
LINEAR MIXED EFFECT MODELS.

1. Motivation.

The objective of a statistical model is to have a mathematical formula that describes the relationship in the data.
Using linear regression we assumed that the dependent variable was linearly related to the covariates in an additive
way. This assumes that each observation is independant; however they may well be some inter-dependence in the
responses in relation to some factor.
To deal with this we add a random effect into the model which allows us to assume a different baseline response
value for each factor. We model the individual differences in relation to each factor by assuming different random
intercepts for each response. Such a model is named a mixed model due to the fact that it contains the usual
fixed effects as seen in linear regression, and one or more random effects, essentially giving some structure to the
error term characterizing variation due to some factor level.

1.1. The Data. The Data being analysed consist of exam results (%) for 91 students, for each student we also
have their sex (Male (n=51), Female (n=40)), degree program (Science, Joint, Arts), and their previous homework
result (hw1).
Shown below are the data for the first 6 students and the command in R to obtain them.

> head(data)

exam sex hw1 hw2 hw3 hw4 degree high

1 34 F 18 41 27 10 arts 0

2 59 F 35 35 75 75 joint 0

3 35 F 58 51 37 42 arts 0

4 62 F 87 38 78 33 joint 0

5 86 F 90 98 90 92 joint 1

6 29 F 22 38 0 41 Science 0

2. Model.

The assumptions, for a linear mixed effects model,

• The explanatory variables are related linearly to the response.
• The errors have constant variance.
• The errors are independent.
• The errors are Normally distributed.

2.1. Checking the assumptions.

2.1.1. How to check the assumptions.

• Plotting the residuals against the explanatory variable will indicate if the wrong model has been fitted (i.e.
higher order terms are needed) or if there is some dependence on some other explanatory variable. If this
is the case some obvious patterning will be visible in the plot.

• Plotting the residuals in order, any trend visible may indicate seasonal pattern or autocorrelation.
• Plotting the residuals against the fitted values will indicate if there is non-constant error variance, i.e. if the

variance increases with the mean the residuals will fan out as the fitted value increases. Usually transforming
the data, or using another distribution will help.

• A Normal probability plot, histogram of the residuals or say a Wilk-Shapiro test will indicate if the normality
assumption is valid, however high non-normality should have been picked up from exploring the data initially.

All the relevant code and interpretation to do this is included in the “Linear Regression” eample.

2.2. The Equation.
Yi = (β0|factor) + β1x1i + β2i + ...+ βpi + εi

Using R notation here we are assuming an intercept that’s different for each factor. To see if this is the case for
our data we could fit two models, to the Male students and Female students data seperately and asses if the slopes
of the “best fitting line” differ. However just for illistrarive purposes we will go on and fit a linear mixed effects
model.
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2.2.1. Interpreting the model.

> library(lme4)

> mod<-lmer(exam ~ (1|sex)+degree*hw1+degree*hw2+degree*hw3+degree*hw4 ,data=data)

> summary(mod)$coefficients

Estimate Std. Error t value

(Intercept) 8.04526530 6.98388488 1.1519756

degreejoint -9.34347520 8.38807106 -1.1139003

degreeScience -5.10644595 9.25251663 -0.5518981

hw1 0.32934647 0.09748766 3.3783403

hw2 0.06594519 0.13997094 0.4711348

hw3 0.31253438 0.13914186 2.2461565

hw4 0.10797152 0.13829986 0.7807059

degreejoint:hw1 0.01372362 0.13012090 0.1054682

degreeScience:hw1 -0.02373421 0.13441718 -0.1765713

degreejoint:hw2 0.10161331 0.16357003 0.6212220

degreeScience:hw2 0.17607780 0.17119481 1.0285230

degreejoint:hw3 -0.06689795 0.16366623 -0.4087462

degreeScience:hw3 -0.14751615 0.17118587 -0.8617309

degreejoint:hw4 0.10868255 0.16621828 0.6538543

degreeScience:hw4 0.05946659 0.17232916 0.3450756

The fixed effects output, shown above is interpreted in exactly the same way as those in a“normal” linear regression
model.
The intercept estimate of the line, gives the expected value of exam scores when all covariates are zero, i.e. for
our model on average the expected exam score increases by 8.04527 if all homework assingments scored zero taking
into account the baseline (i.e (Bachelor degree)) .
The estimate column in the summary output tells us that there is on average an 0.32935 increase in exam score
for an unit increase in score for the first homework (hw1), given the other explanatory variables in the model.
The interaction terms can be interpreted as value telling us what the estimated change in relationship is between
the students score in each homework and their final exam score dependent on which degree program they are on.

2.2.2. Testing Hypothesis. By deafault R doesn’t print the associated p-values for each regression coefficient in a
mixed effect model, the code below extract the fixed effect regression estimates and performs the usual statistical
test which essentially test;

• H0 : β0 = 0 verses H1 : β0 6= 0 and;
• H0 : β1 = 0 verses H1 : β1 6= 0

> coeffs <- coef(summary(mod))

> p <- pnorm(abs(coeffs[, "t value"]), lower.tail = FALSE) * 2

> cbind(coeffs, "p value" = round(p,3))

Estimate Std. Error t value p value

(Intercept) 8.04526530 6.98388488 1.1519756 0.249

degreejoint -9.34347520 8.38807106 -1.1139003 0.265

degreeScience -5.10644595 9.25251663 -0.5518981 0.581

hw1 0.32934647 0.09748766 3.3783403 0.001

hw2 0.06594519 0.13997094 0.4711348 0.638

hw3 0.31253438 0.13914186 2.2461565 0.025

hw4 0.10797152 0.13829986 0.7807059 0.435

degreejoint:hw1 0.01372362 0.13012090 0.1054682 0.916

degreeScience:hw1 -0.02373421 0.13441718 -0.1765713 0.860

degreejoint:hw2 0.10161331 0.16357003 0.6212220 0.534

degreeScience:hw2 0.17607780 0.17119481 1.0285230 0.304

degreejoint:hw3 -0.06689795 0.16366623 -0.4087462 0.683

degreeScience:hw3 -0.14751615 0.17118587 -0.8617309 0.389

degreejoint:hw4 0.10868255 0.16621828 0.6538543 0.513

degreeScience:hw4 0.05946659 0.17232916 0.3450756 0.730
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P-values indicate that only the previous homework assignments 1 and 3 are considered important in predeicitng final
exam scores (in our dataset) as all the associated pvaues are below 0.05, whereas niether degree type of student,
intercept, or the interaction terms etc. are considered useful in predicting the response.

2.2.3. Interpreting the Random effects. As we model the individual differences in relation to each sex by assuming
different random intercepts for each response, we interpret the random intercepts in the same way as the fixed
effects estimated coefficients. Code below shows how to obtain the coefficient estimates in R for the mixed effect
model fitted.

> coef(mod)

$sex

(Intercept) degreejoint degreeScience hw1 hw2 hw3

F 6.728607 -9.343475 -5.106446 0.3293465 0.06594519 0.3125344

M 9.361924 -9.343475 -5.106446 0.3293465 0.06594519 0.3125344

hw4 degreejoint:hw1 degreeScience:hw1 degreejoint:hw2 degreeScience:hw2

F 0.1079715 0.01372362 -0.02373421 0.1016133 0.1760778

M 0.1079715 0.01372362 -0.02373421 0.1016133 0.1760778

degreejoint:hw3 degreeScience:hw3 degreejoint:hw4 degreeScience:hw4

F -0.06689795 -0.1475162 0.1086825 0.05946659

M -0.06689795 -0.1475162 0.1086825 0.05946659

attr(,"class")

[1] "coef.mer"

From this output we initially note all the fixed effects coefficients are the same for the assumed random effects, the
only difference is in the estimated intecepts for the random effects. These tell us that for Female students there is
an average increase of 6.7286607 in exam score given the other independent varables included in the model, and for
Male students theres an average increase of 9.361924 in exam score given the other independent varables included
in the model.


