation.

The log likelihoods for models using the probit, logit, and cloglog link functions were 

−28796.59, −28709.87, and −29185.60, respectively, suggesting better model fit using the 

symmetric probit and logit link functions. To further assess the goodness-of-fit with different 

link functions, we computed the probability-scale residuals (PSRs), defined as P (Y* < y) − 

P (Y* > y), where y is the observed value and Y* is a random variable from the fitted 

distribution [18, 19]. PSRs of a continuous outcome under the properly specified model are 

approximately uniformly distributed with range from −1 to 1. Therefore, the QQ-plot of 

PSRs versus the uniform distribution can be used to assess the overall model fit (Figure 12 

(b)). We can also assess the model fit using the observed-minus-expected residuals 

(OMERs) on the transformed scale. Specifically, since the CPM (3) can be interpreted as the 

semiparametric transformation model Y = H(βX + ε) and the intercept α(y) = H−1(y), we 

can compute the OMERs on the transformed scale as . However, as 

discussed in Section 2.2, the NPMLE of α(y) is an unbounded step function with â(ymax) = 

+∞; therefore, the OMER for the observation with the largest value of y is also unbounded. 

Figure 12 (c) shows the QQ plot of OMERs versus the error distributions corresponding to 

the specific link functions, removing the residual for the observation with the largest CD4 

count. Both (b) and (c) of Figure 12 suggest better model fit using the logit link function. 

This is consistent with the fact that the CPM with the logit link function has the highest log 

likelihood among all link functions considered. The QQ-plots of PSRs and OMERs from the 

linear regression model with Box-Cox transformation are also shown in Figure 12, 
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suggesting after the Box-Cox transformation, the error distribution, although fairly 

symmetric, is not normally distributed, especially in the tail regions.

PSRs and OMERs can also be used in residual-by-predictor plots to detect the lack of fit for 

models. For example, in Figure 13, we compare the residual-by-predictor plots using both 

PSRs and OMERs from the CPMs including and not including the baseline nadir CD4 in the 

model. The smoothed curves show a clear pattern of a positive relationship between 

residuals and the baseline nadir CD4 when it is not included (left panel of Figure 13). The 

relationship disappears when the baseline nadir CD4 is included (right panel of Figure 13).

As described in Section 2.2, one can easily obtain different aspects of conditional 

distributions using CPMs for continuous outcomes. This is particularly useful when 

modeling CD4 count. For example, we might want to summarize the central tendency of the 

conditional distribution with medians instead of means since the distribution is skewed. 

Besides the central tendency, we may also be interested in the probabilities of CD4 count 

below or above some commonly used thresholds. Figure 14 plots the estimated means, 

medians, and the probabilities of CD4 count being above 350 or 500 cells/μL as functions of 

age or treatment class fixing other predictors at their medians (for continuous variables) or 

modes (for categorical variables). For purpose of comparison, we also obtained the 

conditional means through a back transformation from the linear regression model with the 

Box-Cox transformation, the conditional medians from a median regression model, and the 

conditional probabilities of CD4 being above 350 or 500 cells/μL from corresponding binary 

logistic regression models using dichotomized CD4 count as outcomes. All models included 

the same predictor variables (and their transformations).

The estimated conditional means and medians from the different models were generally 

similar with comparable 95% confidence intervals except that some point estimates for 

conditional means from the back transformation of linear models were slightly lower than 

those from the CPM. This trend is generally consistent with the direction of Jensen’s 

inequality, i.e., E[g(Y|X)] ≤ g[E(Y|X)], where g(y) = (y0.421 − 1)/0.421. The CPMs were 

more efficient at estimating the conditional probabilities of CD4 count being above 350 or 

500 cells/μL than the corresponding logistic regression models as evidenced by their narrow 

95% confidence intervals. It is interesting to note that the two models give similar point 

estimates for the probabilities of CD4 count being above 350 cells/μL but slightly different 

point estimates for the probabilities of CD4 count being above 500 cells/μL. The estimates 

from the logistic regression models tend to be larger, presumably due to the loss of 

information resulting from grouping the outcome into two categories.

In summary, rather than fitting three separate models, some of which require transforming 

the outcome, we were able to obtain similar and likely less biased and more efficient 

estimates by fitting a single CPM.

4.2. Viral Load

In this dataset, 85.5% of the patients had viral load (VL) below the detection limit (400 

copies/mL) 6 months after ART initiation. For those measurements above the detection 

limit, their distribution was highly skewed, ranging from 400 to 7,800,000 copies/mL with a 
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median of 1,300 copies/mL. Due to the large proportion of undetectable viral loads, common 

practice is to dichotomize the viral load into two categories (“undetectable” and 

“detectable”) and then fit logistic regression models, which ignores the numerical 

information in the detectable measurements. To make full use of ordinal information of viral 

load, we fit CPMs for the 6-month viral load measures using the probit, logit, cloglog, and 

loglog link functions. These CPMs have a total of 443 intercepts for 444 unique viral values. 

We included the same covariates with similar transformations as in the CD4 models except 

that we used 4 knots when transforming the continuous variables using restricted cubic 

splines because of concerns of over-fitting due to the large proportion of undetectable viral 

loads.

The log likelihoods for models using the probit, logit, cloglog, and loglog link functions 

were −5213.69, −5185.26, −5245.03, and −5162.70, respectively, suggesting better model fit 

with the skewed loglog link function, followed by the symmetric logit and probit link 

functions, then the cloglog link function which is skewed in the opposite direction as the 

loglog link function. The estimated transformations and the QQ-plots of PSRs and OMERs 

are provided in Figure S.8 and Figure S.9 in Supplemental Materials S.3. Note, since the 

distribution of 6-month viral load is a mixture of discrete and continuous distributions, PSRs 

are not uniformly distributed, even if the model is properly specified. OMERs on the 

transformed scale similarly suffer. Therefore QQ-plots, in this setting, are not useful for 

assessing model fit. In this example, although the model with the loglog link function had a 

slightly higher log likelihood, we also consider the logit probability model for purpose of 

convenient interpretation, particularly for comparisons with logistic regression models on 

the dichotomized viral load outcome. Although PSRs are generally not uniformly distributed 

for variables with mixed types of discrete and continuous distributions, they have 

expectation 0 under properly specified models, and therefore can still be used in residual-by-

predictor plots [19], as is shown in Figure S.9 in Supplemental Materials S.3. The results 

using the loglog and the logit link functions are generally similar.

Figure 15 plots the estimated probabilities of 6-month viral load being detectable and being 

greater than 1,000 copies/mL as functions of age or treatment class fixing other predictors at 

their medians or modes using both the loglog and the logit link functions. The results using 

these two different link functions were very similar. For purpose of comparison, we also 

obtained the estimated probabilities from logistic regression models using dichotomized 

viral loads as the outcomes (VL detectable vs non-detectable, and VL>1,000 copies/mL vs 

VL ≤ 1,000 copies/mL). CPMs and logistic regression models gave very similar results 

when estimating the probabilities of 6-month viral load being detectable: similar point 

estimates and comparable 95% confidence intervals. Results were more different when 

estimating the probabilities of 6-month viral load being greater than 1,000 copies/mL: the 

point estimates from the CPMs were generally smaller with narrower 95% confidence 

intervals than those from logistic regression models, as the CPMs incorporated information 

from all levels of detectable viral loads.

Figure 15 also contains the estimated 95th percentiles using the two link functions. We also 

seeked to obtain estimates of the 95th percentiles from two separate quantile regression 

models: one imputing values below the detection limit as the detection limit (i.e., 400 
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copies/mL) and the other imputing values below the detection limit as 0. The estimates from 

the quantile regression models were very unstable: the point estimates varied with values 

imputed for undetectable viral load and their 95% confidence intervals were very wide (with 

negative values for the lower bounds, results not shown). In contrast, CPMs did not require 

any imputation and they gave sensible point estimates and 95% confidence intervals.

We performed a limited simulation to compare the performance of CPMs, logistic regression 

models with dichotomized outcomes, and linear regression models with imputed values 

under various undetectable proportions (see Table S.26 in Supplemental Materials S.4). We 

found that CPMs with properly specified link functions were generally more efficient than 

the other two approaches. We also saw that gains in efficiency, particularly when compared 

with logistic regression models, were minimal when the proportion of undetectable 

measurements was large, e.g. ≥ 75%, as was the case in our actual data example.

5. Discussion

In this paper, we have studied CPMs for continuous outcomes. By relating them to 

semiparametric transformation models, we have shown that the intercepts from CPMs can be 

viewed as the estimated semiparametric transformation. Therefore, fitting ordinal regression 

models to continuous data can completely bypass the issue of guessing the proper 

transformation for response variables, which makes these models particularly useful when 

flexible transformations are needed. Another suitable application of these models is for 

measurements with detection limits, since they only require outcomes to be orderable, but do 

not require assigning specific values to those under the detection limit. Various aspects of the 

conditional distribution can be easily derived from the regression coefficients, giving a full 

picture of the conditional distribution. Of course, the flexibility and robustness of CPMs 

comes with costs in terms of statistical and computational efficiency. However, our 

simulations suggest that for moderate sample sizes the relative efficiency of CPMs versus 

properly specified parametric models is not bad, and although computation time is slower 

than traditional regression analyses, fitting CPMs with large n is feasible.

Manuguerra and Heller [24] also advocated fitting a type of ordinal regression model to 

continuous data, specifically data from visual analog scales. Rather than nonparametrically 

estimating the intercepts in CPMs, their approach fits a smooth curve to the intercepts, either 

using a parametric model or B-splines. Hence, their approach is likely more efficient but less 

robust than that considered in this manuscript. Their approach is also more difficult to 

implement as it differs from traditional CPMs typically used for the analysis of ordinal data. 

With that said, the premise of their method is promising, and certainly warrants 

consideration and further study.

Our simulation studies show that properly specified CPMs have good finite sample 

performance with moderate or relatively large sample sizes, but that some bias may occur 

when the sample size is small. In addition, CPMs seem to be fairly robust to minor or 

moderate link function misspecification. These results are comforting given that the 

asymptotic properties of the NPMLE of these models have not been formally developed and 

are quite challenging ([12]; personal communication with Zeng, Kosorok, & Lin). We have 
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focused on the application side of these models and we hope our study provides additional 

motivation and insight to this challenging theoretical problem.

Using CPMs for continuous variables is motivated from a simple and intuitive idea: 

continuous variables are also ordinal and can be modeled ordinally. This idea can be 

naturally extended to other ordinal regression models, such as the continuation-ratio model 

and the adjacent-categories model, and to more complicated settings, such as longitudinal 

data in which the observations are not independent. We are studying extensions in these 

settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The parallelism assumptions in (a) the normal linear regression model Y = βX + ε with ε ~ 

N(0, 1) and (b) transformation models Y = H(βX + ε) with ε ~ Fε, . Adapted from 

Harrell [2].
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Figure 2. 
(a) Each observation’s contribution to the score function assuming observations are ordered 

by the value of y, i.e., y1 < y2 < ⋯ < yn. White region indicates zero and grey region 

indicates non-zero values. (b) The bordered tridiagonal structure of Hessian matrix of 

log(L∗) with respect to intercepts and slopes. Since αi = αj whenever yi = yj, the score 

function and Hessian matrix have similar forms when there are ties in the outcome.

Liu et al. Page 20

Stat Med. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(a): An estimated conditional CDF and its pointwise confidence intervals. (b): An 

illustration for estimating the p-th quantile of the conditional distribution, denoted as Qp, and 

its confidence interval (LB, UB) through linear interpolation between yi−1 and yi, where 

, based on the estimated conditional CDF and its pointwise 

confidence intervals.
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Figure 4. 
Estimation of conditional CDF from CPMs compared with parametric and nonparametric 

models in a simple example: (a) with a sample size of 10, (b) with a sample size of 100, and 

(c) with a sample size of 1000.
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Figure 5. 
The performance of CPMs on estimating intercepts with n = 100: (i) ε ~ Normal and (ii) ε ~ 

Extreme Value (I).
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Figure 6. 
The performance of CPMs on estimating the slopes β1, β2, and α(y) at y1 = e−1 ≈ 0.368, y2 

= e−0.33 ≈ 0.719, y3 = e0.5 ≈ 1.649, y4 = e1.33 ≈ 3.781, and y5 = e2 ≈ 7.389 with properly 

specified link functions: (i) ε ~ Normal and (ii) ε ~ Extreme Value (I).
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Figure 7. 
(i): The relative efficiency of properly specified CPM (using the probit link function) 

compared with properly specified Box-Cox transformation model; (ii): The relative 

efficiency of properly specified CPM (using the cloglog link function) compared with Cox 

proportional hazard model.
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Figure 8. 
The performance of CPMs on estimating conditional CDF given X1 = 1 and X2 = 1, 

evaluated at y1 = 0.368, y2 = 0.719, y3 = 1.649, y4 = 3.781, and y5 = 7.389 with properly 

specified link functions: (i) ε ~ Normal and (ii) ε ~ Extreme Value (I). The results are based 

on 10,000 simulation replicates for each sample size.
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Figure 9. 
The performance of CPMs on estimating conditional means with commonly used link 

functions. We summarize the percent bias (%) of the point estimate, the coverage probability 

of 95% confidence intervals, and the relative efficiency (RE) for (X1 = 1, X2 = 0) and (X1 = 

1, X2 = 1) with sample size of 100 in this plot. The percent bias of the point estimate is 

calculated as the mean of point estimates in 10,000 simulation replicates minus the true 

value and then divided by the true value. The RE is compared with properly specified linear 

regression measured with MSE ratio. Numerical summary of these results are provided in 

Supplemental Materials S.2.2.
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Figure 10. 
The performance of CPMs on estimating medians with commonly used link functions. The 

description is similar as that for Figure 9 except that the RE is compared with properly 

specified median regression.
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Figure 11. 
Average time to fit the cumulative probability model versus the average number of unique 

outcomes for different sample sizes, n. Results are based on 100 replications.
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Figure 12. 
(a): the estimated intercepts â(y) from the CPMs using the probit, logit, and cloglog link 

functions, which can be interpreted as semiparametric estimates of the best transformation 

for the 6-month CD4 count. For purpose of comparison, we also plot the estimated Box-Cox 

transformation, (b): QQ-plots of probability-scale residuals (PSRs). (c): QQ-plots of 

observed-minus-expected residuals (OMERs), removing the residual for the observation 

with the largest value of 6-month CD4 count.
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Figure 13. 
Residual-by-predictor plots using probability-scale residuals (PSRs) (top panel) and 

observed-minus-expected residuals (OMERs) on the transformed scale (bottom panel) from 

CPMs (using the logit link function) including and not including baseline nadir CD4 count 

in the models. Smoothed curves using Friedman’s super smoother are added.
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Figure 14. 
The estimated mean, median, and the probabilities of CD4 being greater than 350 cells/μL 

and CD4 being greater than 500 cells/μL as functions of age (top panel) or treatment class 

(bottom panel, BPI: boosted protease inhibitors, NNRTI: non-nucleoside reverse 

transcriptase inhibitors, and UBPI: unboosted protease inhibitors) from the CPM with the 

logit link function fixing other predictors at their medians (for continuous variables) or 

modes (for categorical variables). For purpose of comparison, we also plot the conditional 

means from linear regression models with Box-Cox transformation, the conditional medians 

from median regression models, and conditional probabilities from logistic regression 

models using the dichotomized CD4 count as outcomes. The shaded regions are point-wise 

95% confidence intervals.
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Figure 15. 
The probabilities of 6-month viral load (VL) being detectable (≥ 400 copies/mL) and being 

greater than 1000 copies/mL, and the 95th percentiles as functions of age (top panel) or 

treatment class (bottom panel), estimated using the CPM with the loglog and logit link 

functions, fixing other predictors at their medians (for continuous variables) or modes (for 

categorical variables). The shaded regions are the point-wise 95% confidence intervals. For 

purpose of comparison, we also show the estimates of the conditional probabilities from 

logistic regression models using the dichotomized viral load as the outcome. We also 

estimated conditional percentiles from quantile regression models by imputing the 

measurements below the detection limit to be the detection limit or 0. However, since the 

estimates from quantile regression models were very unstable with very wide 95% 

confidence intervals crossing 0, we did not plot the results.
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Table 1

Commonly used link functions and their corresponding error distributions.

Name Link Function Error Distribution CDF

logit log [p/(1 − p)] logistic exp (y)/[1 + exp (y)]

probit Φ−1(p) normal Φ(y)

loglog −log [− log (p)] extreme value type II (Gumbel Maximum) exp [− exp (−y)]

cloglog log [− log (1 − p)] extreme value type I (Gumbel Minimum) 1 − exp [− exp (y)]

Φ(·) is the CDF of the standard normal distribution.
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