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INTRODUCTION

Rens van de Schoot and Milica Miočević

Researchers often have difficulties collecting enough data to test their hypotheses,
either because target groups are small (e.g., patients with severe burn injuries); data
are sparse (e.g., rare diseases), hard to access (e.g., infants of drug-dependent
mothers), or data collection entails prohibitive costs (e.g., fMRI, measuring phono-
logical difficulties of babies); or the study participants come from a population that
is prone to drop-out (e.g., because they are homeless or institutionalized). Such obs-
tacles may result in data sets that are too small for the complexity of the statistical
model needed to answer the research question. Researchers could reduce the
required sample size for the analysis by simplifying their statistical models. However,
this may leave the “true” research questions unanswered. As such, limitations associ-
ated with small data sets can restrict the usefulness of the scientific conclusions and
might even hamper scientific breakthroughs.
The field of methodological solutions for issues due to small sample sizes is develop-

ing rapidly, and fast software implementations of these methods are becoming increas-
ingly available. However, the selection of texts on statistical methods for small sample
research with complex models is sparse. In March 2018, we organized the first edition
of the Small Sample Size Solutions conference (S4; www.uu.nl/s4) with the goal of
bringing together applied researchers who encounter issues due to small samples, and
statisticians working on solutions to such issues. The aim of the S4 Conference was to
share information, learn about new developments, and discuss solutions for typical
small sample size problems. The chapters in the current volume describe some of the
solutions to small sample size issues presented at the first S4 Conference. The list of
contributors includes both established authors who provide an overview of available
methods in a particular field, and early-career researchers working on promising
innovative solutions. The authors of the chapters reviewed at least one other chapter
in this volume, and each chapter was written with the goal of being accessible for
applied researchers and students with a basic knowledge of statistics. Note that



collecting more data, if at all possible, is always preferred, and that the methods
described in the current book are a last resort.
The current book provides guidelines and tools for implementing a variety of

solutions to issues that arise in small sample research, along with references for fur-
ther (technical) details. The book includes solutions for estimation of population
means, regression analyses, meta-analyses, factor analyses, advanced structural equa-
tion models with latent variables, and models for nested observations. The types of
solutions consist of Bayesian estimation with informative priors, various classical and
Bayesian methods for synthesizing data with small samples, constrained statistical
inference, two-step modeling, and data analysis methods for one participant at
a time. All methods require a strong justification of the choice of analytic strategy
and complete transparency about all steps in the analysis. The book is accompanied
by state-of-the-art software solutions, some of which will only be released
next year. All proposed solutions are described in steps researchers can implement
with their own data and are accompanied with annotated syntax in R available on
the Open Science Framework (osf.io/am7pr/). The content of the substantive
applications spans a variety of disciplines, and we expect the book to be of interest
to researchers within and outside academia who are working with small samples
sizes.
The book is split into three parts:
Part I contains several chapters that describe and make use of Bayesian statis-

tics. Chapter 1 offers a gentle introduction to the main ingredients in Bayesian
analyses and provides necessary information for understanding Bayesian param-
eter estimation and Bayes Factors. Chapter 2 offers a discussion of exchangeabil-
ity and its role in the choice of sources of prior information in Bayesian
analyses, which is relevant when combining datasets. Chapter 3 provides an
extension of the When-to-Worry-and-How-to-Avoid-the-Misuse-of-Bayesian-
Statistics (WAMBS) checklist, which is a 10-point checklist used to ensure opti-
mal practices when applying Bayesian methods, extended to include prior and
posterior predictive checking. Chapter 4 illustrates difficulties that can arise
when implementing Bayesian solutions to a complex model and offers sugges-
tions for avoiding these issues by making use of the effective sample size and
divergent transitions. Chapter 5 provides a tutorial on Bayesian penalized regres-
sion for scenarios with a small sample size relative to the complexity of the stat-
istical model by applying so-called “shrinkage priors” that shrink small effects
towards zero while leaving substantial effects large.
Part II is composed of chapters on methods for analyzing data from a single

participant. Chapter 6 introduces single-case experimental designs (n ¼ 1) and
provides background information for analyzing a single-case experimental design
(SCED) using unilevel design-based analysis. Chapter 7 discusses SCEDs in
detail and provides an example of tests of effectiveness and change processes.
Chapter 8 introduced a shiny app that allows researchers to supplement test
scores of a single participant with teacher input or scores from other students in
order to obtain a more accurate estimate of a given student’s ability. Chapter 9
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presents a Bayesian method to evaluate hypotheses for each person in a sample
and aggregate these results to find out whether a hypothesis holds for everyone
in the sample, rather than for sample participants on average. Chapter 10 intro-
duces a Bayes decision-making strategy for clinical trials, such that decisions can
be made with smaller samples without increasing the risk of making an error.
Part III deals with complex hypotheses and models fit to small sample data.

Chapter 11 provides examples and software for increasing power to detect mean dif-
ferences by testing informative hypotheses within the framework of constrained stat-
istical inference. Chapter 12 discusses several Bayesian methods for evaluating
whether a finding was replicated across studies, which is extremely important in
small sample research. Chapter 13 introduces software based on a machine-learning
approach for identifying relevant moderators in meta-analysis. Chapter 14 provides
an overview of the psychometric and model estimation benefits of parceling, and
discusses how parcels can be particularly beneficial for small sample research. Chapter
15 offers an in-depth discussion of issues and potential solutions for multilevel
models fit to small samples, from both frequentist and Bayesian perspectives. Chapter
16 describes several potential solutions for point estimation in structural equation
models, including penalized likelihood estimation, a method based on model-
implied instrumental variables, two-step estimation, and factor score regression.
Chapter 17 compares, by means of a simulation study, two-step modeling, factor
score regression, maximum likelihood, and Bayesian estimation with three prior spe-
cifications for latent variable regression analysis with small samples. Finally, Chapter
18 offers a number of unique conclusions regarding data analysis with small samples.
The S4 Conference is a reoccurring event, and the research on optimal solu-

tions to small sample size issues is ongoing. This book represents a much-needed
collection of currently available solutions, and we hope that it aids applied
researchers in their endeavors and inspires methodological researchers to expand
the field of small sample size solutions. We would like to thank all contributors
for sharing their work, and give a special thanks to Evelien Schat and Gerbrich
Ferdinands for their assistance with compiling this book. We hope to meet you,
reader of this book, at our next conference.

x Rens van de Schoot and Milica Miočević



SYMBOLS

Symbol Definition
(A superscript after a symbol definition indicates the
chapter number where the symbol appears if the symbol
appears in only one chapter)

α Maximum Type I error probability

α1 Group mean of the latent intercept4

BF Bayes Factor

β Regression coefficient, e.g. βintercept is the regression
intercept

β̂BAYES Posterior mode of regression coefficient5

β̂LASSO Ordinary least squares with lasso penalty regression
coefficient5

β̂OLS Ordinary least squares estimate of regression coefficient5

βintercept:0 Subscript zero indicates it concerns the prior mean for
the corresponding regression coefficient (here the
intercept)

βintercept:p Subscript p indicates it concerns the posterior mean of the
regression coefficient (here the intercept)

βi1 Regression coefficient at the individual level9

βZ Standardized regression coefficient

C Control treatment6

d Cohen’s d (effect size)

D Difference



E Experimental treatment6

ε Random error

fs33 Factor score of mother and child pair no. 334

H0 Null hypothesis

Halt Alternative hypothesis

Hinf Informative hypothesis

Hunc Unconstrained hypothesis

Hi
1 Individual hypothesis 1 for person i9

H1c Complement of hypothesis 19

HRF Relevant finding hypothesis (in original study)12

HA0 Null hypothesis test Type A: parameters constrained to
be equal11

HA1 Hypothesis test Type A: order-constrained hypothesis11

HB0 Null hypothesis test Type B: all restrictions hold11

HB1 Hypothesis test Type B: parameters unconstrained11

Hd
2 Hypothesis including effect sizes11

H8i
�ð Þ Hypothesis for all individuals i9

HN Half-normal distribution4

η2 Effect size, partial eta squared

G Gamma distribution

g Effect size, Hedge’s g

� Covariance matrix

θ The population value used for data generation17

θ Parameter or set of parameters (in Bayesian statistics)

θ8;6 Covariance between random errors

IG Inverse Gamma distribution

i Individual

j Draw from the posterior distribution

K Number of columns

k Thinning parameter

λ7;1 Factor loading

‘ Penalty

‘1 Lasso penalty

‘2 Ridge penalty

lp Indication of the likelihood of the data given all posterior
parameters4
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MD Mean difference

m Count (e.g. m groups, m movies)

min=max Minimum and maximum sampled value

μ Mean

μ0 Prior mean

μp Posterior mean

N Population size

N Normal distribution

n Sample size

nmax Sample size to terminate the trial if the data do not
provide sufficient evidence for superiority10

nmin Sample size at first interim analysis10

P Number of variables

R2 Explained variance

R2
cv Predictive performance obtained during cross validation13

R2
oob Out-of-bag predictive performance13

R2
test Predictive performance on test set13

r Correlation coefficient

rxy Correlation between variables x and y

ryy Reliability of measure y18

r2 Explained variance per predictor

s Specific variance

σ Standard deviation

σ0 Prior standard deviation

σε Error standard deviation

σp Posterior standard deviation

σpooled Pooled standard deviation

σ20 Prior variance

σ2Ti Error variance of T̂i
8

σ2p Posterior variance

σ2 Variance

σ2ε Error variance

T True score

Ti True score for individual i

T̂i Estimate of T̂i
8

τ20 Prior precision
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τ2p Posterior precision

X; Y Latent variable

x; y Independent and dependent variables

xi; yi Sample observations

�x; �y Sample mean

y1; . . . ; yn Sample of data with n observations

yrep Prior or posterior replicated y values

ψ Variance of a construct or covariance between two
constructs

wm The level-probabilities (chi-bar-square weights)11

ω2 Effect size, generalized omega squared

xobs00 ; x
obs
10 ; xobs01 ; xobs11 Observed frequencies in binary outcome data10

xprior11 ; xprior10 ; xprior01 ; xprior00 Prior frequencies in binary outcome data10

xpost00 , x
post
10 , x

post
01 , x

post
11 Posterior frequencies in binary outcome data10

xiv Symbols
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INTRODUCTION TO BAYESIAN
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DEPARTMENT OF PSYCHOLOGY, MCGILL UNIVERSITY, MONTREAL, CANADA

Roy Levy
T. DENNY SANFORD SCHOOL OF SOCIAL AND FAMILY DYNAMICS, ARIZONA STATE UNIVERSITY, ARIZONA,
UNITED STATES OF AMERICA

Rens van de Schoot
DEPARTMENT OF METHODOLOGY AND STATISTICS, UTRECHT UNIVERSITY, UTRECHT, THE NETHERLANDS &

OPTENTIA RESEARCH PROGRAM, FACULTY OF HUMANITIES, NORTH-WEST UNIVERSITY, VANDERBIJLPARK,
SOUTH AFRICA

Introduction

Bayesian statistics are becoming more popular in many fields of science. See, for
example, the systematic reviews published in various fields from educational science
(König & Van de Schoot, 2017), epidemiology (Rietbergen, Debray, Klugkist, Jans-
sen, & Moons, 2017), health technology (Spiegelhalter, Myles, Jones, & Abrams,
2000), medicine (Ashby, 2006), and psychology (Van de Schoot, Winter, Ryan, Zon-
dervan-Zwijnenburg, & Depaoli, 2017) to psychotraumatology (Van de Schoot,
Schalken, & Olff, 2017). Bayesian methods appeal to researchers who only have access
to a relatively small number of participants because Bayesian statistics are not based on
large samples (i.e., the central limit theorem) and hence may produce reasonable results
even with small to moderate sample sizes. This is especially the case when background
knowledge is available. In general, the more information a researcher can specify
before seeing the data, the smaller the sample size required to obtain the same certainty
compared to an analysis without specifying any prior knowledge.
In this chapter, we describe Bayes’ theorem, which is the foundation of Bayesian

statistics. We proceed to discuss Bayesian estimation and Bayes Factors (BFs). The
chapter concludes with a brief summary of take-home messages that will allow readers
who are new to Bayesian statistics to follow subsequent chapters in this book that
make use of Bayesian methods. The applications of Bayesian statistics described in this
volume cover the following topics: the role of exchangeability between prior and
data (Chapter 2, Miočević et al.), applying the WAMBS checklist (Chapter 3, Van de



Schoot et al.) using informative priors when fitting complex statistical models to small
samples (Chapter 4, Veen & Egberts), regression analysis with small sample sizes rela-
tive to the number of predictors (Chapter 5, Van Erp), data analysis with few observa-
tions from a single participant (Chapter 8, Lek & Arts), updating results participant by
participant (Chapter 9, Klaassen), clinical trials with small sample sizes and informative
priors based on findings from other trials (Chapter 10, Kavelaars), tests for evaluating
whether a finding was replicated (Chapter 12, Zondervan-Zwijnenburg & Rij-
shouwer), and a comparison between frequentist two-step modeling and Bayesian
methods with informative priors (Chapter 17, Smid & Rosseel). Due to space consid-
erations, this chapter does not offer an exhaustive discussion of Bayesian statistics and
the differences between Bayesian and classical (frequentist) statistics; for approachable
texts on Bayesian statistics in the social sciences, we refer readers to books by Kaplan
(2014) and Kruschke (2014), and the chapter by Gigerenzer (1993).

Bayes’ theorem

Bayesian statistics are a branch of statistics that implements Bayes’ theorem to
update prior beliefs with new data:

p θjdatað Þ ¼ p datajθð Þp θð Þ
p datað Þ / p datajθð Þp θð Þ ð1:1Þ

where θ denotes a set of parameters (e.g., regression coefficients), pðθjdataÞ is
the posterior distribution of the parameters, which was obtained by updating the
prior distribution of the parameters, p θð Þ, with the observed data represented by
the likelihood function, pðdatajθÞ. The term p datað Þ is the marginal probability
of the data that can be considered a normalizing constant that ensures that the
posterior distribution integrates to 1. As the right-hand side of Equation 1.1
shows, excluding this term yields a result that is proportional to the posterior
distribution.
In the Bayesian framework, the updated (posterior) beliefs about the param-

eters in a statistical model are used for inference. The posterior distribution can
be summarized to report the probability that a parameter lies within a given
range. Bayes’ theorem stems from the laws of conditional probabilities, which
are not controversial. The controversial elements surrounding Bayesian statistics
are whether to engage in Bayesian analysis and accept the requirement of specify-
ing a prior distribution, and once the researcher chooses to use Bayesian infer-
ence, how to specify the prior distribution, p θð Þ. Applied researchers are often
advised to base their prior distributions on previous findings, meta-analyses, and/
or expert opinion; for considerations related to the choice of source of prior
information, see Chapter 2. The exact influence of the prior is often not well
understood, and priors will have a larger impact on the results when sample size
is small (see Chapter 3). Bayesian analyses of small data sets using priors chosen

4 Milica Miočević et al.



by the researcher can sometimes lead to worse estimates than those obtained
using uninformative priors or classical methods (Smid, McNeish, Miočević, &
Van de Schoot, 2019). Thus, priors should be chosen carefully.
To illustrate a Bayesian statistical analysis, consider a normally distributed vari-

able y (for example, IQ, used to illustrate Bayesian inference in the shiny appli-
cation example from www.rensvandeschoot.com/fbi/; see also the Center for
Open Science (OSF): https://osf.io/vg6bw/) with unknown mean μ and
a known variance σ2. In the frequentist framework, one would collect a sample
of data (IQ scores), y1; . . . yn, compute the sample mean �y, and use it as the esti-
mate of the population mean of IQ. The standard error is a measure of the
uncertainty surrounding the estimate.
In the Bayesian framework, the researcher would start the analysis by specify-

ing a prior distribution for μ (population mean of IQ). When specifying a prior
distribution, researchers have to select a distributional form (e.g., normal distri-
bution, t-distribution, beta distribution), and specify the parameters of the prior
distribution, known as hyperparameters. A common choice of prior distribution
for the population mean μ is the normal distribution, which is described by the
prior mean (μ0) and prior variance (σ20) or prior standard deviation (σ0) or prior
precision (τ20) hyperparameters. The mean hyperparameter (μ0) may be seen as
encoding the researcher’s best guess about the population mean being estimated,
and the variance hyperparameter (σ20) encodes the informativeness (or uncer-
tainty) of the prior distribution. The smaller the variance hyperparameter, the
more informative the prior distribution, and the more weight it carries in the
analysis. Visually, this analysis is presented in Figure 1.1, where we observe
three different situations: panel A depicts an analysis with a sample size of 20
participants from a population where the mean is 100, and the standard devi-
ation is 15; panel B represents the analysis with a sample of 50 participants from
that same population; and panel C represents the analysis with a sample of 200
participants from the same population. The prior distribution is the same in all
three analyses. Notice how the density of the posterior distribution “moves”
closer to the likelihood function as sample size increases from 20–200.
This example has an analytical solution; that is, under the specifications just

described, the posterior pðμjyÞ has a known form. It can be shown (Gelman et al.,
2013) that the posterior pðμjyÞ is a normal distribution with posterior mean:

μp ¼
1
σ20
μ0 þ n

σ2 �y
1
σ20
þ n

σ2
ð1:2Þ

and posterior variance

σ2p ¼
1
σ20

þ n
σ2

� ��1

ð1:3Þ
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FIGURE 1.1 Plots of the Bayesian computation of a mean parameter with a known
variance obtained using the shiny application available at www.rensvandeschoot.com/
tutorials/fbi/ (see also the OSF: https://osf.io/vg6bw/)

FIGURE 1.2 Plots of the Bayesian computation of a mean parameter with an unknown
variance obtained using the shiny application available at www.rensvandeschoot.com/
tutorials/fbi/ (see also the OSF: https://osf.io/vg6bw/)



where μ0 denotes the mean of the normal prior distribution, �y denotes the
observed mean in the sample, n is the sample size, σ20 is the variance hyperpara-
meter in the prior, and σ2 is the variance in the observed sample. Both the prior
and posterior are normal distributions; this is the case because the normal prior
distribution is a conjugate prior for the mean parameter. All conjugate prior dis-
tributions, when multiplied by the likelihood function, yield posterior distribu-
tions from the same distributional family. We can use Equations 1.2 and 1.3 to
obtain the analytical solution for the mean and variance of the posterior for the
mean of IQ. If we select the prior mean of IQ to be μ0 ¼ 90 and the prior
variance equal to σ20 ¼ 10, and we observe a sample of 20 participants for which
the sample mean of IQ is �y ¼ 100 and the sample variance is σ2 ¼ 225, we end

up with a posterior distribution centered around μp ¼
1
1090þ 20

225100
1
10þ 20

225
¼ 94:71 with

a posterior variance equal to σ2p ¼ 1
10 þ 20

225

� ��1 ¼ 5:29: Notice how the posterior

mean, μp, is a “compromise” between the prior mean μ0, and the mean of the
variable in the observed data set, �y. Notice also how decreasing the prior vari-
ance (σ20Þ gives the prior mean more weight, and how increasing the sample size
n gives the observed data more weight in determining the posterior mean.

Bayesian estimation

In the example where it is of interest to estimate the mean of a population with
a known variance, it is possible to obtain the posterior distribution analytically.
However, most statistical models in the social sciences are more complex, and
the posterior distribution cannot be obtained analytically. In these situations,
results are obtained by progressively approximating the posterior distribution
using Markov Chain Monte Carlo (MCMC; Brooks, Gelman, Jones, & Meng,
2011). MCMC is an iterative procedure, like maximum likelihood (ML). How-
ever, unlike ML, which seeks to maximize the likelihood function, MCMC
seems to approximate the entire posterior distribution. Figure 1.2 illustrates an
approximation of the posterior for the same analysis as in panel A of Figure 1.1
obtained using MCMC instead of using the analytical solution; note that the dis-
tribution is no longer smooth because it is an approximation of the posterior. In
the following paragraphs, we briefly survey some of the practical aspects
involved in utilizing MCMC for Bayesian analyses.
In a Bayesian analysis, MCMC proceeds by simulating values from distributions

such that, in the limit, the values may be seen as draws from the posterior distribu-
tion (for visual representations of multiple chains, see Figure 3.4 in Chapter 3).
A properly constructed chain will eventually converge to the point where the sub-
sequent simulated values may be seen as samples from the posterior; however, there
is no guarantee as to when that will happen. Though there is no way of definitively
knowing that a chain has converged to the posterior distribution, there are several
techniques one can use to find evidence of convergence (Cowles & Carlin, 1996).

Introduction to Bayesian statistics 7



In the social sciences literature, the most commonly encountered convergence diag-
nostics are those offered by the majority of software packages, which include the
Potential Scale Reduction factor (Gelman & Rubin, 1992), Geweke’s diagnostic
(1992), and trace plots of draws plotted against the iteration number for each param-
eter (Brooks, 1998; see Chapter 3 for information about how to obtain and inter-
pret trace plots). Several convergence diagnostics rely on running multiple chains
from dispersed starting values for different chains in order to assist with the monitor-
ing of convergence (Gelman & Shirley, 2011). The generated values from the chain
prior to convergence are referred to as burn-in iterations and are discarded; values
from the chain after convergence are taken to be draws from the posterior and can
be summarized to represent the posterior. In theory, the more draws are taken from
the posterior, the better it is approximated.
A complicating factor for MCMC is the within-chain correlation of the

draws (see Figure 3.8 in Chapter 3); for a more detailed discussion on autocor-
relation and possible solutions see Chapter 3. It is often recommended to use
thinning1 to reduce the autocorrelation between the retained draws (Gelman &
Shirley, 2011). However, some researchers argue that thinning can be problem-
atic for obtaining precise summaries of the posterior (Link & Eaton, 2012) and
that it is better to run longer chains than to thin. Stopping time refers to ending
the sampling and depends on time constraints, how long the chain(s) ran before
convergence, the researcher’s confidence that convergence was reached, and the
autocorrelation between draws (see Chapter 3). The number of draws to retain
after convergence (i.e., post burn-in) should be determined in part by the
precision with which the researcher wants to estimate the posterior, or its
features. Estimating broad summaries, such as the posterior mean, tends to
require fewer draws than features out in the tails, such as extreme percentiles
(Kruschke, 2014).
To summarize the posterior, all non-discarded draws (i.e., all draws after

burn-in) from all chains should be mixed together (Gelman & Shirley, 2011).
Features of these draws (e.g., mean, standard deviation, intervals) are seen as
estimates of the corresponding features of the posterior distribution. Common
point summaries of the posterior are the mean, median, and mode. Common
interval summaries are 1� αð Þ% equal-tail credibility intervals, which are
constructed from the α=2ð Þth and 1� α=2ð Þth percentiles of the posterior dis-
tribution, and highest posterior density credibility intervals which have the
property that no values outside the interval are more probable than any
values inside the interval.

Bayes Factors

Null hypothesis significance testing (NHST) has been the dominant approach to
statistical inference in the social sciences since the 1940s (Gigerenzer, 1993).
NHST belongs to the family of frequentist statistics, which define probability as
the frequency of an event. Two quantities that stem from this school of statistics
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and rely on the above definition of probability are p-values and confidence
intervals. The p-value quantifies the probability of finding the observed or
a more extreme result given that the null hypothesis is true, and the 1� αð Þ%
confidence intervals tell us that upon repeated sampling, 1� αð Þ% of the confi-
dence intervals will contain the true value of the parameter (Jackman, 2009).
The reliance on NHST and p-values has been criticized for decades (Bakan,
1966; Ioannidis, 2005; Rozeboom, 1960). Some researchers advocate for the
replacement of p-values with alternatives such as effect size measures and confi-
dence intervals (Cumming, 2014). Others have argued for abandoning the fre-
quentist paradigm altogether because the p-value does not quantify the
probability of the hypothesis given the data (Wagenmakers, Wetzels, Borsboom,
& Van der Maas, 2011), nor does it provide any measure of whether the finding
is replicable (Cohen, 1994), and confidence intervals do not have the properties
they are ascribed to have and are easily misunderstood (Morey, Hoekstra,
Rouder, Lee, & Wagenmakers, 2016).
In the Bayesian framework, it is possible to calculate the probability of

a hypothesis given the data, and to compute the posterior odds in favor of one
hypothesis (or model) relative to another hypothesis (or model; Kass & Raftery,
1995). The ratio of posterior probabilities is equal to the ratio of prior probabil-
ities multiplied by the ratio of marginal likelihoods under each hypothesis:

pðH2jdataÞ
pðH1jdataÞ ¼

p H2ð Þ
p H1ð Þ �

R
θ 2ð Þ pðdata θ 2ð ÞÞpðθ 2ð Þ

�� ��dataÞdθ 2ð ÞR
θ 1ð Þ pðdata θ 1ð ÞÞpðθ 1ð Þ

�� ��dataÞdθ 1ð Þ
ð1:4Þ

The last term on the right-hand side, the ratio of marginal likelihoods, is also
called the Bayes Factor (Kass & Raftery, 1995; Raftery, 1993). BFs are a way of
comparing two competing hypotheses (H1 and H2) and are calculated by divid-
ing the integrated likelihoods of the two models (Jeffreys, 1998). Chapters 9 and
12 make use of BF; the readers will notice that there are notational differences
between chapters, and this is the case in the literature as well. However, the
meaning and interpretations of BF are the same as described in this chapter,
unless the authors indicate otherwise. If the prior probabilities of the two
models are both set to 0.5, then the posterior odds equal the BF. If the prior
probabilities are not .5, then the BF is not equal to the posterior odds. How-
ever, the BF still captures the weight of evidence from the data in favor of one
hypothesis. A BF of 1 indicates that the data do not support one hypothesis
more than the other, a BF below 1 indicates that the data provide support for
H1 over H2, and a BF above 1 indicates that the data support H2 over H1. The
computation of the BF does not require nesting of the models being compared.
Unlike classical hypothesis tests, BFs can support a null hypothesis. In the words
of Dienes (2014, p. 1), BFs “allow accepting and rejecting the null hypothesis to
be put on an equal footing”, but as indicated by Konijn, Van de Schoot,
Winter, & Ferguson (2015), we should avoid BF-hacking (cf., “God would love
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a Bayes Factor of 3.01 nearly as much as a BF of 2.99”). Especially when BF
values are small, replication studies and Bayesian updating are still necessary to
draw conclusions (see Chapter 12 for more on this topic).

Conclusion

In this brief introductory chapter, we sought to inform readers about the fundamental
concepts in Bayesian statistics. The most important take-home messages to remember
are that in Bayesian statistics, the analysis starts with an explicit formulation of prior
beliefs that are updated with the observed data to obtain a posterior distribution. The
posterior distribution is then used to make inferences about probable values of a given
parameter (or set of parameters). Furthermore, BFs allow for comparison of non-
nested models, and it is possible to compute the amount of support for the null
hypothesis, which cannot be done in the frequentist framework. Subsequent chapters
in this volume make use of Bayesian methods for obtaining posteriors of parameters
of interest, as well as BFs.

Note

1 Thinning is the practice of retaining only every kth draw, where the thinning param-
eter k is chosen so that the retained draws are approximately independent. However,
thinning represents a loss of information and is not necessary, and “as long as
a sequence has converged and the number of iterations retained is substantial, it makes
no practical difference if we keep all or every 25th or every 50th iteration” (Scheines,
Hoijtink, & Boomsma, 1999, p. 42).
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Introduction

In a scientific setting, we can think of the observations from the same experi-
ment as exchangeable events, and we can also extend this logic to groups of
observations (i.e., samples from the same population). Conceptually, variables
(data sets, studies, or any other units of analysis) are exchangeable to
a researcher if the researcher holds the same beliefs about them for their pur-
poses at hand (Levy & Mislevy, 2016). Thus, if we say that two samples or
two studies are exchangeable, we are also saying that the order in which they
were collected or executed does not matter because we cannot distinguish
between them based on any relevant characteristics. Somewhat formally,
a collection of random variables is exchangeable if the joint distribution is
invariant to any permutation (reordering, relabeling) of the random variables
(de Finetti, 1974; see also Bernardo & Smith, 2000). In de Finetti’s example,
the exchangeable events are coin tosses, and the goal is to compute the



probability of getting “heads” on the toss of a coin. Exchangeability amounts
to saying that if we have five tosses of the coin the salient information is
the number of heads; it does not matter which tosses were heads (Diaconis
& Freedman, 1980). De Finetti (1931, 1937/1964) showed that if
a collection of variables is deemed exchangeable, then the joint distribution
can be represented as a product of conditional distributions of each variable,
conditional on some parameter, marginalized over the distribution of that
parameter (Bernardo & Smith, 2000). The upshot of this is that deeming
variables to be exchangeable warrants treating them as conditionally inde-
pendent given some parameter. As we will see in the next section, this
facilitates a particular form of Bayesian inference. The following sections
illustrate how Bayesian inference proceeds with exchangeable data sets, dis-
cuss relevant characteristics for evaluating whether two studies are
exchangeable, illustrate the challenges in deciding whether two real studies
differ on relevant characteristics, and discuss potential ways of calibrating
findings from non-exchangeable data sets in order to use them as prior dis-
tributions in Bayesian inference. In the remainder of the chapter, we
assume familiarity with Bayesian statistics, and for readers new to Bayesian
statistics we recommend reading Chapter 1 (Miočević, Levy, & Van de
Schoot) first. Annotated R code to reproduce the results can be found on
the Open Science Framework (https://osf.io/am7pr/).

Bayesian inference for exchangeable data sets

We now consider the situation where there are two data sets. If we deem the
data sets to be exchangeable, we can:

1. conduct Bayesian inference after obtaining the first data set and some
(original) prior distribution to yield a posterior distribution for the set of
parameters θ;

2. utilize that posterior distribution as the prior distribution in another Bayesian
analysis for the second data set.

The resulting posterior distribution from the second analysis is equivalent to
what would be obtained if both data sets were analyzed in a single Bayesian ana-
lysis using the original prior distribution. In this chapter we argue that exchange-
ability justifies the use of the Bayesian machinery described here, where the
result of the analysis of one data set is the prior distribution for the analysis of
another data set1. Furthermore, given the symmetry of the roles of the data sets
in the factorization in Equation 2.2 below, it does not matter in what order we
analyze the data sets; the end result will be the same final posterior distribution.
Thus, if we can assume exchangeability of a series of studies, Bayesian methods
allow for the synthesis of the results from all of the studies in any order, as we
have no way of distinguishing which study should be first (i.e., qualitatively
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distinguishing; we can be aware of the temporal ordering of the studies and dis-
tinguish between them based on which one was carried out first). In this case,
Bayes’ theorem states that the posterior distribution is:

p θjdata1; data2ð Þ / p data1; data2jθð Þp θð Þ ð2:1Þ

where data1 and data2 are the two data sets, respectively. If the data sets are
exchangeable and we can treat them as conditionally independent given θ, we
can factor the first term on the right-hand side accordingly:

p θjdata1; data2ð Þ / p data2jθð Þp data1jθð Þp θð Þ: ð2:2Þ

Note the last two terms on the right-hand side present an opportunity to invoke
Bayes’ theorem. Doing so yields:

p θjdata1; data2ð Þ / p data2jθð Þp θjdata1ð Þ: ð2:3Þ

Formally, the posterior distribution after observing two data sets may be seen
by taking the posterior distribution after observing one data set and having
that serve as the prior distribution in an instance of Bayes’ theorem, updated
by the second data set (readers interested in methods for updating information
about participants within a data set should see Chapter 9 by Klaassen). This
expression also reveals how Bayesian inference is a mechanism for accumulat-
ing evidence as new data arrive. More philosophically, it reveals that our
beliefs about the parameter(s) are relative to a certain state of knowledge
(e.g., based on whatever data have been incorporated so far), and subject to
being revised or updated (e.g., based on whatever new data comes our way).
This feature of Bayesian inference supports the common Bayesian refrain that
“today’s posterior is tomorrow’s prior.” Studies with small samples are often
underpowered, and sequentially updating findings from multiple exchangeable
studies can increase power to detect the effect of interest and provide a more
precise interval around the effect of interest.

Example of two exchangeable data sets

Consider the following example: in the 1930s, the Rothamsted Experimental
Station was testing the efficacy of a variety of nitrogen-rich fertilizers, including
sulphate of ammonia (Rothamsted Experimental Station, 1936)2. For the 1935
growing season, the fertilizer was added to the Great Harpenden field with the
intention of increasing wheat yield. The field was divided into 36 equal-sized
plots and the plots were randomly assigned to receive anywhere from zero to
five doses of sulphate of ammonia throughout the growing year (October–
August) such that each treatment condition was applied to six plots. The overall
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yield of grain in pounds for each plot was measured at the end of the year
(Rothamsted Experimental Station, 1936). In 1936, the same study was carried
out on the Great Knott field (Rothamsted Experimental Station, 1937).
Though a different field was studied each year, these two data sets can be

considered exchangeable: both fields are located on the Rothamsted campus,
they had the same six treatment conditions applied at approximately equal time
points throughout the year, and the fields were split into equal-sized plots and
had the same previous-year crop (beans) and the same variety of wheat planted
during the fertilizer experiment.

Bayesian multiple regression analysis with exchangeable data sets

A brief overview of Bayesian multiple regression analysis illustrated using a
study of the effectiveness of the different applications of fertilizer in two data
sets highlights the benefits of exchangeability when considering the prior dis-
tributions for an analysis. The Bayesian multiple regression analysis presented
below has five dummy coded predictors corresponding to the five treatment
groups (one to five doses of sulphate of ammonia) with the zero-dose control
as the reference group, and a continuous outcome variable (pounds of grain
harvested from each plot):

yi ¼ βintercept þ β1x1i þ β2x2i þ β3x3i þ β4x4i þ β5x5i þ εi: ð2:4Þ

When considering the 1935 data set, as we have no strong prior beliefs regarding
the situation, it is suitable to assume diffuse (non-informative) prior distributions for
all unknown parameters: the regression coefficients, intercept, and residual variance.
Additionally, we chose to specify conditionally conjugate priors for the unknown
parameters, which ease the computations involved in fitting the model using
Markov chain Monte Carlo (MCMC) estimation (Gelman et al., 2013). Conjugate
priors yield posterior distributions from the same distributional family. Finally, we
chose values for the diffuse priors based on the scale of the variables themselves
rather than the default specifications of the software because the prior variances in
the default specifications of the software (i.e., 1,000 in normal priors for intercepts
and 100 in normal priors for regression coefficients) were too small for these priors
to be uninformative (i.e., the variance of the dependent variable was equal to 93.24
in 1935 and to 41.43 in 1936).
We employed the following conjugate diffuse priors: normal distributions

with mean 0 and variance of 1010 for the intercept (βintercept) and regression coef-
ficients (β1, … , β5), and an inverse-gamma distribution with shape 1 and scale
1000 for the residual variance (σ2ε ). We conducted an analysis using the
R package blavaan (Merkle & Rosseel, 2018) running a Markov chain for
26,000 iterations, discarding the first 6,000 as adaptation and burn-in following
an assessment of convergence (Gelman et al., 2013). Before interpreting results,
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convergence of the chains should be examined through trace plots, autocorrel-
ation plots, and other diagnostic criteria; these checks will not be discussed for
this example, but see Chapter 3 (Van de Schoot, Veen, Smeets, Winter, &
Depaoli) for more information. The second column of Table 2.1 contains
numerical summaries of the marginal posterior distributions for each parameter.
Because of the asymmetry of the residual variance’s posterior distribution, the
mode is reported instead of the mean, as this value is a better summary of our
beliefs about the residual variance.
Turning to the 1936 data set, we have a few options. We could conduct an

analysis as we did with the 1935 data set, using the specified diffuse priors out-
lined above. Alternatively, we could leverage our view that the 1935 and 1936
data sets are exchangeable, and build a prior distribution for the 1936 analysis
using the results from the analysis of the 1935 data set. Adopting this approach,
we once again employed conjugate prior distributions for the parameters, and
based them on results from the analysis of the 1935 data set. For the intercepts
and coefficients, we employed normal distributions with means and variances

TABLE 2.1 Posterior distribution summaries for the 1935 and 1936 data analyses

1935 analyses 1936 analyses

Diffuse priors
Informed prior
specification Diffuse priors

Results under
informed priors

Parameter

(Posterior mean,
Posterior SD)
[95% HPDI]

1936 prior
specification

(Posterior mean,
Posterior SD)
[95% HPDI]

(Posterior mean,
Posterior SD)
[95% HPDI]

βintercept
(85.933, 3.959)
[78.196, 93.765]

N(85.933, 15.674)
(85.744, 2.591)
[80.670, 90.838]

(85.449, 1.911)
[81.694, 89.181]

β1
(1.120, 5.674)

[-10.120, 12.223]
N(1.120, 32.194)

(3.682, 3.654)
[-3.250, 11.147]

(3.245, 3.171)
[-2.885, 9.508]

β2
(-5.838, 5.623)
[-16.657, 5.677]

N(-5.838, 31.618)
(-3.701, 3.629)
[-10.852, 3.506]

(-4.015, 3.158)
[-10.193, 2.139]

β3
(-3.274, 5.608)
[-14.156, 7.749]

N(-3.274, 31.450)
(-3.505, 3.649)
[-10.895, 3.552]

(-3.251, 3.171)
[-9.716, 2.740]

β4
(1.035, 5.604)

[-10.387, 11.768]
N(1.035, 31.405)

(-3.044, 3.648)
[-10.375, 4.035]

(-1.805, 3.178)
[-8.129, 4.350]

β5
(5.174, 5.593)
[-5.801, 16.138]

N(5.174, 31.282)
(0.555, 3.675)
[-6.804, 7.641]

(1.972, 3.162)
[-4.156, 8.246]

σ2ε
(83.670a, 25.234)
[52.132, 144.312]

IG(18, 1506.06)
(35.91a, 10.675)
[21.903, 61.100]

(63.01a, 11.322)
[44.010, 87.075]

Note: N stands for normal distribution, and IG stands for inverse-gamma. The first parameter in the normal
distribution is the mean, and the second parameter is the variance. HPDI denotes a Highest Posterior
Density Interval.

a Denotes posterior mode instead of posterior mean reported.
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defined by the posterior means and posterior variances from the marginal poster-
ior distributions from the analysis of the 1935 data set. For the residual variance,
we employed an inverse-gamma prior distribution with shape parameters equal
to half the sample size of the 1935 data set 36=2 ¼ 18ð Þ, and scale parameters
equal to the half of the product of the sample size of the 1935 data set and the
posterior mode from the analysis of the 1935 data set (Gelman et al., 2013).
These distributions are listed in the second column of Table 2.1. Note that the
use of these prior distributions only approximates the ideal case of using the true
posterior distribution from the 1935 analysis. It is approximate for two reasons.
First, the results of the 1935 analysis were obtained using MCMC, which
approximates the posterior distribution. This approximation can be improved by
running more iterations during estimation. Second, the true posterior distribu-
tion is a multivariate distribution over all the unknown parameters. In the ana-
lysis of the 1936 data, we use the marginal posteriors as the basis for the
univariate priors for the parameters. Any dependence among the parameters in
the posterior distribution from the 1935 analysis is neglected by specifying uni-
variate priors for the 1935 analysis. Furthermore, the marginal posteriors for the
coefficients depart slightly from normality, though exhibit its main features (uni-
modal, symmetric, bell-shaped).
We conducted two analyses of the 1936 data set: one using the diffuse prior

distributions, and the second using the priors which are informed by the results
from the analysis of the 1935 data set. The results for these two analyses are
summarized in Table 2.1. Consider first the comparison between the results for
the 1935 and 1936 analyses using diffuse priors. Though all of the highest pos-
terior density intervals (HPDIs) contain 0 in both analyses, the coefficients them-
selves reflect different rates of change. With the exception of β3, the regression
slope coefficients are all different by at least two units (pounds of grain) with the
largest differences being β4 (a 4.079-unit decrease, changing the value from posi-
tive to negative), and β5 (a 4.620-unit decrease) from 1935 to 1936, respectively.
The intercepts are fairly similar, but the residual variances are quite different.
In summary, different stories emerge from consideration of the 1935 data set

and the 1936 data set individually. This is not altogether surprising; each data set
only had 36 observations, and uncertainty abounds. By treating the data sets as
exchangeable and using the results from the analysis of one as the basis for the
prior for the analysis of the other, we accumulate evidence over multiple data
sets, which yields different (and arguably more accurate) results than evaluating
either single data set with no known prior information. While both analyses
seem to indicate that no sulphate of ammonia dosage seems to produce more
grain than the control plots, the combined analysis makes this more salient. This
is manifest when looking at the posterior standard deviations of the regression
coefficients and intercept, all of which are smaller in the analysis with informed
priors. Additionally, when comparing the 1936 analyses with diffuse and
informed priors, we again observe large differences between the β4 and β5
coefficients: the analysis with diffuse priors indicated a steeper slope for β4, and
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weaker slope for β5 relative to the analysis with informed priors. What results
should we trust the most at this point: those from the 1935 analysis using diffuse
priors, those from the 1936 analysis using diffuse priors, or those from the 1936
analysis using the informed priors? Following the logic of Bayesian inference
under exchangeable data sets, we argue that we should prefer the results from
the latter. In this way, exchangeability allows researchers to use more informa-
tion with each subsequent analysis, thereby obtaining what are ideally more
accurate posterior distributions.
The preceding characterization is an idealized case where exchangeability

between data sets is warranted, and an illustration of such was given. The example
outlined is a simplified one: five dummy coded predictors were used in a multiple
regression model to examine wheat yield of field plots. More complicated models
(e.g., including possible covariates, using a longitudinal model) are possible, and
could potentially yield new or different insights into the data sets. However, in
many practical situations, researchers might not judge the prior and current study
to be precisely exchangeable. Accordingly, the following sections take up this
issue of judging exchangeability, review relevant characteristics on which two
studies may differ, and propose extensions of already available criteria.

Relevant characteristics for establishing exchangeability

When thinking about exchangeability, it is helpful to think about the concept
of replication, and to borrow some ideas from the literature on replication
(readers interested in evaluating whether findings from one study were repli-
cated in a second study should see Chapter 12 by Zondervan-Zwijnenburg &
Rijshouwer). According to the scientists in the “Many Labs” Replication Pro-
ject, in order to replicate an experiment, the conditions of the initial experi-
ment ought to be recreated (Klein et al., 2014; Klein et al., 2018). Even
though the literature on replication does not use the term “exchangeable,”
when replicating a study researchers are essentially trying to make the new
study identical to the original study on all relevant characteristics. In the
“Many Labs” project, researchers standardized the procedural characteristics
(i.e., experiment protocol), but varied the sample and setting in order to evalu-
ate whether 13 effects from the literature replicate across different samples and
settings. Findings from this project indicate that in social and cognitive psych-
ology, “variability in observed effect sizes was more attributable to the effect
being studied than the sample or setting [country and in-person vs. online]
which it was studied” (Klein et al., 2018, p. 446), which will be relevant for
compiling a list of relevant characteristics for establishing exchangeability. The
authors caution the reader that “the generalizability of these results to other
psychological findings is unknown” (Klein et al., 2018, p. 483), thus the find-
ing that country and setting do not account for considerable variability in the
observed effect may not generalize across other research questions and areas of
social and behavioral sciences.
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Schmidt (2009) distinguishes between direct replication, i.e., repetition of an
experimental procedure, and conceptual replication, which consists of testing the
same hypothesis as a prior study, but intentionally using different methods. For
the definition of exchangeability posited in this chapter, conceptual replication
automatically does not lead to an exchangeable sample, whereas direct replica-
tion is a necessary, but not sufficient, requirement for exchangeability.
Patil, Peng, & Leek (2016) define replicability as re-performing the experi-

ment and collecting new data. When reflecting on exchangeability, we do not
focus on the research question or the findings from the studies, but on the char-
acteristics of the sample and the data collection procedure. Findings from two
exchangeable studies with the same research question and data analysis technique
can still differ due to sampling variability, and this is not an issue, because in the
long run collecting a large number of exchangeable random samples will pre-
sumably lead to the truth regarding the phenomenon under study. Inspired by
the visual model in the paper by Patil, Peng, & Leek (2016), we construct
a similar table of relevant characteristics for diagnosing whether two intervention
studies are exchangeable, and we demonstrate some of the considerations and
challenges in the evaluation of exchangeability.

Empirical example of challenges to exchangeability

We consider two related, but not exchangeable studies called SHIELD (Kuehl
et al., 2016) and PHLAME (Elliot et al., 2004, 2007). The health promotion
study SHIELD was designed to increase the health of law enforcement officers.
Before SHIELD, a comparable intervention program was tested in a sample of
firefighters in a study called PHLAME. The two studies were carried out by the
same team of principal investigators and the interventions in the two studies tar-
geted the same health outcomes. The similarity of the study design is a reason
for using prior information from PHLAME in the analysis of SHIELD results.
However, the qualitative difference in participants would be a good reason to
temper, to some degree, beliefs arising from the analysis of one set of participants
when translating to another set of participants. We start with an effort to evalu-
ate the degree of exchangeability between these two studies (Table 2.2).
Table 2.2 presents an attempt to catalogue aspects on which SHIELD and

PHLAME are exchangeable. However, there are several challenges and multiple
occasions where subjective judgment is necessary in the evaluation of exchange-
ability of two studies on a given criterion. First, the list in Table 2.2 is designed
by the authors of this chapter, and different groups of researchers might come
up with different lists. Second, the relevance of different study aspects changes
depending on the research question. For example, in a study of diabetes patients,
criteria related to medical history may deserve more weight than criteria related
to occupation and education. Thus, the relative contribution of each criterion to
the extent to which two studies are exchangeable will depend on the nature of
the research question and the variables that correlate the highest with the
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predictors and outcomes in the statistical model. Third, in this chapter, we erred
on the side of concluding the studies are exchangeable when the relevant infor-
mation was missing for one of the studies because the same team of researchers
conducted both studies. However, we do not know whether the experimental
manipulations and measurement instruments were indeed identical. Thus,
another researcher evaluating the exchangeability between SHIELD and
PHLAME could have come up with a different set of answers in the last
column of Table 2.2. Fourth, notice that even studies conducted by the same
team of researchers differ in the reporting of descriptive statistics and study pro-
cedures: in SHIELD the demographic information is reported for the entire
sample and the self-report measurement instruments are described without listing
the scale names, whereas in PHLAME the demographic information is reported
by treatment group and the self-report measurement instruments are described
by type of question. We suspect that this issue is almost ubiquitous, and even
greater for two studies conducted by different teams of researchers. Finally, we
want to emphasize that exchangeability is not a property of the external world,
but a feature of the analyst. We considered the 1935 and 1936 studies from the
Rothamsted Experimental Station exchangeable, because to our knowledge
there were no relevant differences in farming practices and environmental setting
that would allow us to distinguish between these two studies. We are not certain
that a farmer from the 1930s would agree with this assumption. This issue can
be remedied by consulting experts on the subject matter when trying to establish
whether two studies are exchangeable, but one can never be 100% certain that
two studies are completely exchangeable.

Conclusions and next steps

Even though Bayesian statistics offer a promising framework for sequentially accu-
mulating scientific knowledge with each new research study, there are still concerns
about using informative prior distributions in Bayesian analysis. When the bulk of
the prior distribution lies around the true value of the parameter, then Bayesian
methods with informative prior distributions have less bias (e.g., Depaoli, 2013),
and more power and precision than classical methods and Bayesian methods with
diffuse priors (Miočević, MacKinnon, & Levy, 2017). However, when the bulk of
the prior distribution lies further away from the population value of the parameter,
then such a prior distribution can produce biased findings (e.g., Depaoli, 2014).
Knowing whether a researcher’s best guess about the parameter encoded in the
prior distribution is close to the population value of the parameter is possible only in
simulation studies; in real life, applied researchers have no way of knowing whether
they are specifying a prior distribution that reflects the true values of the parameters
in their model. When using results from a non-exchangeable previous study to con-
struct priors for the current study, the lack of exchangeability between the two stud-
ies can cause inaccuracy in the prior. Applied researchers who still wish to use non-
exchangeable prior information in the analysis of a new study have several options:
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1. Use the posteriors from PHLAME as priors for SHIELD without any
adjustment and assume that the two studies are exchangeable. However, if
there are any relevant differences between two studies, and in this example
there are at least a few, using uncalibrated findings from the previous study
is likely to yield a less accurate informative prior than a prior that down-
weighs the influence of the non-exchangeable previous study.

2. Use power prior distributions to downweigh the information from the pre-
vious study based on the assumed level of exchangeability between the pre-
vious and current studies. Power priors are a class of informative prior
distributions that are constructed by raising the likelihood function from
a previous study to a power between 0 and 1 (Ibrahim & Chen, 2000).
Values closer to 0 give the previous study less weight, and values closer to 1
give the previous study more weight. Values of the power parameter closer
to 1 communicate the assumption that the data sets are exchangeable. In
light of the ambiguity associated with the evaluation of exchangeability,
researchers may wish to use several different values between 0 and 1 as the
power parameter and evaluate them all in a sensitivity analysis.

3. Account for the differences between the studies using the hierarchical repli-
cation model described by de Leeuw and Klugkist (2012). This method
allows each study to have a different regression coefficient and includes
study-level predictors. This is a good solution if we can assume that the
observations within each study are exchangeable, but the studies are not
exchangeable, and if the same model is fit using both data sets, and both
studies have the same predictors and outcome.

4. Use the downweighed posteriors from the previous study as priors for the
current study by basing the priors on the posterior from the previous study
but make the prior variances larger than what the posterior from the previ-
ous study would suggest. The idea here is to build in some additional
uncertainty by inflating the variance in the prior. However, exactly how to
do that in a broad class of situations is unclear, as there is no universal
number that will be appropriate as a multiplier of the posterior variance
from the initial study. Some distributional forms (e.g., inverse-gamma)
allow for selecting the desired sample size for the prior through the choice
of hyperparameters, which gives researchers the option of designing inform-
ative priors that carry only a fraction of the weight of the likelihood func-
tion from the current study. Unfortunately, most commonly used
distributions do not have this feature (e.g., normal distribution), which
makes it difficult to translate the prior variance into an approximate sample
size allocated to the prior distribution.

The example of SHIELD and PHLAME concerns a lack of exchangeability among
people, and we assumed exchangeability in terms of measurement instruments.
Options 2–4 here are ways to address a lack of exchangeability among people. A lack
of exchangeability in measurement instruments may lead to non-exchangeability
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among variables in the two data sets, e.g., if the same construct is measured
using different scales in the two studies, then a one-unit change on one scale
may not be comparable to a one-unit change on the other scale. When faced
with non-exchangeability of variables, we propose two potential solutions:

1. If the variables are about the same construct, then use the standardized solution
from one data set to form the prior for the other data set.

2. Use latent variable modeling (factor analysis, or Item Response Theory – IRT)
to handle different measures (at least some of which have to exhibit measure-
ment invariance across studies), as described in the literature on integrative data
analysis (Curran & Hussong, 2009; Curran et al., 2008; McArdle, Grimm,
Hamagami, Bowles, & Meredith, 2009).

Despite the increasing availability of relevant prior information that can be used in
a Bayesian analysis, there are still no clear guidelines for how non-exchangeable
information ought to be calibrated to create informative prior distributions. In this
chapter we highlighted some of the challenges in evaluating the extent to which two
studies are exchangeable and some ideas for dealing with the conversion of a non-
exchangeable prior study into an informative prior distribution for the current study.
Different methods for incorporating non-exchangeable prior information need to be
tested in simulation studies, which will hopefully yield guidelines for applied
researchers who wish to specify informative priors based on previous studies. For
now, it is prudent to proceed with caution when specifying informative prior distri-
butions, and to remain mindful about the kinds of non-exchangeability that might
exist between the prior and current studies.

Notes

1 Lindley and Phillips (1976) go further and argue that exchangeability justifies the use
of all Bayesian machinery – as they see it, there is no assumption of the prior, only the
assumption of exchangeability, and from that assumption arises the notion of a prior
and the subsequent Bayesian calculations.

2 We are using this classic data set from the same institution where the mathematician
and geneticist Ronald Aylmer Fisher developed the analysis of variance a decade earl-
ier, in the 1920s.
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Introduction

The current chapter guides the reader through the steps of the When-to-Worry-
and-How-to-Avoid-the-Misuse-of-Bayesian-Statistics checklist (the WAMBS
checklist), in order to provide background for the other chapters in this book. New
in comparison to the original WAMBS checklist is that we include prior and poster-
ior predictive model checking. We also compare the performance of two popular
Bayesian software packages: RStan (Carpenter et al., 2017) and rjags (Plummer,
Stukalov, & Denwood, 2018) ran via blavaan (Merkle & Rosseel, 2018). We
show why using the Hamiltonian Monte Carlo (HMC) procedure (Betancourt,
2017), available in RStan, is more efficient when sample size is small. Note that
for a full explanation of each step we refer to the paper in which the checklist was
published (Depaoli & Van de Schoot, 2017). For a more detailed introduction to



Bayesian modeling, we refer the novice reader to Chapter 1 (Miočević, Levy, &
Van de Schoot), among many other resources. The checklist is extended in Chapter
4 (Veen & Egberts) with some additional tools and debugging options. All data and
the annotated R code to reproduce the results are available on the Open Science
Framework (https://osf.io/am7pr/).

Example data

The data we use throughout the chapter is based on a study of PhD delays (Van
de Schoot, Yerkes, Mouw, & Sonneveld, 2013). Among many other questions,
the researchers asked the PhD recipients how long it had taken them to finish
their PhD thesis (n ¼ 333). It appeared that PhD recipients took an average of
59.8 months (five years and four months) to complete their PhD trajectory. The
variable of interest measures the difference between planned and actual project
time in months (delay ¼ 9:97, min=max ¼ �31=91, σ ¼ 14:43).
Let us assume we are interested in the question of whether age (age ¼ 31:68,

min=max ¼ 26=69) of the PhD recipients is related to delay in their project. Also,
assume we expect this relation to be non-linear. So, in our model the gap between
planned and actual project time is the dependent variable and age and age2 are the
predictors, resulting in a regression model with four parameters:

• the intercept denoted by βintercept
• two regression parameters:

◦ βage or β1 for the linear relation with age
◦ βage2 or β2 for the quadratic relation with age

• variance of the residuals denoted by σ2ε

WAMBS checklist

Do you understand the priors?

Since we know that at least some degree of information is necessary to properly
estimate small data (Smid, McNeish, Miočević, & Van de Schoot, 2019), the
next question is: How to assess and use such information? There are many ways
to specify subjective priors—for example, based on expert elicitation or previous
data (Van de Schoot et al., 2018)—and none are inherently right or wrong. For
more details on where to get the priors from, see Zondervan-Zwijnenburg,
Peeters, Depaoli, & Van de Schoot (2017).
In the current chapter we propose to use background information to specify

priors that cover a plausible parameter space. That is, we define a range of pos-
sible parameter values considered to be reasonable, thereby excluding impossible
values and assigning only a limited density mass to implausible values. Note that
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in the sensitivity analyses presented in Steps 7–9 of the checklist, we investigate
the extent of “wiggle room” for these values. Stated differently, whether differ-
ent specifications of the plausible parameter space lead to different conclusions.

Define parameter space

We developed a free online app that can help with specifying the plausible par-
ameter space for the PhD delay example (see the OSF for source code (https://
osf.io/am7pr/), and for the online version go to www.rensvandeschoot.com/pps
or https://utrecht-university.shinyapps.io/priors_phd/)1; for a screenshot, see
Figure 3.1. If useful background knowledge is available and you are therefore
unsure about your prior beliefs, trying to infer a plausible parameter space is to
be preferred over just relying on software defaults.
First, define what you believe to be a reasonable range for age (in years).

Think about what you believe to be the youngest age someone can acquire
a PhD (delay included) and what the oldest age might be. This yields an age
range of, for example, 18–70. Then, define the delay (in months) you believe to
be reasonable. A negative delay indicates that someone finished their PhD ahead
of schedule. Think about how many months someone can finish ahead of sched-
ule and what you believe to be the maximum time that someone can be
delayed; for example, -25–120 (Figure 3.1).
Second, think about what you consider plausible estimates for the intercept, the

linear effect, and the quadratic effect. The data is not centered, which means that
the intercept represents the expected delay of a zero-year-old. The linear effect is
the expected increase in delay (in months) over time. For example, a linear effect of
3 means that for a one-year increase in age, the expected delay increases by three
months. The quadratic effect is the deviation from linearity. Let us assume we
expect a positive linear increase of 2.5 starting at a delay of -35 months (note this is
possible because it is the delay of a zero-year old PhD candidate) and a small nega-
tive quadratic effect of -.03, so that this effect would look like a negative parabola
(n-shaped) with the maximum delay occurring around the fifties (Figure 3.1).
Priors for regression coefficients (or any prior for that matter) are never just

a point estimate, but always follow a distribution. In this example, only normal
distributions are used, but most Bayesian software will allow many different
types of distributions. The variances of a normally distributed the prior, denoted
by σ20, resemble a measure of uncertainty; see also Chapter 1. It is important to
note that these variances are measured on the same scale as the regression coeffi-
cients. A variance that is small for the intercept might be relatively large for the
quadratic effect. This means that you always have to be careful with the default
prior of any Bayesian software package. For our model, a small change in the
variance of the quadratic effect has a large influence on the plausible parameter
space. This becomes clear in the app because any small adjustment of the vari-
ance (note that the scales of variance sliders are different) for the quadratic effect
leads to a large widening of the ribbon of the quadratic effect over time.
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The following hyperparameters cover the entire plausible parameter space,
with N μ0; σ20

� �
, and IG shape; scaleð Þ2:

• βintercept � N �35; 20ð Þ
• βage � N :8; 5ð Þ
• βage2 � N 0; 10ð Þ
• σ2ε � IG :5; : 5ð Þ

Load data and define the model

Now that the hyperparameter values of the priors are specified, the data can be
uploaded into R (or any other software for Bayesian estimation) and the statistical
model can be specified. We ran the model using RStan. For an introduction, see for
instance Carpenter et al. (2017). We also include some results obtained with rjags
via blavaan (Merkle et al., 2019; Plummer et al., 2018) to show why using RStan
might be preferred over rjags even though the syntax is more complicated. See the
online supplementary materials for all annotated code (https://osf.io/am7pr/).

Prior predictive checking

Now that the model has been specified, we can investigate the priors further by
computing prior predictive checks which allow for inspecting the implications
of all univariate priors together. To get the prior predictive results we ignore
the sample data. In the top panel of Figure 3.2, the 95% prior predictive inter-
vals are shown for generated observations based on the priors for each individ-
ual, denoted by yrep, and the observations from the sample, denoted by y. That
is, values of yrep are based on the prior specifications for each individual and rep-
resent possible values for PhD delay implied by the priors. In general, for all
cases the prior intervals imply delays possible from approximately -100 to +100
months (with some extreme values up to ± 250) and the entire plausible param-
eter space (and more) is covered.
We can also look at the possible data sets generated by the priors. In the top

panel of Figure 3.3, distributions of PhD delay are plotted based on the set of
priors. It appears that a wide variety of data sets is plausible, though still ruling
out delays larger or smaller than +300/-300. In general, we can at least be con-
fident that when using our priors we do not exclude potential scenarios, but at
the same time are able to rule out large parts of the parameters space, which is
what is needed when sample sizes are small.

Does the trace-plot exhibit convergence?

To obtain estimates for the parameters in our model we make use of Monte Carlo
simulations; see also Chapter 1. Traditionally a very successful and often-used algo-
rithm is the Gibbs Sampler, a method of Markov chain Monte Carlo simulation
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(MCMC). This is the algorithm used by rjags. RStan uses a different MCMC
algorithm, namely HMC and specifically the No-U-Turn-Sampler (Hoffman &
Gelman, 2014); see also Chapter 4. For a conceptual introduction to HMC see
Betancourt (2017) or the very accessible blog post by McElreath (2017). One of the
benefits of this algorithm, and of the specific way it is implemented in Stan, is that
these Monte Carlo samples suffer less from autocorrelation between the samples in
the chains of samples (see Chapter 1 for an explanation of these terms). Thus, fewer
Monte Carlo samples are needed to accurately describe the posterior distributions.
In other words, the effective number of samples relative to our total amount of sam-
ples increases; see Chapter 4 for an extensive discussion on this topic. As a result,
usually, convergence is obtained faster with the more efficient HMC.
To determine whether the sampling algorithm has converged, one should

check the stability of the generated parameter values. A visual check of the

FIGURE 3.2 The 95% prior predictive intervals (top panel) and posterior predictive
intervals (bottom panel) for each observation in the sample (n ¼ 333)
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stability of the generated parameter values implies estimating multiple chains and
then plotting the results in so-called trace plots. Figure 3.4 shows the trace plots for
all parameters obtained by RStan and rjags, based on four chains of 1,000 sam-
ples per chain for both samplers and 1,000 iterations burn-in. When comparing the
results for RStan and rjags, it becomes clear that RStan is more efficient than
rjags: we see in the plots that the chains of the MCMC sampler rjags move
more slowly from one step to the next than in the HMC sampler RStan. This is
caused by autocorrelation between the samples, as we show in Step 5 of the
WAMBS checklist.
Next to inspecting trace plots there are several diagnostic tools to determine

convergence. We discuss two completely different diagnostic tools.
First, the Gelman–Rubin statistic compares the amount of variance within the

individual chains to the amount of variance between the chains up to the last
iteration in the chains (Gelman & Rubin, 1992). If this ratio is close to 1—for
example, if the value is smaller than 1.1 for all parameters (Gelman & Shirley,
2011)—we can be more confident that the chains describe the same distribution
and that we have reached convergence. Figure 3.5 shows the development of
the statistic as the number of samples increases using Gelman–Rubin diagnostic
plots for both rjags and RStan.
Another convergence diagnostic is the Geweke diagnostic (Geweke, 1992),

which is based on testing equality of means between the first 10% and last 50%
parts of each chain. The test statistic is a standard Z-score: the difference
between the two sample means divided by its estimated standard error. In
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FIGURE 3.5 Gelman–Rubin statistics for RStan and rjags
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Figure 3.6, it could be checked how often values exceed the boundary lines of
the Z-scores. Scores above 1.96 or below -1.96 indicate that the two portions
of the chain differ significantly, and full chain convergence is not reached.
All results in Figures 3.4–3.6 point to convergence in the case of RStan,

but not in the case of rjags. We continue using only RStan, with the
exception of Step 5 in the checklist, where we compare the levels of auto-
correlation between both packages to demonstrate the added value of RStan
once more.

Does convergence remain after doubling the number of
iterations?

As is recommended in the WAMBS checklist, we double the amount of iter-
ations to check for local convergence. According to the checklist:

Local convergence can be thought of as the case where convergence
appears to be visually obtained – often with a smaller number of iter-
ations – but when the chain is left to run longer, then the chain shifts and
converges to another location.

(Depaoli & Van de Schoot, 2017)

We re-ran the model with 2,000 samples per chain.
Next to inspecting the trace plots (see Figure 3.4) and the convergence diag-

nostics (available on the OSF) we can also compute the relative bias, in order to
inspect if doubling the number of iterations influences the posterior parameter
estimates. One can use the following equation by filling in a posterior estimate:

relative bias¼ 100 � jposterior estimate initial modelj � jposterior estimate new modelj
jposterior estimate initial modelj

If the relative bias is 4 5j j%3, then it is advised to rerun the initial model with
four times the number of iterations, and again up till the relative bias is small
enough; see also Chapter 4. As can be seen in the first column of Table 3.1, all

TABLE 3.1 Results of relative bias (in %) for different models

Step 3: Double
iterations

Step 7: Different
variance priors

Step 8: Non-informative
priors

βintercept -1.029 1.052 -6.349
βage -0.811 0.880 -5.312
βage2 -0.778 0.967 -5.578
σ2ε -0.149 -0.345 0.248
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values of relative bias are < 1.03%, which means doubling the number of iter-
ations hardly changes the posterior estimates.

Does the histogram contain enough information?

The parameter estimates of all chains (after burn-in) can be plotted in
a histogram. The amount of information, or smoothness, of the histogram
should be checked to ensure that the posterior is represented using a large
enough number of samples. There should be no gaps or other abnormalities in
the histogram. The histograms in Figure 3.7 all look smooth, thus suggesting
that adding more iterations is not necessary.

Do the chains exhibit a strong degree of autocorrelation?

The dependence between the samples of a Monte Carlo simulation can be
summarized by autocorrelation. If samples are less correlated, we need fewer
Monte Carlo samples to get an accurate description of our posterior distribu-
tion. High autocorrelation can be a sign that there was a problem with the
functioning of the MCMC sampling algorithm or in the initial setup of the
model. Also, if convergence is not obtained with an extreme number of iter-
ations, then these issues can be indicative of a model specification problem,
multicollinearity, or the sampling algorithm. In our case, the sampling algo-
rithm itself solves the high amount of autocorrelation in the model. Compare
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the plots in Figure 3.8 showing high degrees of correlation across iterations
obtained in rjags (orange) with those obtained in RStan (green). The
results obtained in RStan show less dependency between iterations when
compared to rjags.

Do the posterior distributions make substantive sense?

Plotting a smoothed line through the histogram can be used as an approximation
of the posterior distribution. In Figure 3.7 we plotted these to check if they are
unimodal (i.e., have one peak), are clearly centered around one value, give
a realistic estimate, and make substantive sense compared to our prior beliefs. As
can be seen in Figure 3.7, there are no such issues with the posterior distribu-
tions obtained for our parameters. The posterior distributions of our regression
coefficients fall within the range we specified above, and the peak of our poster-
ior distributions is within reasonable distance from the means of our prior speci-
fications. Substantive interpretations of these posteriors will follow in Step 10 of
the checklist.

Do different specifications of the priors for variance parameters
influence the results?

To understand the influence of the priors as specified in Step 1, it is recom-
mended to conduct a sensitivity analysis (Van Erp, Mulder, & Oberski,
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2018). It is essential that researchers report results of a sensitivity analysis,
even if there is no substantive impact on results. Do not despair if there are
differences between posterior results! Such findings are actually very interest-
ing (and even fun). In such situations, we recommend dedicating consider-
able space in the discussion section to the description of the discrepancy
between results obtained using informative versus non-informative priors and
the implications of this discrepancy. The discussion could then illustrate the
mismatch between theory (i.e., priors should reflect the current state of
affairs) and data, and it is up to the researcher to come up with an explan-
ation for such a mismatch.
Although a sensitivity analysis needs you to play around with some of the

prior settings, it is important to note that this can only be an exercise to improve
the understanding of the priors. It is not a method for changing the original
prior. That is, if a researcher actually changes the prior after seeing the results of
Steps 7–9, then this is considered as manipulating the results, related to question-
able research practices or even fraud.
To understand how the prior for the residual variance impacts the posterior,

we compared the current results with a model that uses different hyperpara-
meters for the Inverse Gamma prior for the residual variance. So far we used
σ2ε � IG :5; :5ð Þ, but we can also use σ2ε � IG :01; :01ð Þ and see if doing so makes
a difference (many other variations are possible). To quantify the impact of the
prior, we again calculated the relative bias (computed the same way as in
Step 3); see the second column of Table 3.1. The results are robust, because
there is only a minimum amount of relative bias for the residual variance.

Is there a notable effect of the prior when compared to
non-informative priors?

In order to understand the impact of our informative priors on the posterior
results, we also compare our subjective priors with non-informative priors:

• βintercept � N 0; 106ð Þ
• βage � N 0; 1000ð Þ
• βage2 � N 0; 1000ð Þ
• σ2ε � IG 1; : 5ð Þ

We computed the relative bias, and as can be seen in the third column of
Table 3.1, there is some bias between the two models. To understand the impact
of our informative priors, we plotted the priors and posteriors for both models
and for all parameters in Figure 3.9. In the last column the two posteriors are
plotted in the same graph, and, as can be seen, the informative priors do impact
the posterior results when compared to the non-informative priors.
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Are the results stable with a sensitivity analysis?

In addition to the previous steps, we not only checked the sensitivity of the
results to different prior specifications (our informative priors, a factor 10 times
more informative, and non-informative), but we also checked the stability of
the posterior estimates across participants by sequential updating. That is, with
Bayesian statistics the priors can be updated with a sample size of
n ¼ 1; …; n ¼ N . Thus, in each step the original prior is updated with more
and more data so that the posterior becomes more dominated by the data and
less by the prior. The stability of the results is indicative of how small the
sample size could have been with different prior settings.
As we assume our data to be exchangeable (see Chapter 2, Miočević, Levy,

and Savord), it should not matter in which order the data points were observed
if our posterior distributions are to pass this second sensitivity analysis. There-
fore, we created five permutations of the data in which only the order of the
participants was randomly changed. For each of these five data sets, we ran the
model with the three different prior specifications, resulting in 15 different
models. After the first update with the first participant, the posteriors were
updated again with adding the second participant to the data, and so on.
As can be seen in Figure 3.10, updating the model 333 times results in similar

posterior results for all the five different data sets, which makes sense since the
data is exchangeable and the order in which the data is analyzed should not
matter. But when inspecting, for example, the results for the intercept with the
priors as specified in Step 1, it can be seen that only after roughly 100 partici-
pants are the results stable. Stated differently, if we had included only 50 PhD
recipients in our data, the uncertainty in the posterior would have been much
larger, even allowing zero plausibility (grey line; the blue line resembles the
prior mean). This effect is much lager for the non-informative priors and
a much larger data set is needed to obtain stable results. It is not surprising,
however, that with precise priors (small prior variance) our data does not
change the estimates much: after a few samples our posterior estimates from the
permuted data sets are highly similar.
In conclusion, the data, with n ¼ 333, could have been a bit smaller with our

informative priors, but not much. Only with highly informative priors, the
sample size could have been smaller.

TABLE 3.2 Results for the model using our informative priors

Mean SD 2.5% 50% 97.5%

βintercept -44.425 10.579 -64.325 -44.668 -23.387
βage 2.532 .503 1.522 2.544 3.477
βage2 -.025 .005 -.034 -.025 -.014
σ2ε 196.923 15.266 168.758 196.255 228.166
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Is the Bayesian way of interpreting and reporting model results used?

The posterior parameter estimates can be summarized using, for example, the
median of the posterior distributions, and can be found in Table 3.2. Based on
these point summaries, it appears the delay peaks at around the age of 50
(2:532=� 2 � :025ð Þ). Considering that 0 is not included in the 95% interval
of the linear effect and the quadratic effect, we can conclude that there is
a small positive linear effect and a small negative quadratic effect4.
It is also informative to inspect the posterior predictive results which are similar

to the prior predictive results, except that because we now inspect the posteriors we
can use our updated beliefs from after observing the data. If we inspect the posterior
predictive plots in Figure 3.2 (bottom panel), we can see that we are not able to
perfectly predict the delay in PhD completion using the candidate’s age, which also
becomes evident by the R2 of 6%. Moreover, it is not surprising to see that predic-
tions based on our model tend to be more off the mark for cases with longer and
shorter delays than with normal delays, whilst our uncertain estimates capture all
standard cases. Furthermore, if we compare our prior and posterior predictive distri-
butions (see Figure 3.3), we are less uncertain and more consistent in what we
expect after observing the data. So, accurate predictions of delay for individual cases
may not be possible, but we can predict general trends at group level.

Conclusion

The chapter shows how to properly implement a Bayesian analysis following the
steps of the WAMBS checklist. Following this checklist is important for the
transparency of research, which is important no matter which estimation para-
digm is being implemented. However, it is even more important within the
Bayesian framework, because there are so many places where bad research prac-
tices can be “hidden” within this estimation perspective, especially concerning
the prior specification and its impact on the posterior results. Clear reporting
and sufficient amounts of detail for reproducing results are important first steps
in ensuring that Bayesian results can be trusted and properly interpreted. We
therefore recommend including results of the WAMBS checklist as an appendix
or as a supplementary file to any Bayesian paper; for an example, see Zweers
(2018).
In the end, properly conducting and reporting results is important, but the

key is understanding the impact of the prior, especially when sample size is
small, since this will ultimately be the element that potentially shifts theories and
practices within a field.
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Notes

1 Note that the only priors you can tweak in the app are the priors for the intercept and
regression coefficients. In Step 7 of the checklist we will return to the specification of
the prior for the residuals, σ2ε .

2 Historically, Inverse Gamma priors have been used for (residual) variance parameters,
due to their conjugate properties that allow for using the Gibbs sampling algorithm.
Some alternatives are being discussed in, for example, McNeish (2016). The hyper-
parameters are, in this example, mildly informative based on the discussion in Van de
Schoot, Broere, Perryck, Zondervan-Zwijnenburg, and Van Loey (2015).

3 The relative bias should be interpreted with caution and only in combination with sub-
stantive knowledge about the metric of the parameter of interest. For example, with
a regression coefficient of .001, a 5% relative deviation level might not be substantively
relevant. However, with an intercept parameter of 50, a 1% relative deviation level might
already be quite meaningful.

4 Note that testing such results by means of the Bayes Factor is being discussed in Chapters
9 (Klaassen) and 12 (Zondervan-Zwijnenburg & Rijshouwer).

References

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv
Preprint arXiv:1701.02434.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., &
Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software,
76(1). doi:10.18637/jss.v076.i01.

Depaoli, S., & Van de Schoot, R. (2017). Improving transparency and replication in Bayesian
statistics: The WAMBS-Checklist. Psychological Methods, 22(2), 240–261. doi:10.1037/
met0000065.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7(4), 457–472. doi:10.1214/ss/1177011136.

Gelman, A., & Shirley, K. (2011). Inference from simulations and monitoring convergence.
In S. P. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng (Eds.), Handbook of Markov
Chain Monte Carlo (pp. 116–162). Boca Raton, FL: Chapman & Hall/CRC Press.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation
of posterior moments. In J. M. Bernardo, A. F. M. Smith, A. P. Dawid, and
J. O. Berger (Eds.), Bayesian Statistics 4 (pp. 169–193). Oxford: Oxford University Press.

Hoffman, M. D., & Gelman, A. (2014). The No-U-turn sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593–1623.

McElreath, R. (2017). Markov chains: Why walk when you can flow? Retrieved from
http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/.

McNeish, D. (2016). Using data-dependent priors to mitigate small sample bias in latent
growth models: A discussion and illustration using Mplus. Journal of Educational and
Behavioral Statistics, 41(1), 27–56. doi:10.3102/1076998615621299.

Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models via par-
ameter expansion. Journal of Statistical Software, 85(4), 1–30. doi:10.18637/jss.v085.i04.

Merkle, E. C., Rosseel, Y., Garnier-Villarreal, M., Jorgensen, T. D., Hoofs, H., & Van de
Schoot, R. (2019). blavaan: Bayesian latent variable analysis, Version 0.3-4. Retrieved
from https://CRAN.R-project.org/package=blavaan.

Plummer, M., Stukalov, A., & Denwood, M. (2018). rjags: Bayesian graphical models
using MCMC, Version 4-8. Retrieved from https://cran.r-project.org/web/packages/
rjags/index.html.

48 Rens van de Schoot et al.



Smid, S. C., McNeish, D., Miočević, M., & Van de Schoot, R. (2019). Bayesian versus
frequentist estimation for structural equation models in small sample contexts:
A systematic review. Structural Equation Modeling: A Multidisciplinary Journal.
doi:10.1080/10705511.2019.1577140.

Van de Schoot, R., Broere, J. J., Perryck, K. H., Zondervan-Zwijnenburg, M., & Van
Loey, N. E. (2015). Analyzing small data sets using Bayesian estimation: The case of
posttraumatic stress symptoms following mechanical ventilation in burn survivors. Euro-
pean Journal of Psychotraumatology, 6(1), 25216. doi:10.3402/ejpt.v6.25216.

Van de Schoot, R., Sijbrandij, M., Depaoli, S., Winter, S. D., Olff, M., & Van
Loey, N. E. E. (2018). Bayesian PTSD-trajectory analysis with informed priors based on
a systematic literature search and expert elicitation. Multivariate Behavioral Research, 53
(2), 267–291. doi:10.1080/00273171.2017.1412293.

Van de Schoot, R., Yerkes, M. A., Mouw, J. M., & Sonneveld, H. (2013). What took
them so long? Explaining PhD delays among doctoral candidates. PLoS One, 8(7),
e68839. doi:10.1371/journal.pone.0068839.

Van Erp, S., Mulder, J., & Oberski, D. L. (2018). Prior sensitivity analysis in default Bayes-
ian structural equation modeling. Psychological Methods, 23(2), 363–388. doi:10.1037/
met0000162.

Zondervan-Zwijnenburg, M. A. J., Peeters, M., Depaoli, S., & Van de Schoot, R. (2017).
Where do priors come from? Applying guidelines to construct informative priors in
small sample research. Research in Human Development, 14(4), 305–320. doi:10.1080/
15427609.2017.1370966.

Zweers, I. (2018). Chapter 5. Similar development in separate educational contexts? Devel-
opment of social relationships and self-esteem in students with social-emotional and
behavioral difficulties in inclusive classrooms and exclusive schools for special educa-
tion – Supplementary materials. Retrieved from osf.io/yf3mu.

A tutorial on using the WAMBS checklist 49



4
THE IMPORTANCE OF
COLLABORATION IN BAYESIAN
ANALYSES WITH SMALL SAMPLES

Duco Veen
DEPARTMENT OF METHODOLOGY AND STATISTICS, UTRECHT UNIVERSITY, UTRECHT, THE NETHERLANDS

Marthe Egberts
ASSOCIATION OF DUTCH BURN CENTRES, BEVERWIJK, THE NETHERLANDS, DEPARTMENT OF CLINICAL

PSYCHOLOGY, UTRECHT UNIVERSITY, UTRECHT, THE NETHERLANDS, DEPARTMENT OF METHODOLOGY AND

STATISTICS, UTRECHT UNIVERSITY, UTRECHT, THE NETHERLANDS

Introduction

Complex statistical models, such as Structural Equation Models (SEMs),
generally require large sample sizes (Tabachnick, Fidell, & Ullman, 2007; Wang
& Wang, 2012). In practice, a large enough sample cannot always be easily
obtained. Still, some research questions can only be answered with complex
statistical models. Fortunately, solutions exist to overcome estimation issues with
small sample sizes for complex models; see Smid, McNeish, Miočević, and Van
de Schoot (2019) for a systematic review comparing frequentist and Bayesian
approaches. The current chapter addresses one of these solutions, namely
Bayesian estimation with informative priors. In the process of Bayesian
estimation, the WAMBS checklist (When-to-Worry-and-How-to-Avoid-the-
Misuse-of-Bayesian-Statistics; Depaoli & Van de Schoot, 2017) is a helpful tool;
see also Chapter 2 (Van de Schoot, Veen, Smeets, Winter, & Depaoli).
However, problems may arise in Bayesian analyses with informative priors, and
whereas these problems are generally recognized in the field, they are not always
described or solved in existing tutorials, statistical handbooks, or example papers.
This chapter offers an example of issues arising in the estimation of a Latent
Growth Model (LGM) with a distal outcome using Bayesian methods with
informative priors and a small data set of young children with burn injuries and
their mothers. Moreover, we introduce two additional tools for diagnosing
estimation issues: divergent transitions and the effective sample size (ESS) of the
posterior parameter samples, available in Stan (Stan Development Team,



2017b) which makes use of an advanced Hamiltonian Monte Carlo (HMC)
algorithm called the No-U-Turn-Sampler (NUTS; Hoffman & Gelman, 2014).
These diagnostics can be used in addition to the checks described in the
WAMBS checklist.
In the following sections, we briefly introduce LGMs and address the role of

sample size, followed by an empirical example for which we present an analysis
plan. Next, we show the process of adjusting the analysis in response to
estimation problems. We show that different solutions can differentially impact
the posterior summaries and substantive conclusions. This chapter highlights the
importance of collaboration between substantive experts and statisticians when
an initial analysis plan goes awry.

Latent growth models with small sample sizes

LGMs include repeated measurements of observed variables, and allow
researchers to examine change over time in the construct of interest. LGMs
can be extended to include distal outcomes and covariates (see Figure 4.1).
One of the benefits of specifying an LGM as a SEM, as opposed to
a multilevel model as discussed in Chapter 15 (Hox & McNeish), is that
growth can be specified as a non-monotonic or even non-linear function. For
instance, we can specify an LGM in which part of the growth process is fixed
and another part is estimated from the data. In Figure 4.1, two constraints on
the relationships between the latent slope and measurement occasions are freed
for two waves, thereby estimating λ2;2 and λ2;3 from the data. As a result, we
allow individuals to differ in the way their manifest variables change from the
first to the last measurement.
One drawback of LGMs, however, is that such models generally require large

sample sizes. The more restrictions we place on a model, the fewer parameters there
are to estimate, and the smaller the required sample size. The restrictions placed
should, however, be in line with theory and research questions. Small sample sizes
can cause problems such as high bias and low coverage (Hox & Maas, 2001),
nonconvergence, or improper solutions such as negative variance estimates (Wang
& Wang, 2012, p. 391), and the question is how large should the sample size be to
avoid these issues. Several simulation studies using maximum likelihood estimation
have provided information on required sample sizes for SEM in general, and LGM
specifically. To get an indication of the required sample size, we can use some
rather arbitrary rules of thumb. Anderson and Gerbing (1988) recommend n ¼
100–150 for SEM in general. Hertzog, von Oertzen, Ghisletta, and Lindenberger
(2008) investigated the power of LGM to detect individual differences in rate of
change (i.e., the variance of the latent slope in LGMs). This is relevant for the
model in Figure 4.1 because the detection of these differences is needed if the
individual rate of change over time (individual parameter estimates for the latent
slope) is suitable to be used as a predictor in a regression analysis. In favorable
simulation conditions (high Growth Curve Reliability, high correlation between
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intercept and slope, and many measurement occasions), maximum likelihood
estimation has sufficient power to detect individual differences in change with
n ¼ 100. However, in unfavorable conditions even a sample size of 500 did not
result in enough power to detect individual differences in change. Additionally,
the model in the simulation studies by Hertzog and colleagues contained fewer
parameters when compared to the LGM model used in the current chapter,
thus suggesting that running the model in this chapter would require even larger
sample sizes than those recommended by Hertzog and colleagues.
Bayesian estimation is often suggested as a solution for problems encountered in

SEM with small sample sizes because it does not rely on the central limit theorem.
A recent review examined the performance of Bayesian estimation in comparison
to frequentist estimation methods for SEM in small samples on the basis of
previously published simulation studies (Smid, McNeish et al., 2019). It was
concluded that Bayesian estimation could be regarded as a valid solution for small
sample problems in terms of reducing bias and increasing coverage only when
thoughtful priors were specified. In general, naive (i.e., flat or uninformative) priors
resulted in high levels of bias. These findings highlight the importance of
thoughtfully including prior information when using Bayesian estimation in the
context of small samples. Specific simulation studies for LGMs can be found in
papers by McNeish (2016a, 2016b); Smid, Depaoli, and Van de Schoot (2019); Van
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FIGURE 4.1 The LGM as used in the empirical example. The parameters of interest are
the intercept of the latent factor f 1 (β0), f 1 regressed on the latent intercept (β1), the latent
slope (β2) and x5 (β3) and the residual variance of the latent factor f 1 (σ2ε ). The two blue
factor loadings indicate freely estimated loadings, λ2;2 and λ2;3 (respectively). The red
residual variance parameter (θ77) is highlighted throughout the empirical example
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de Schoot, Broere, Perryck, Zondervan-Zwijnenburg, and Van Loey (2015), and
Zondervan-Zwijnenburg, Depaoli, Peeters, and Van de Schoot (2019).
In general, it is difficult to label a sample size as small or large, and this can only be

done with respect to the complexity of the model. In the remainder of this chapter
we use the example of the extensive and quite complex LGM that can be seen in
Figure 4.1. We show that with a sample that is small with respect to the complexity
of this model, issues arise in the estimation process even with Bayesian estimation
with thoughtful priors. Moreover, we provide details on diagnostics, debugging of
the analysis, and the search for appropriate solutions. We show the need for both
statistical and content expertise to make the most of a complicated situation.

Empirical example: analysis plan

In practice, there are instances in which only small sample data are available; for
example, in the case of specific and naturally small or difficult-to-access populations.
In these cases, collecting more data is not an option, and simplifying research
questions and statistical models is also undesirable because this will not lead to an
appropriate answer to the intended research questions. In this section we introduce
an empirical example for which only a small data set was available, and at the same
time the research question required the complicated model in Figure 4.1.

Research question, model specification, and an overview of data

The empirical example comprises a longitudinal study of child and parental
adjustment after a pediatric burn event. Pediatric burn injuries can have long-
term consequences for the child’s health-related quality of life (HRQL), in
terms of physical, psychological, and social functioning. In addition, a pediatric
burn injury is a potentially traumatic event for parents, and parents may
experience post-traumatic stress symptoms (PTSS; i.e., symptoms of re-
experiencing, avoidance, and arousal) as a result. Parents’ PTSS could also
impact the child’s long-term HRQL. It is important to know whether the initial
level of parental PTSS after the event or the development of symptoms is
a better predictor of long-term child HRQL, since this may provide
information about the appropriate timing of potential interventions. Therefore,
the research question of interest was how the initial level and the development
of mothers’ PTSS over time predict the child’s long-term HRQL.
In terms of statistical modeling, the research question required an LGM to model

PTSS development and a measurement model for the distal outcome; namely, the
child’s HRQL. The full hypothesized model and the main parameters of interest,
i.e., the regression coefficients of the predictors for the child’s HRQL, β0 for the
intercept, β1 for HRQL regressed on the latent intercept, β2 for HRQL regressed
on the latent slope, β3 for HRQL regressed on the covariate, percentage of Total
Body Surface Area (TBSA) burned, and the residual variance σ2ε , are displayed in
Figure 4.1. Mothers reported on PTSS at four time points (up to 18 months) after
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the burn injury by filling out the Impact of Event Scale (IES; Horowitz, Wilner,
and Alvarez, 1979). The total IES score from each of the four time points was used
in the LGM. Eighteen months post-burn, mothers completed the Health Outcomes
Burn Questionnaire (HOBQ; Kazis et al., 2002), which consists of 10 subscales.
Based on a confirmatory factor analysis, these subscales were divided into three
factors, i.e., Development, Behavior, and Concern factors. For illustrative reasons,
we only focus on the Behavior factor in the current chapter, which was measured
by just two manifest variables. TBSA was used to indicate burn severity; this is the
proportion of the body that is affected by second- or third-degree burns and it was
used as a covariate. For more detailed information about participant recruitment,
procedures, and measurements, see Bakker, Van der Heijden, Van Son, and Van
Loey (2013).
Data from only 107 families was available1. Even though data were collected in

multiple burn centers across the Netherlands and Belgium over a prolonged period
of time (namely three years), obtaining this sample size was already a challenge for
two main reasons. Firstly, the incidence of pediatric burns is relatively low. Yearly,
around 160 children between the ages of 0 and 4 years old require hospitalization in
a specialized Dutch burn center (Van Baar et al., 2015). Secondly, the acute
hospitalization period in which families were recruited to participate is extremely
stressful. Participating in research in this demanding and emotional phase may be
perceived as an additional burden by parents.
Still, we aimed to answer a research question that required the complex

statistical model displayed in Figure 4.1. Therefore, we used Bayesian estimation
with weakly informative priors to overcome the issues of small sample size
estimation with ML-estimation, for which the model shown in Figure 4.1
resulted in negative variance estimates.

Specifying and understanding priors

The specification of the priors is one of the essential elements of Bayesian
analysis, especially when the sample size is small. Given the complexity of the
LGM model relative to the sample size, prior information was incorporated to
facilitate the estimation of the model (i.e., step 1 of the WAMBS checklist). In
addition to careful consideration of the plausible parameter space (see Chapter 3
by Van de Schoot, Veen, Smeets, Winter, and Depaoli), we used previous
results to inform the priors in our current model (Egberts, Van de Schoot,
Geenen, & Van Loey, 2017).
The prior for the mean of the latent intercept (α1) could be regarded as

informative with respect to the location specification. The location parameter,
or mean of the normally distributed prior N μ0; σ20

� �
, was based on the

results of a previous study (Egberts et al., 2017, Table 4.1) and set at 26. If
priors are based on information from previously published studies, it is
important to reflect on the exchangeability of the prior and current study (see
Chapter 2 by Miočević, Levy, & Savord). Exchangeability would indicate that
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TABLE 4.1 Priors and justification for all priors that are used in the analysis

Parameter Prior Justification

group mean of the latent intercept
(α1)

N 26; 400ð Þ Previous article on different cohort
(Egberts et al., 2017, Table 1)

group standard deviation of the
latent intercept (σInt)

HN 0; 400ð Þ Allows values to cover the entire
parameter space for IES

group mean of the latent slope
(α2)

N 0; 4ð Þ Allows values to cover the entire
parameter space for IES

group standard deviation of the
latent slope (σslope)

HN 0; 1ð Þ Allows values to cover the entire
parameter space for IES

x1� x4 regressed on x5 (βies) N 0; 4ð Þ Allows values to cover the entire
parameter space for IES

group mean relation IES 3 months
(x2) regressed on slope (μλ2;2 )

N 3; 25ð Þ Centered at 3, which would be the
constraint in a linear LGM. Allowed to
vary between individuals to allow for
between-person differences in the way
manifest variables change from the first
to the last measurement

group mean relation IES 12
months (x3) regressed on slope
(μλ2;3 )

N 12; 25ð Þ Centered at 12 which would be the
constraint in a linear LGM. Allowed to
vary between individuals to allow
between-person differences in the way
manifest variables change from the first
to the last measurement

group standard deviation relation
IES 3 months (x2) regressed on
slope (σλ2;2 )

HN 0; 6:25ð Þ Allows for large and small between-
person differences in the way manifest
variables change from the first to the last
measurement

group standard deviation relation
IES 12 months (x3) regressed on
slope (σλ2;3 )

HN 0; 6:25ð Þ Allows for large and small between-
person differences in the way manifest
variables change from the first to the last
measurement

All residual standard deviations
x1� x4 (σε ies)

HN 0; 100ð Þ Allows values to cover the entire
parameter space for the observed
variables

Intercepts factor regressions (β0) N 50; 2500ð Þ Covers the full factor score parameter
space centered at the middle

Factors regressed on Level (β1) N 0; 4ð Þ Allows values to cover the entire
parameter space for the factor scores

Factors regressed on Shape (β2) N 0; 2500ð Þ Allows values to cover the entire
parameter space for the factor scores

Factors regressed on TBSA (β3) N 0; 4ð Þ Allows values to cover the entire
parameter space for the factor scores

Residual standard deviation factors
(σε)

HN 0; 100ð Þ Allows values to cover the entire
parameter space for the residuals

Note: N :; :ð Þ is a normal distribution with mean and variance N μ0; σ20
� �

, HN μ0; σ20
� �

is a half-
normal distribution encompassing only the positive part of the parameter space, U :; :ð Þ is uniform dis-
tribution with a lower bound and an upper bound. In Stan code the normal distribution is specified
using a mean and standard deviation N μ0; σ0ð Þ, not the mean and variance N μ0; σ20

� �
; this causes the

differences between the code in the data archive and this table.



the samples are drawn from the same population and a higher prior certainty
can be used. To evaluate exchangeability, the characteristics of the sample and
the data collection procedure were evaluated. Both studies used identical
questionnaires and measurement intervals, and the data were collected in exactly the
same burn centers. The main difference between the samples was the age of the
children (i.e., age range in the current sample: 8 months to 4 years; age range in the
previous sample: 8–18 years), and related to that, the age of the mothers also differed
(i.e., mean age in the current sample: 32 years; mean age in the previous sample: 42
years). Although generally child age has not been associated with parents’ PTSS after
medical trauma (e.g., Landolt, Vollrath, Ribi, Gnehm, & Sennhauser, 2003), the two
studies are not completely exchangeable as a results of the age difference. Therefore,
additional uncertainty about the value of the parameter was specified by selecting
a relatively high prior variance (see Table 4.1).
The priors for the regression coefficients are related to the expected scale of their

associated parameters. For β1 a N 0; 4ð Þ prior was specified, thereby allocating the
most density mass on the plausible parameter space. Therefore, given the scale of the
instruments used, and the parametrization of the factor score model, the latent factor
scores can take on values between zero and 100. A regression coefficient of -4 or 4

−1000 0 500

Prior Predictive Data sets

A

−1000 0 500

Prior Predictive Data sets

B

FIGURE 4.2 The effect of changing a single prior in the model specification on the
prior predictive distributions of the Latent Factor Scores. The prior for β1 is changed
from weakly informative (panel A; N 0; 4ð Þ) to uninformative (panel B; N 0; 2500ð Þ)
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would be extremely implausible. If our expected value of 26 is accurate for the
intercept, this would change our predicted factor score by -104 or 104, respectively.
This would constitute a change larger than the range of the construct.
For β2 in contrast, a N 0; 2500ð Þ prior was specified because small latent slope

values, near the prior group mean of the latent slope of zero, should be allowed to
have large impacts on the latent factor scores. For instance, a slope value of 0.1
could be associated with a drop of 50 in HRQL, resulting in a coefficient of -500.
Figure 4.2 shows what would have happened to the prior predictive distributions
for the latent factor scores if a N 0; 2500ð Þ prior was specified for β1 instead of the
N 0; 4ð Þ prior, keeping all other priors constant. The prior predictive densities for
the factor scores in panel B of Figure 4.2 place far too much support on parts of the
parameter space that are impossible. The factor scores can only take on values
between zero and 100 in our model specification. For more information on prior
predictive distributions, see Chapter 3.

Empirical example: conducting the analysis

Based on theoretical considerations, we specified the model as shown in Figure
4.1 using the priors as specified in Table 4.1. We used Stan (Carpenter et al.,
2017) via RStan (Stan Development Team, 2017a) to estimate the model and
we used the advanced version of the HMC algorithm called NUTS. To run the
model, we used the following code, which by default ran the model using four
chains with 2,000 MCMC iterations of which 1,000 are warmup samples (note
that this is similar to burn-in as discussed in earlier chapters):

fit_default <- sampling(model, data = list(X = X, I, K, run_estimation = 1), seed =

11, show_messages = TRUE)

For reproducibility purposes, the Open Science Framework webpage (osf.io/am7pr/)
includes all annotated Rstan code and the data.
Upon completion of the estimation, we received the following warnings from

Rstan indicating severe issues with the estimation procedure:

Warning messages:

1: There were 676 divergent transitions after warmup. Increasing adapt_delta above

0.8 may help. See

http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup

2: There were 16 transitions after warmup that exceeded the maximum treedepth.

Increase max_treedepth above 10. See

http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded

3: There were 4 chains where the estimated Bayesian Fraction of Missing

Information was low. See

http://mc-stan.org/misc/warnings.html#bfmi-low

4: Examine the pairs() plot to diagnose sampling problems

Fortunately, the warning messages also pointed to online resources with more
detailed information about the problems. In what follows, we describe two
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diagnostics to detect issues in the estimation procedure: divergent transitions
(this section) and the ESS of the MCMC algorithm (next section).
The most important warning message is about divergent transitions (warning

message 1). The appearance of divergent transitions is a strong indicator that the
posterior results as shown in column 1 of Table 4.3 cannot be trusted (Stan
Development Team, 2017b, chapter 14). For detailed, highly technical
information on this diagnostic, see Betancourt (2016). Very loosely formulated,
the occurrence of many divergent transitions indicates that there is something
going wrong in drawing MCMC samples from the posterior. When the
estimator moves from one iteration to the next, it does so using a particular step
size. The larger steps the estimator can take between iterations, the more
effectively it can explore the parameter space of the posterior distribution
(compare Figure 4.3A with 4.3B). When a divergent transition occurs, the step
size is too large to efficiently explore part of the posterior distribution and the
sampler runs into problems when transitioning from one iteration to the next
(see Figure 4.3C). The Stan Development Team uses the following analogy to
provide some intuition for the problem:

FIGURE 4.3 Effect of decreasing the step size of the HMC on the efficiency of the
exploration of the posterior distribution (Panel A and B). The green arrow shows the
step between two consecutive iterations. Panel A uses a large step size and swiftly sam-
ples from both posterior distributions, one of which is a normal distribution and one of
which is a common distributional form for variance parameters. In Panel B, in contrast,
the sampler needs more time to sample from both distributions and describe them
accurately because the steps between iterations are a lot smaller. Panel C shows an
example of a divergent transition, which is indicative of problems with the sampling
algorithm. These screenshots come from an application developed by Feng (2016) that
provides insight into different Bayesian sampling algorithms and their “behavior” for
different shapes of posterior distributions. Copyright © 2016 Chi Feng
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For some intuition, imagine walking down a steep mountain. If you
take too big of a step you will fall, but if you can take very tiny steps
you might be able to make your way down the mountain, albeit very
slowly. Similarly, we can tell Stan to take smaller steps around the pos-
terior distribution, which (in some but not all cases) can help avoid
these divergences.

(Stan Development Team, 2018)

The posterior results for the parameters of interest (β0; β1; β2; β3; σε) are
shown in Table 4.3, column 1. Note that these results cannot be trusted and
should not be interpreted because of the many divergent transitions. Divergent

FIGURE 4.3 (Cont.)
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transitions can sometimes be resolved by simply taking smaller steps (see next
section), which increases computational time.

Debugging

The occurrence of divergent transitions can also be an indication of more
serious issues with the model or with a specific parameter. One of the ways
to find out which parameter might be problematic is to inspect how
efficiently the sampler sampled from the posterior of each parameter. The
efficiency of the sampling process can be expressed as the ESS for each
parameter, where sample size does not refer to the data but to the samples
taken from the posterior. In the default setting we saved 1,000 of these
samples per chain, so in total we obtained 4,000 MCMC samples for each
parameter. However, these MCMC samples are related to each other, which
can be expressed by the degree of autocorrelation (point 5 on the WAMBS
checklist in Chapter 3). ESS expresses how many independent MCMC
samples are equivalent to the autocorrelated MCMC samples that were
drawn. If a small ESS for a certain parameter is obtained, there is little
information available to construct the posterior distribution of that parameter.
This will also manifest itself in the form of autocorrelation (see also Chapter
3) and non-smooth histograms of posteriors. For more details on ESS and
how Rstan calculates it, see the Stan Reference Manual (Stan Development
Team, 2019).
In Table 4.2 we provide the ESS for α1; β1; θ77 and the factor score of mother

and child pair no. 33 (denoted by fs33). Factor score fs33 was estimated efficiently

TABLE 4.2 Examples of ESS per parameter for the different model and estimation settings
we used. Each column represents a different model, and each row represents a different vari-
able. We report ESS with the corresponding percentage of the total number of iterations that
was used to estimate that particular model in brackets

Parameter

Model with
default esti-
mation
settings

Model with
small step size
in estimation
setting

Alternative I:
remove perfect
HRQL scores

Alternative
II:
IG 0:5; 0:5ð Þ
prior for 77

Alternative
III: replace
factor scores
with x7

Alternative
IV: possible
increase of
variance in
latent factor

fs33 2390 (60%) 9843
(123%)*

2219 (55%) 1307 (33%) - 2485 (62%)

α1 575 (14%) 1000 (13%) 655 (16%) 145 (4%) 227 (6%) 611 (15%)
β1 424 (11%) 1966 (25%) 487 (12%) 647 (16%) 58 (1%) 1004 (25%)
θ77 20 (0.5%) 12 (0.2%) 9 (0.2%) 33 (0.8%) - 46 (1.2%)

* With the highly efficient NUTS sampling algorithm a higher efficiency can be obtained compared
to independent MC samples (Stan Development Team, 2019, chapter 15).
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and the ESS was 60% of the number of MCMC samples, followed by α1 (14%) and
β1 (11%). θ77, in contrast, had an ESS of only 0.5% of the number of MCMC
samples, indicating an equivalence of only 20 MCMC samples had been used to
construct the posterior distribution. There is no clear cut-off value for the ESS,
although it is obvious that higher values are better and that 20 is very low. The
default diagnostic threshold used in the R package shinystan (Gabry, 2018),
used for interactive visual and numerical diagnostics, is set to 10%.
The effects of ESS on the histograms of these four parameters can be seen in

Figure 4.4, which shows a smooth distribution for fs33 but not for θ77. Based on
the ESS and the inspection of Figure 4.4, the residual variance parameter θ77
was estimated with the lowest efficiency and probably exhibited the most issues
in model estimation.

−0.75 −0.50 −0.25 0.00

β1

0 3 6 9

θ77

20 25

α1

60 70 80

fs33

FIGURE 4.4 Histograms of MCMC samples for α1; β1; θ77 and fs33. θ77 has a
non-smooth histogram, which indicates low ESS while the smooth histogram for fs33
is indicative of higher ESS
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To investigate if there were systematic patterns in the divergences, we plotted
the samples of the parameters fs33 and θ77 against the log posterior (denoted by lp)
(see Figure 4.5). lp is, very loosely formulated, an indication of the likelihood of
the data given all posterior parameters. lp is sampled for each MCMC iteration as
just another parameter. Note that, in contrast to log-likelihoods, lp cannot be used
for model comparison. Plots such as those in Figure 4.5 can point us to systematic
patterns for the divergent transitions, which would indicate that a particular part
of the parameter space is hard to explore. In Figure 4.5A it can be seen that for
fs33, which did not exhibit problems in terms of ESS, the divergent transitions are
more or less randomly distributed across the posterior parameter space. Also, the
traceplot and histogram for fs33 would pass the WAMBS checklist on initial
inspection. There is one hotspot around the value of -1700 for the lp where
a cluster of divergent transitions occurs. This is also visible in the traceplot, where
it can be seen that one of the chains is stuck and fails to efficiently explore the

60 70 80 90
Factor Score 33

−2400

−2200

−2000

−1800

−1600

−1400

lp

FIGURE 4.5 Plot of the posterior samples of lp (y-axis) against fs33 (x-axis, panel A) and
θ77 (x-axis, panel B) with divergent transitions marked by red dots. Additionally, the his-
tograms and trace plots of the corresponding parameters have been placed on the margins
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parameter space shown as an almost horizontal line for many iterations. On closer
inspection, a similar behavior in one of the chains could be seen for fs33 as well.
In Figure 4.5B it can be seen that for θ77, which exhibited problems in

terms of ESS, the divergent transitions occur mainly in a very specific part of
the posterior parameter space, i.e., many divergent transitions occur close to
zero. This also shows up in the traceplot, where for several iterations the
sampler could not move away from zero. This indicates that our sampling
algorithm ran into problems when exploring the possibility that θ77 might be
near zero. Note that a similar issue arises in one chain around the value of 2.5
for many iterations, resulting in a hotspot which corresponds to the deviant
chain for lp. Perhaps an additional parameter could be found which explains
the issues concerning this systematic pattern of divergent transitions. For now,
we continued with a focus on θ77.
The first solution, also offered in the warning message provided by Stan, was

to force Stan to use a smaller step size by increasing the adapt_delta setting of the

0 3 6 9
θ77

−2400

−2200

−2000

−1800

−1600

−1400

lp

FIGURE 4.5 (Cont.)
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estimator. We also dealt with the second warning by increasing max_treedepth,
although this is related to efficiency and not an indication of model error and
validity issues. To make sure we could still explore the entire posterior
parameter space, we extended the number of iterations post warmup to 2,000
for each chain (iter – warmup in the code below). We used the following
R code:

fit_small_step <- sampling(model,

data=list(X = X, I, K, run_estimation = 1),

control=list(adapt_delta = .995,

max_treedepth = 16),

warmup = 3000, iter = 5000, seed = 11235813)

We inspected the ESS for the same parameters again, which can be seen in
Table 4.2. The problems seem to occur for the θ77 parameter again, and it has

−2200

−2000

−1800

−1600

0.0 2.5 5.0 7.5 10.0
θ77

lp

A

−2250

−2000

−1750

−1500

0.0 2.5 5.0 7.5 10.0
θ77

lp

B

FIGURE 4.6 Plots of the posterior samples of lp against θ77 for the default estimation
settings (panel A) and the estimation settings that have been forced to take smaller step
sizes (panel B). Divergent transitions are indicated by red dots
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even decreased in efficiency. We compared the posterior for θ77 and lp between
the default estimation settings and the estimation settings forcing a smaller step
size in Figure 4.6. The smaller step sizes have decreased the number of
divergent transitions to almost zero. Also, they enabled more exploration of
posterior parameter values near zero. However, the posterior distribution still
showed signs of problematic exploration given the strange pattern of MCMC
samples close to 0.5 (see step 6 of the WAMBS checklist; do posterior estimates
make substantive sense?). Apparently, the solution offered by the Rstan
warning message to decrease the step size, which often solves the issue of
obtaining divergent transitions, failed to provide an efficient result in this case.
Thus, the posterior estimates in Table 4.3, column 2 still cannot be trusted. In
the next section, we briefly explore different solutions that might help us to
obtain trustworthy results.

Moving forward: alternative models

At this stage in the analysis process we continue to face difficulties with
obtaining trustworthy posterior estimates due to divergent transitions. After
exploring a smaller step size in the previous section, there are multiple options
that can be considered and these can be based on statistical arguments,
substantive theoretical arguments or, ideally, on both. Some statistical options
can be sought in terms of the reparameterization of the model (Gelman, 2004);
that is, the reformulation of the same model in an alternative form, for instance
by using non-centered parametrizations in hierarchical models, see Betancourt
and Girolami (2015). This needs to be done carefully and with consideration of
the effects on prior implications and posterior estimates. The optimal course of
action will differ from one situation to another, and we show five arbitrary ways
of moving forward, but all require adjustments to the original analysis plan. We
considered the following options:

1. Subgroup removal: We removed 32 cases that scored perfectly, i.e., a score
of 100, on the manifest variable x7. This would potentially solve issues with
the residual variance of x7 (θ77).

2. Changing one of the priors: We specified a different prior on θ77, namely,
an Inverse Gamma (IG 0:5; 0:5ð Þ) instead of a Half-Normal (HN 0; 100ð Þ)
(see Van de Schoot et al., 2015). The IG prior forced the posterior distribu-
tion away from zero. If θ77 was zero, this implies that x7 is a perfect indica-
tor of the latent variable. Since a perfect indicator is unlikely, we specified
a prior that excludes this possibility.

3. Changing the distal outcome: We replaced the latent distal outcome with
the manifest variable x7. θ77 estimates contained values of zero, which
would indicate that x7 is a good or perfect indicator and could serve as
a proxy for the latent variable. Replacing the latent factor with a single
manifest indicator reduces the complexity of the model.
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4. A possible increase of variance in the distal latent factor score: we removed
cases that exhibited little variation between the scores on x6 and x7.

We ran the model using these four adjustments (see osf.io/am7pr/ for details).
Table 4.3 presents the posterior results of these additional analyses and an
assessment of the extent to which the alternatives required adjustments to the
original research question. The first three alternative solutions still contained
divergent transitions, and consequently the results could not be trusted. The
fourth alternative solution did not result in divergent transitions. The ESS of the
fourth alternative solution was still low, both in terms of the percentage of
iterations and in absolute value (see Table 4.2). Although the low ESS in terms
of percentage may not be resolved, the absolute ESS can be raised by increasing
the total number of iterations. Even though we could draw conclusions using
results from the fourth alternative solution, the rather arbitrary removal of cases
changed the original research question. We investigated, and thus generalized to,
a different population compared to the original analysis plan. Using an
alternative model or a subset of the data could provide a solution to estimation
issues. However, this could impact our substantive conclusions; for example, see
β1 in Table 4.3, for which the 95% credibility interval in the fourth alternative
contained zero, in contrast to credibility intervals for this parameter obtained
using other alternative solutions. As substantive conclusions can be impacted by
the choices we make, the transparency of the research process is crucial.

Conclusion

Bayesian estimation with (weakly) informative priors is suggested as a solution to
deal with small sample size issues. The current chapter illustrated the process of
conducting Bayesian estimation with (weakly) informative priors along with the
potential problems that can arise. The WAMBS checklist was a helpful tool in this
process, and we propose supplementing the checklist steps with an inspection of
the effective number of samples taken using MCMC. As we have shown, a low
ESS can point toward specific parameters to investigate, which is especially useful
for complex models with many parameters, as investigating each parameter
individually would be time-consuming. We recommend using advanced statistical
software (such as Stan) because the implemented algorithms (e.g., HMC or
NUTS) can have a positive impact on the ESS, and estimates of ESS are readily
available. Moreover, the use of advanced algorithms such as HMC or NUTS
provides additional diagnostic information about the estimation in the form of
divergent transitions, which can be used in addition to the WAMBS checklist.
The empirical example showed that even Bayesian estimation with

informative priors has limits in terms of its performance for complex models
with small sample sizes. Thus, using a Bayesian analysis should not be considered
a “quick fix”. Careful consideration of the analysis steps and the intermediate
results is imperative. Different solutions can differentially impact the posterior
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parameter estimates and thereby the substantive conclusions, and there is a need
for constant interaction and collaboration between applied researchers, who
formulate the research questions, and the statisticians, who possess the statistical
and methodological knowledge.
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Introduction

In the current “Age of Big Data”, more and more data is being collected and
analyzed. Personal tracking devices allow data to be continuously collected, websites
often track online behavior of their users, and large-scale research projects combine
data from various sources to obtain a complete picture. These efforts result in large
data sets with hundreds or thousands of variables. However, such data sets pose
problems in terms of small sample sizes relative to the number of variables. As an
example, consider the prediction of the number of murders in a community based on
125 predictors (Redmond & Baveja, 2002). We might use a simple linear regression
model to determine the effects of each of the predictors. In order to fit such a model,
we would need at least 125 observations, i.e., communities in this case. Now suppose
we have collected data on 126 communities. We would be able to fit our linear
regression model, but we would be overfitting our model to that specific sample and
our results would not generalize well to a different sample from the population
(McNeish, 2015). This problem would be exacerbated if we wanted to fit a more
complex model including, for example, interactions between the predictors.
Penalization methods offer a solution to this problem. Regular ordinary least

squares regression minimizes the sum of squared residuals to find the estimates for
regression coefficients. Penalized regression adds a penalty term to this minimization
problem. The goal of this penalty term is to shrink small coefficients towards zero,
while simultaneously leaving large coefficients large. By doing so, penalization
methods aim to avoid overfitting such that the obtained results are generalizable to
a different data set from the same population. Popular penalized regression methods
include the ridge, lasso, and elastic net penalties. An illustration of the classical lasso
penalty is provided in the left column of Figure 5.1. The contours of the sum of
squared residuals for two regression coefficients, β1 and β2 are shown as black



elliptical lines. The classical ordinary least squares solution, β̂OLS, is the minimum of
the sum of squared residuals which lies in the center of the contour lines. The solid
black diamond represents the constraint region for the classical lasso penalty
function. The lasso solution, β̂LASSO, is the minimum of the sum of squared
residuals plus the lasso penalty term. Graphically, this solution corresponds to the
point where the sum of squared residuals contour meets the constraint region of the
lasso. It is clear that the lasso solution shrinks both coefficients, with β1 becoming
exactly zero in this example. This illustrates the main advantage of the classical lasso
penalty, namely that it can perform automatic variable selection due to its ability to
shrink small coefficients to exactly zero. By shrinking the coefficients, penalized
regression will lead to an increase in bias but at the same time avoids overfitting
(i.e., the bias-variance tradeoff). A comprehensive overview of classical penalized
regression can be found in Hastie, Tibshirani, and Wainwright (2015).
The focus of this chapter is on Bayesian penalization, because of several

advantages it has over the classical framework. Aside from the usual advantages
in terms of automatic uncertainty estimates and intuitive Bayesian interpretations
of quantities such as credibility intervals, the Bayesian approach offers three
advantages specific to the context of penalization.

Advantage 1: natural penalization through the prior distribution

First, penalization can be incorporated naturally in a Bayesian framework
through the prior distribution; see also Chapters 1–4 (Miočević, Levy, &
Savord; Miočević, Levy, & Van de Schoot; Van de Schoot, Veen, Smeets,
Winter, & Depaoli; Veen & Egberts). Specifically, we can choose the prior
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FIGURE 5.1 Contour plots illustrating classical and Bayesian penalization
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distribution in such a way that it will shrink small effects towards zero, while
keeping substantial effects large. By doing so, the prior performs similarly to the
penalty term in classical penalized regression. There are prior distributions that,
combined with a specific posterior estimate, lead to exactly the same solution as
classical penalization methods. For example, specifying double-exponential prior
distributions for the regression coefficients will result in posterior modes that are
the same as the classical lasso estimates (Park & Casella, 2008). These Bayesian
analogues of classical penalization methods have been shown to perform
similarly to and in some cases better than the classical penalization methods
(Kyung, Gill, Ghosh, & Casella, 2010; Li & Lin, 2010).

Advantage 2: simultaneous estimation of the penalty parameter

The second advantage of Bayesian penalization lies in the fact that the penalty
parameter can be estimated with other model parameters in a single step. The
penalty parameter arises in the penalty function of classical penalization methods
and determines the amount of shrinkage towards zero. Large values of the
penalty parameter lead to more shrinkage towards zero and a penalty parameter
equal to 0 will result in no shrinkage at all. Generally, the penalty parameter is
determined based on cross-validation, but in Bayesian penalization it is simply
a parameter in the prior distribution which can be given its own prior
distribution.

Advantage 3: flexibility in types of penalties

The final advantage of Bayesian penalization is that it offers flexibility in terms
of the type of penalties that can be considered. Classical penalization methods
rely on optimization techniques to find the minimum of the penalized
regression function. It is therefore easiest to consider penalty functions that are
convex, meaning that they will result in one minimum. Bayesian penalized
regression, on the other hand, employs Markov Chain Monte Carlo (MCMC)
sampling, which allows a more straightforward implementation of penalties that
are not convex.
The right column of Figure 5.1 illustrates Bayesian penalization using the

double-exponential prior on the regression coefficients. The elliptical contour
lines represent the sum of squared residuals, or the likelihood, centered around
the classical ordinary least squares estimate β̂OLS. The diamond-shaped contour
lines represent the double-exponential prior, which is similar to the classical
lasso constraint region in the left side Figure. The main difference between
classical and Bayesian penalization is the fact that Bayesian penalization results in
a full posterior distribution while classical penalization results only in a point
estimate. The contour of the posterior distribution is shown in grey and is
clearly a compromise between the prior and the likelihood. The posterior mode
estimate, β̂BAYES, is included and corresponds to the classical lasso solution. This
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double-exponential or lasso prior distribution is just one of many shrinkage
priors available. In this chapter, I will summarize the most popular shrinkage
priors and illustrate their use in a linear regression model using the flexible
software program Stan (Carpenter et al., 2017); see also Chapters 3 (Van de
Schoot et al.) and 4 (Veen & Egberts).

Running example: communities and crime

Throughout this chapter we will use a linear regression model to attempt to predict
the number of murders in US communities (Redmond & Baveja, 2002). All code
for running this example is available online at the Open Science Framework (osf.
io/am7pr/). The data set is obtained from the University of California, Irvine
machine learning repository (Dua & Graff, 2019) and includes 125 possible
predictors (four are non-predictive and 18 are potential outcomes to predict) of
various types of crimes for 2,215 communities. We will focus on the number of
murders per 100,000 residents. The predictors include characteristics of the
community as well as law enforcement characteristics. Dummy variables are created
for the two nominal predictors in the data set, resulting in a total of 172 predictors.
All continuous predictors are standardized to have a mean of zero and a variance of
one. This is generally recommended in penalized regression to avoid the results
depending on the scales of the predictors (Hastie et al., 2015). The implementation
of the methods in the bayesreg package also requires the predictors to be on the
same scale.1

Software

There are three different R packages that can be used for Bayesian penalized regression
with Stan: rstanarm (Stan Development Team, 2016), brms (Bürkner, 2017),
and bayesreg. Rstanarm and brms both allow the user to specify multilevel
generalized linear models with formula syntax in the same way as classical multilevel
generalized linear models are specified in the (g)lm(er) functions in R. Both
packages support various shrinkage priors. The bayesreg package is more restricted
since it currently only supports linear regression models. Contrary to rstanarm and
brms, the bayesreg package is specifically designed to perform Bayesian penalized
regression and has all the shrinkage priors implemented that will be discussed in the
next section. We will therefore use the bayesreg package to illustrate the shrinkage
priors in this chapter, although we will note which of the shrinkage priors are available
in rstanarm and brms. All three packages return a Stan fit object that can be
further processed and several package-specific post-estimation functions.
To fit the Bayesian penalized linear regression model with bayesreg, the

package needs to be installed first following the instructions available here:
https://github.com/sara-vanerp/bayesreg. Currently, missing data is not
supported in bayesreg. However, it is possible to first impute the missing
data using a package such as mice (Van Buuren & Groothuis-Oudshoorn,

74 Sara van Erp



2011) and then fit the model on each of the imputed data sets. The posterior
draws for each fitted model can subsequently be combined to obtain the results.
For our example, we will simply remove the observations with missingness and
focus on the 343 communities with complete data. After installation, the
package can be loaded into R and the model can be fit as follows:

library(bayesreg)

fit <- stan_reg_lm(X = X, y = y, N_train = 172, prior = “lasso”)

The required arguments for this function are: a numeric predictor matrix X,
a numeric matrix of outcomes Y, the sample size of 172 is used to estimate the
model, and the prior choice. The remaining observations in the data are used to
estimate the prediction error of the model.

Shrinkage priors

The goal of a shrinkage prior is to shrink small coefficients towards zero, while
keeping large coefficients large. This behavior can be obtained through various
types of shrinkage priors, although most shrinkage priors share some general
characteristics to ensure this behavior. Specifically, shrinkage priors have a peak
at zero to shrink small coefficients. Most shrinkage priors have heavy tails,
which allow large coefficients to escape the shrinkage. In this section, we will
discuss various shrinkage priors that are popular in the literature. The shrinkage
priors are classified into two types: (1) classical counterparts, i.e., shrinkage priors
that have been developed as equivalents to classical penalty functions; and (2)
Bayesian origin, i.e., shrinkage priors that come from the Bayesian literature and

TABLE 5.1 Overview of the shrinkage priors

Class Prior Implemented in References

Classical
counterparts

Ridge bayesreg,
brms, rstanarm

(Hsiang, 1975)

Lasso bayesreg,
brms, rstanarm

(Park & Casella, 2008)

Elastic net bayesreg (Li & Lin, 2010)
Bayesian
origin

Student’s t bayesreg,
brms, rstanarm

(Griffin & Brown, 2005; Meuwissen,
Hayes, & Goddard, 2001)

Spike-and-
slab

bayesreg (George & McCulloch, 1993;
Mitchell & Beauchamp, 1988)

Hyperlasso bayesreg (Griffin & Brown, 2011)
Horseshoe bayesreg,

brms, rstanarm
(Carvalho, Polson, & Scott, 2010;
Piironen & Vehtari, 2017)

Regularized
horseshoe

bayesreg,
brms, rstanarm

(Piironen et al., 2017)
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do not have a clear classical counterpart. Table 5.1 provides an overview of the
shrinkage priors in each class with references and the R packages in which each
prior is implemented.

Classical counterparts

Figure 5.2 shows the densities (left) and survival functions (right) for the shrinkage
priors corresponding to classical penalty functions. The survival function is equal to
1 minus the cumulative distribution function and is the probability that the
parameter has a value greater than the values on the x-axis. For example, at x ¼ 0,
the survival function equals .5 for all shrinkage priors because each prior is
symmetric around zero and thus the probability mass on positive values equals .5.
The survival function is insightful to illustrate the tail behavior of the priors: the
slower the survival function goes to zero, the heavier the tails. The Bayesian
equivalent of the ridge penalty is a normal prior distribution centered around zero.
The classical lasso penalty corresponds to a double-exponential prior distribution
around zero. It can be seen from Figure 5.2 that the lasso prior is more peaked and
has heavier tails compared to the ridge prior. The lasso prior will therefore exert
more shrinkage towards zero for small coefficients, but less shrinkage for large
coefficients. The classical elastic net penalty is a combination of the ridge and lasso
penalties, which becomes apparent from Figure 5.2: its peak and tail lie in between
those of the ridge and lasso priors.
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FIGURE 5.2 Density plot and survival function for the shrinkage priors with a classical
counterpart
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The exact form of the shrinkage priors depends on the values of the
hyperparameters in the priors. For the ridge and lasso priors, the only
hyperparameter is the scale which influences how spread out the prior will be.
In bayesreg, these scales are equal to σε

‘ , where σε is the standard deviation of
the errors. Especially for the lasso prior, including the error standard deviation in
the prior is important to avoid multimodal posteriors (Park & Casella, 2008).
The ‘ parameter has a similar role to the penalty parameter in classical penalized
regression. Larger values for ‘ result in a smaller prior variance and thus more
shrinkage towards zero. The elastic net prior requires specification of two
penalty parameters: ‘1 which determines the influence of the lasso, and ‘2 which
determines the influence of the ridge. Thus, setting ‘1 to 0 results in the ridge
prior and setting ‘2 to zero results in the lasso prior. In bayesreg, the ‘

parameter is given a standard half-Cauchy prior distribution, so that its value is
automatically determined by the data. However, other options to determine ‘

are possible, such as empirical Bayes methods or cross-validation.

Bayesian origin

Figure 5.3 presents the densities (left) and survival functions (right) for the
shrinkage priors with a Bayesian origin. Student’s t-distribution is similar to
a normal distribution but has heavier tails. As a result, Student’s t prior is more
adept at leaving substantial coefficients large compared to the ridge prior.
However, Student’s t prior is not as peaked around zero compared to the other
shrinkage priors with a Bayesian origin. The more peaked the distribution, the
more shrinkage towards zero for small coefficients. The hyperlasso prior is more
peaked around zero. The hyperlasso can be seen as an extension of the lasso, but
with heavier tails to avoid too much shrinkage of large coefficients. The
hyperlasso is a so-called global-local shrinkage prior, with a global shrinkage
parameter that simultaneously shrinks all coefficients towards zero and local
shrinkage parameters for each regression coefficient that allow large coefficients
to escape the global shrinkage. The horseshoe prior is another global-local
shrinkage prior that is very popular in the Bayesian literature. It has an
asymptote at zero and heavy tails, which make the horseshoe very adept at
shrinking small coefficients heavily towards zero but leaving the large
coefficients large. In practice, however, it might be necessary to have some
shrinkage of large coefficients. For example, some parameters might be weakly
identified, meaning that there is not enough information in the data to estimate
them. In this case, the heavy tails of the horseshoe prior can lead to an unstable
MCMC sampler. The regularized horseshoe prior has been proposed to solve
this issue. Its density is not included in Figure 5.3 since it is very similar to that
of the horseshoe. Specifically, small coefficients will be shrunken in the same
way as with the horseshoe prior. The main difference is that the regularized
horseshoe induces some slight shrinkage on large coefficients as well. Finally, we
have the spike-and-slab prior, which is a mixture of two distributions: a peaked
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distribution around zero for the small coefficients (the spike), and a vague
distribution for the large coefficients (the slab). The bayesreg implementation
of the spike-and-slab prior has a normal spike with a very small variance of
.001, which is very peaked around zero, and a Cauchy slab, which has heavy
tails. This can also be seen from Figure 5.3.
The hyperparameters that need to be specified for each of the shrinkage

priors with a Bayesian origin in bayesreg vary. For the Student’s t and
horseshoe priors, no hyperparameters need to be specified since all parameters
are given a prior distribution in the program. For the hyperlasso, the degrees of
freedom need to be specified with smaller degrees of freedom resulting in
a heavier-tailed prior. The default value in bayesreg is .5, but similarly to the
horseshoe prior, this might not shrink weakly identified parameters enough so it
might be necessary to specify a higher value for the degrees of freedom. The
regularized horseshoe prior has the most flexibility in terms of tuning. First, for
the global shrinkage parameter (which determines the general shrinkage for all
coefficients simultaneously) a scale (scale_global) and degrees of freedom
(global_df) parameter need to be specified. The scale influences how wide
the peak is and defaults to 1. A smaller scale leads to more overall shrinkage of
all coefficients. If prior information regarding the number of relevant predictors
is available, it is better to determine the global scale based on this information.
This can be done by setting the p0 argument equal to the a priori assumed

0.0

0.5

1.0

1.5

2.0

−5.0 −2.5 0.0 2.5 5.0

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

Student's t Hyperlasso

Horseshoe Spike−and−slab

FIGURE 5.3 Density plot and survival function for the shrinkage priors with a Bayesian
origin
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number of relevant predictors. The global degrees of freedom parameter
determines the tail behavior and defaults to 1, with larger values leading to
lighter tails. For the local shrinkage parameters (which allow truly large
coefficients to escape the global shrinkage), only the degrees of freedom
(local_df) need to be specified, with 1 as default and larger values resulting
in lighter tails. Finally, the regularized horseshoe differs from the horseshoe prior
by asserting some shrinkage on large coefficients. This shrinkage is determined
by a t-distribution with some scale (slab_scale) and degrees of freedom
(slab_df). Both default to 1. Finally, for the spike-and-slab prior, a decision
needs to be made on the prior for the mixing probabilities. The mixing
probabilities influence whether a coefficient falls in the spike or the slab of the
prior, and thus whether the coefficient will be shrunken heavily towards zero
(in case of the spike) or not (in case of the slab). The first option in bayesreg
is a Bernoulli prior on the mixing probabilities, in which each coefficient will
be assigned to either the spike or the slab, with probability .5. The second
option is a uniform prior, which is more flexible since the prior on each
coefficient will be a mixture of the spike and the slab, where the influence of
the spike and the slab is weighted by the mixing probabilities.

Practical considerations

So far, we have discussed various shrinkage priors. However, in order to apply
these shrinkage priors, there are some practical issues to consider. These issues
include: (1) how to choose a shrinkage prior; and (2) how to select variables
based on the results.

Choice of the shrinkage prior

The type of prior information encoded in shrinkage priors is the same: some of
the values for the coefficients are so small, they should be shrunken towards
zero, and only substantial coefficients should remain large. However, the priors
vary in the way this information is translated in practice. First, depending on the
prior used and the hyperparameters chosen, the amount of shrinkage towards
zero for small coefficients varies. In general, the more peaked the prior is around
zero, the heavier the shrinkage for small coefficients. Second, the amount of
shrinkage for large coefficients varies across priors and hyperparameters. This is
mainly influenced by the heaviness of the tails. For example, compared to the
lasso prior, the ridge prior has lighter tails and will therefore shrink large
coefficients more towards zero than the lasso prior (given that the scale is the
same in both priors). The first step in choosing a specific shrinkage prior and its
hyperparameters is therefore to understand its behavior. This can be easily done
by sampling draws from various priors and hyperparameter settings and
comparing the density plots. To this end, the code for creating Figures 5.2 and
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5.3 is made available online at osf.io/am7pr/ and can be adapted to compare
various hyperparameter settings.
In general, the goal of Bayesian penalization is to avoid overfitting. To evaluate

this property, we can split the data in a training and test set. We estimate the model
on the training set and then use the resulting estimates for the regression coefficients
to compute the responses in the test set. The prediction mean squared error
(PMSE) summarizes the prediction error by taking the mean of the squared
differences between computed and true responses in the test set. In bayesreg,
the function pmse_lm computes the PMSE. In general, when the number of
predictors is smaller than the sample size, most shrinkage priors discussed in this
chapter will lead to similar prediction errors. The shrinkage priors vary more in
terms of prediction errors when the number of predictors exceeds the sample size.
There is some evidence that global-local shrinkage priors such as the (regularized)
horseshoe and hyperlasso perform best in this situation (Van Erp, Oberski, &
Mulder, 2019), but more research in this area is required. One option to choose
a shrinkage prior for the application at hand is to fit the model using various
shrinkage priors and then use the PMSE to guide the choice for the prior. When
reporting the results, it is important to state that this strategy was used and which
other shrinkage priors (including their hyperparameters) were considered.
There are two other important criteria to consider when choosing a shrinkage

prior: (1) computation time, and (2) desired complexity of the resulting model. First,
the computation time can vary greatly between the shrinkage priors. In general, if
a shrinkage prior becomes more complex, the computation time increases, especially
when adaptation of the Hamiltonian Monte Carlo sampler settings is needed. Second,
since the shrinkage priors vary in the amount of shrinkage they perform, the eventual
number of excluded predictors can vary across shrinkage priors. Thus, if a very sparse
solution is desired, a very peaked shrinkage prior should be chosen. Note that the
number of excluded predictors depends heavily on the criterium that is used to select
predictors, which will be discussed in the next subsection.
To continue with the communities-and-crime example, let us compare

several shrinkage priors according to the criteria mentioned above. Recall that
we have a total of 172 predictors (including recoded dummy variables) and
observations from 343 communities. Half of the observations (172) are used as
a training set and the remaining 171 observations are used to test the model.
Three different shrinkage priors are compared: the lasso, the hyperlasso, and the
spike-and-slab prior with Bernoulli mixing probabilities. We can fit, for
example, the spike-and-slab prior as follows:

fit.ssp <- stan_reg_lm(X = X, y = y, N_train =172, prior = “mixture”, hyperprior_mix

= “Bernoulli”, iter = 2000, chains = 4, seed = 27022019)

The spike-and-slab prior takes longest with 367 seconds and results in 3,851
transitions after warmup that exceeded the maximum treedepth. Therefore, we need
to increase the max_treedepth setting of the sampler above 10, which will lead
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to an increased computation time. In general, the spike-and-slab prior has a large
computation time and we might decide to not choose this prior based on time
considerations.
The computation time is lowest for the hyperlasso (20 seconds), followed by the

lasso (29 seconds). The PMSEs for the lasso and hyperlasso do not differ much (55.4
and 55.2, respectively). Note there are no clear cutoffs out there when a difference
in PMSE is substantial or not, so it comes down to personal interpretation.

Variable selection

One of the main goals of penalized regression is to automatically select relevant
predictors. Classical penalization methods such as the lasso are able to shrink small
coefficients exactly to zero, thereby performing automatic variable selection.
Bayesian penalization methods, on the other hand, do not perform automatic
variable selection and thus a criterion is needed to select relevant predictors.
Different criteria exist. One option is to simply include those predictors for which
the posterior estimate exceeds a certain cut-off value, such as .1. However, it has
been shown that this arbitrary choice of cut-off value leads to high false inclusion
rates (Van Erp et al., 2019). A second option is to include a predictor when the
credibility interval for that coefficient does not cover zero. In this approach,
a choice needs to be made regarding the posterior probability to include in the
credibility interval. The optimal credibility interval in terms of correct and false
inclusion rates varies across priors and types of data sets. An overview of optimal
credibility intervals for various simulated data sets can be found in Van Erp et al.
(2019), and I use this overview to determine the credibility interval to use for the
communities-and-crime example. Since we have 172 predictors and 172
observations in the training set, we select the optimal credibility intervals
corresponding to condition 6, in which the ratio of predictors to observations is
most equal to our example, leading to 30% intervals for both priors. We can then
use the following function in bayesreg to select the variables:

select_lm(fit, X = X, prob = 0.3)

In this case, the priors select almost the same number of variables, 50 for the
lasso and 47 for the hyperlasso. It appears that the shrinkage priors perform very
similarly in this application, both in terms of prediction error and in terms of
variable selection. To check this graphically, we can plot the posterior estimates
and credibility intervals for the priors. Here, we will use the 30% credibility
intervals, to immediately see which predictors are included in the model:

fitlist <- list(fit.lasso, fit.hyperlasso)

names(fitlist) <- c(“lasso”, “hyperlasso”)

plots <- plot_est(fitlist, est = “mean”, CI = 0.30, npar = 50, pred.nms = colnames

(X))
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The function returns a list of plots such as the one presented in Figure 5.4
Indeed, we see no substantial differences between the results of the lasso and
hyperlasso. Of the predictors shown in Figure 5.4, both shrinkage priors select
the racial match between community and police force, the number of police
officers, and the per capita income as predictors for the number of murders in
the community.
One issue with the credibility interval criterion for variable selection is its

dependency on the posterior probability included in the interval, which differs
across shrinkage priors and data characteristics. Moreover, credibility intervals only
consider the marginal posteriors per regression coefficient separately. This might not
be optimal for shrinkage priors that shrink parameters jointly (e.g., the global-local
shrinkage parameters), in which case the joint credibility interval might perform
differently than the marginal intervals (Piironen et al., 2017; Van der Pas, Szabo, &
Van der Vaart, 2017). An alternative that does take into account the joint posterior
distribution is projection predictive variable selection which is implemented in the
projpred package (Piironen, Paasiniemi, & Vehtari, 2018).
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Note

1 Throughout this chapter, we use the bayesreg package available from https://github.
com/sara-vanerp/bayesreg. Note that there is also a bayesreg package available on
CRAN (Makalic & Schmidt, 2016) which has implemented several of the shrinkage
priors in linear and logistic regression models. However, contrary to the bayesreg
package used in this chapter, by Van Erp, the bayesreg package on CRAN, by Makalic
and Schmidt, only has a subset of the shrinkage priors implemented that are discussed in
this chapter.
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Introduction

A solution to the problem of small sample sizes for the design and analysis of
empirical research can be found in at least two ways. The first, most common, way
is by examining the behavior of large-sample inferential techniques if sample size
becomes smaller and smaller, and by determining the sample size at which these
techniques break down; see, for example, Chapter 17 (Smid & Rosseel). The
guiding question is: “How low can you go?” A second, radically different, way is to
intensively study a single participant (see also Chapter 7; Maric & Van der Werff)
and to use replication logic or meta-analysis to arrive at the small sample. The
present chapter takes the latter perspective. Because usually large numbers of
repeated measurements for each participant are recommended, this perspective
paradoxically offers a “large n” solution to the problem of small sample sizes.
Besides the repeated measurements, another part of the small sample size

solution presented in this chapter lies in the addition of classical experimental
design elements that can support the inference: randomization, blocking, and
replication (Fisher, 1926). The result will be a “single-case experiment”. In the
first section of this chapter, this kind of experiment will be introduced, and in
the subsequent sections some design and analysis options will be added.

The single-case experiment

A single-case experiment is defined as an experiment in which one unit is observed
repeatedly during a certain period of time under different levels of at least one
manipulated variable (Barlow, Nock, & Hersen, 2009). This definition is important
to make the distinction between single-case experiments and other types of single-
case research (e.g., qualitative case studies or observational time-series research).



Furthermore, this definition clarifies that randomization and replication are not
intrinsic parts of a single-case experiment. Randomization and replication are
considered in this chapter as additional tools that may substantially increase the
internal and external validity, and hence the credibility, of single-case experimental
research.

Example

Randy is taking sleeping pills for his sleeping problems but lately he has also
started to experience disturbingly severe dizziness in the morning. He contacts
his physician with this complaint and together they wonder whether the
dizziness is caused by the sleeping pills. They decide to set up a two-week
experiment in which Randy will register the severity of his dizziness daily on
a seven-point scale, while taking the sleeping pills on some days and while
replacing them with placebo pills on other days.
They contact a pharmacist, who prepares a strip with 14 identical capsules;

seven of them contain the active sleeping medication and seven contain
powdered sucrose. The capsules are unlabelled and randomly ordered to make
sure that neither Randy nor the physician will know which pills are taken on
which days, to rule out expectancy effects and confirmation bias. So together
they set up a randomized placebo-controlled double-blind clinical trial on
a single participant. After two weeks, Randy returns to his physician and shows
his results. These can be found in Figure 6.1.
Without knowing the exact sequence in which the active medication and the

placebo have been administered, these results only show the general distribution
of the complaints during the two-week period. This is the point where the
pharmacist is contacted again to disclose the randomization sequence. The
sequence happens to be

E C E C C E C E E C C E E C

with E for Experimental treatment (sleeping pill) and C for Control treatment
(placebo pill). If Figure 6.1 is transformed by connecting the dots for each
experimental condition, Figure 6.2 is obtained.
Figure 6.2 shows that, by eyeballing, taking the sleeping pills is associated

with higher severity ratings than taking the placebo pills. However, this is not
always the case: the full line and the dotted line intersect. For example, on Day
10, a morning after taking a placebo pill, the complaints are more severe than
on Day 9, a morning after taking the active sleeping medication. Now the
patient and the physician may want to interpret and summarize these results
even further. They may want to quantify the effect (using a measure of effect
size) or they may want to know whether the effect is statistically significant
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(using inferential techniques). Ultimately, they have to decide on a course of
action: continue or discontinue the sleeping pills, or eventually conducting some
more follow-up experiments. These data and their analysis will be revisited in
the Analysis section of this chapter.

Design of single-case experiments

Single-case experimental designs have been classified in many different ways, using
divergent terminology (see, for example, Barlow et al., 2009). This section features
one possible classification that is based on the two additional design elements:
randomization and replication. Replicated single-case experiments represent one of
the small sample size solutions that is central to this book.

The randomized experimental approach

In single-case experiments, randomization refers to the random assignment of
measurement occasions to treatments. Random assignment of measurement
occasions to treatments provides statistical control over both known and
unknown variables that are time related (e.g., “history”, “maturation”; Shadish,
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FIGURE 6.1 Example data for two weeks’ daily registrations of the severity of dizziness
on a seven-point scale by a single participant
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Cook, & Campbell, 2002). In addition, this random assignment is the basis for
a statistical test, mentioned later in this chapter: the randomization test.
The specific random assignment procedure is intimately linked to the

design of the experiment. Two broad design categories can be distinguished:
alternation designs and phase designs. Alternation designs have rapid
alternation of levels of the manipulated variable, just as in the Randy
example. Their design characteristic is that each level of the manipulated
variable can be implemented at each measurement occasion. Phase designs
have consecutive measurement occasions under the same level of the
manipulated variable. Their design characteristic is that the measurement
occasions are divided in phases, and that the number of phases is preplanned
and limited.

Alteration designs

The random assignment procedure in alternation designs is most straightforward
and comparable to the random assignment procedure in group comparison designs.
Because each level of the manipulated variable can be implemented at each
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FIGURE 6.2 Example data of Figure 6.1 but distinguishing between the days when
taking a sleeping pill (E for Experimental treatment) and days taking a placebo pill (C for
Control treatment)
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measurement occasion, it is like tossing a coin to determine the level at each
measurement occasion. A Completely Randomized Design (CRD) is obtained by
randomly selecting a sequence of levels, given a prespecified total number of
measurement occasions, number of levels, and number of measurement occasions
for each level. To take the Randy example: there are 14 measurement occasions,
two levels, and seven measurement occasions for each level. Therefore, the random
assignment procedure consists of randomly selecting one sequence out of
14
7

� �
¼ 3432 possibilities.

A CRD is rarely used in practice because it includes possibilities in which the
levels are all grouped together. In the Randy example, this means that

C C C C C C C E E E E E E E

would be one of the possible designs to work with. In order to avoid such sequences,
researchers use other designs, such as the Randomized Block Design (RBD). In an
RBD, blocks of levels are constructed and random assignment only occurs within
blocks. In the Randy example, this could mean that blocks of C E pairs are
constructed and that it is randomly determined for each pair whether the order is “C
E” or “E C”. The obtained sequence mentioned before can be symbolized as

[EC] [EC] [CE] [CE] [EC] [CE] [EC]

with the square brackets indicating that random ordering only occurred within
the brackets. The random assignment procedure for an RBD would consist of
randomly selecting one sequence out of 27 ¼ 128 possibilities.
One could, however, argue that an RBD is overly restrictive regarding the

number of permissible sequences. For example, there is no obvious reason why
a sequence like

E E C E C C E C E E C C E C

should be avoided, although it is impossible given the RBD specification.
A workable compromise between a CRD and an RBD is to use the
specifications of the CRD but to limit the number of consecutive measurement
occasions for the same level. In the Randy example, this could mean that there
are 14 measurement occasions, two levels, and seven measurement occasions for
each level, and that the maximum number of consecutive measurement
occasions for the same level is specified at two (to avoid phases of three
consecutive measurement occasions for the same level). This random assignment
procedure implies that 518 possibilities of the original 3,432 CRD possibilities
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are permissible, which is more than four times the number of RBD possibilities.
The logic of this design is most similar to what Barlow et al. (2009) called an
Alternating Treatments Design (ATD).

Phase designs

The random assignment procedure in phase designs is less obvious and has no
corresponding group comparison design analogue. Because the measurement
occasions are divided in phases and the number of phases is preplanned and
limited, it is not possible to randomly determine the level at each measurement
occasion. For example, phase designs are denoted as AB designs (two levels of the
manipulated variable, two phases), ABA designs (two levels of the manipulated
variable, three phases, with the third phase called a “reversal” or “withdrawal”
phase), ABAB designs (two levels of the manipulated variable, four phases),
ABACABA designs (three levels of the manipulated variable, seven phases), and so
on. Phase designs need phases, so once a certain level of the manipulated variable
is started, several measurement occasions for that level should follow.
The one component of phase designs that can be randomly determined is the

moment of the first measurement occasion after a phase transition. Figure 6.3 shows
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FIGURE 6.3 Hypothetical data for a single-case experiment using an AB design with 20
measurement occasions: 10 in the baseline phase (A) and 10 in the treatment phase (B)
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hypothetical results for an AB design. There are 20 measurement occasions, 10 for
level A and 10 for level B. The first measurement occasion after the (only) phase
transition is the 11th. This moment might have been randomly determined. For
example, given 20 measurement occasions and at least three measurement occasions
in each phase, this results in 15 possibilities going from

A A A B B B B B B B B B B B B B B B B B

to

A A A A A A A A A A A A A A A A A B B B

Random assignment in such an AB design involves randomly selecting one of the 15
possibilities out of this list. A similar procedure can be followed in ABA and ABAB
designs, and other phase designs, with the list of possibilities for each of these designs
generated by combining the possible moments for two or more phase transitions.
Phase logic can be combined with alternation logic if the order of the phases is

allowed to be determined randomly. For example, if the previous specifications
can be extended to include designs with a B phase before an A phase, then the
previous 15 possibilities are combined with another 15 possibilities going from

B B B A A A A A A A A A A A A A A A A A

to

B B B B B B B B B B B B B B B B B A A A

The combination of phase logic and alternation logic results in even more
combination possibilities for ABA designs, ABAB designs, ABACABA designs,
and so on.

The replicated experimental approach

Replication is essential for many research endeavors, and replicability may even be
considered as a demarcation criterion between science and non-science (Open
Science Collaboration, 2015). In single-case research, replicability pertains to the
results at the single-case level, and two basic procedures have been part of single-case
research since its earliest inception (Barlow et al., 2009): direct replication and
systematic replication. Direct replication is the repetition of the same experiment by
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the same researcher; systematic replication is the repetition of the experiment with
one or more variations as compared to the original experiment (e.g., another setting,
another outcome variable, another treatment). From a design perspective, the
distinction between sequential and simultaneous replications is crucial (Onghena &
Edgington, 2005).

Sequential replication designs

The most common way to include replication in the design is by performing
single-case experiments one by one. For example, single-case experiments in
a hospital might be performed with consecutive patients. The results of the
earlier experiments in the series can be used as prior information to optimize the
later single-case experiments. This does not mean that in such a sequential
replication design, the next experiment is only started if the previous one is
completely finished; it just means that the timing is not preplanned and that the
replications do not necessarily overlap in time.

Simultaneous replication designs

A special category of single-case designs is derived if the replications are
preplanned and simultaneous. In a so-called “multiple-baseline across-
participants design”, several AB phase designs are conducted at the same time,
and the B phases are started at different “staggered” moments. For example,
Figure 6.4 shows the results of a four-week multiple-baseline design across three
children for evaluating the effect of a behavioral intervention on the general
distress level of the children as assessed daily by the staff at a daycare center. The
intervention is started after the first week for the first child, after the second
week for the second child, and after the third week for the third child. If there is
a functional relation between the intervention and the distress, then the distress
is expected to decrease after the intervention is implemented for the target child,
but not for other children. In order to check for this differential effect, the
results of all children are monitored simultaneously. If there would be a more
general external cause of the decrease in distress, then all children would be
affected (e.g., by a change in policy at the daycare center). Hence in multiple-
baseline across-participants designs both within-AB and between-AB
comparisons are possible and important. Simultaneous replication designs, in
contrast to sequential replication designs, have the advantage that the
confounding effects of “history” (external events) can be controlled by the
between-series comparisons (Onghena & Edgington, 2005).
Classical multiple-baseline designs, with AB phase designs as building blocks,

have also been proposed across behaviors (within one participant) and across
settings (within one participant), but simultaneous replication designs can be
constructed with other phase and alternation designs as well.
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Analysis of single-case experiments

Several authors have contended that there is controversy regarding the analysis
of data collected in single-case experiments and that these controversies should
be resolved before making recommendations (see, for example, Kratochwill
et al., 2010), but this is not the point of departure in the present section.
Controversies in data analysis are intrinsic to making sense of data and to
scientific inference in general, and single-case research is no exception (see, for
example, discussions on Bayesian versus frequentist statistics, Neyman–Pearson
versus Fisher approaches, and parametric versus nonparametric techniques;
Silberzahn et al., 2018). Our point of departure is that all techniques that have
been proposed for general data analysis can, in one way or another, be modified

FIGURE 6.4 Hypothetical data for a single-case experiment using a four-week
multiple-baseline design across three children for evaluating the effect of a behavioral
intervention on the general distress level of the children as assessed daily by the staff at
a daycare center
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to suit single-case data analysis, taking into account the defining characteristics
of single-case data (for an elaboration of this perspective, see Onghena, Michiels,
Jamshidi, Moeyaert, & Van Den Noortgate, 2018).
Without going into the details of all possible data-analytical techniques, it is

important to highlight three different dichotomies that have to be taken into
account when analyzing (single-case) data. These dichotomies are sometimes
muddled up in applications or discussions and lead to dispensable controversy.
The first dichotomy is descriptive versus inferential use of statistics. The other
two dichotomies fall within the realm of inferential statistics: model- versus
design-based inference on the one hand, and unilevel versus multilevel inference
on the other hand.

Descriptive versus inferential statistics

Statistics can be used for description and statistics can be used for inference
(Moore & Notz, 2017). Descriptive use refers to summarizing the observations at
hand and inferential use refers to making statements (inferences) about unobserved
quantities or patterns. In the latter case it is important to be explicit about the
kind of inferences one wants to make: population inferences, causal inferences,
or inferences to future observations.
If description is the only purpose, then tables, graphs, and descriptive measures

suffice. Visual inspection and analysis, which is the most common and popular
technique for analyzing single-case data, falls within this category. Visual analysis
involves a time-series plot of the results and a systematic interpretation of six data
aspects that should be evident in the plot: the level of the measurements within and
between phases, possible trends, the variability within and between phases, the
immediacy of the effect after the introduction of the treatment, the overlap of the
measurements in different phases, and the consistency of data patterns across similar
phases (Kratochwill et al., 2010). In addition, each of these data aspects may be
quantified using a descriptive measure or an effect size statistic (Tanious, De,
Michiels, Van Den Noortgate, & Onghena, 2019).

Model- versus design-based inference

If statistics are used for inferential purposes, then one of the most basic distinctions
is the distinction between model- and design-based inference (Koch & Gillings,
1984). In model-based inference, a statistical model is fitted to the observed data
and the parameters and their uncertainty are estimated from the data. In design-
based inference, the data are analyzed in accordance with the way the data were
collected; the only stochastic element entering the calculations refers to the
sampling scheme or the assignment procedure. Although in practice both model
and design information might be integrated and combined, the results of model-
based inference and design-based inference in their purest forms do not necessarily
coincide (Gregoire, 1998). A prototypical example of model-based inference for
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a single-case experiment is time-series analysis (Tarlow & Brossart, 2018).
A prototypical example of design-based inference for a single-case experiment
is a randomization test and a confidence interval based on randomization test
inversion (Michiels, Heyvaert, Meulders, & Onghena, 2017).

Unilevel versus multilevel inference

In replication designs, more than one level of inference is involved: the repeated
measurements are nested within participants, and the participants can be
conceptualized as a random sample from a target population (Moeyaert, Ferron,
Beretvas, & Van Den Noortgate, 2014; Onghena et al., 2018). In this setting,
multilevel inference can be conceptualized as a meta-analytical model (Van Den
Noortgate & Onghena, 2003) or can be the result of using combination
methods following a design-based approach (Levin, Ferron, & Gafurov, 2018;
Tyrell, Corey, Feldman, & Silverman, 2013). Figure 6.5 shows the fourfold
classification that arises by crossing the two inferential dichotomies, together
with the prototypical examples.

An example of unilevel design-based inference

Unilevel design-based inference will be used for the Randy example and the
data in Figures 6.1 and 6.2. This approach was selected because it is appealing
for a properly designed experiment with a limited number of repeated
measurements, and because it is relatively easy to explain and to understand.
Furthermore, the approach stays close to the data and the data description, and
makes minimal statistical assumptions, which is most compatible with the
behavior analytical perspective from which the single-case experimental design
tradition grew (Jacobs, 2019).
Take the data in Figure 6.2. In the Rubin model for causal inference, the

causal effect is defined by E − C at a given measurement occasion and the
Average Causal Effect is obtained by averaging over all measurement occasions
(Holland, 1986). The fundamental problem of causal inference is that on a given

FIGURE 6.5 Classification of data-analytic strategies for (replicated) single-case experiments
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measurement occasion only one observation (for one of the treatment levels)
can be made; the observation for the other treatment level (the counterfactual) is
missing. For example, on Day 1, there is an observation for E, but there is no
observation for C. On Day 2, it is the other way around, and so on. The
observed data were:

E C E C C E C E E C C E E C
6 5 7 4 5 6 5 7 4 5 4 6 7 6

but the counterfactual is missing:

C E C E E C E C C E E C C E
? ? ? ? ? ? ? ? ? ? ? ? ? ?

The design-based solution to the fundamental problem of causal inference is to
examine what happens if there was no relation between x and y whatsoever
(i.e., null hypothesis reasoning). In that case, the missing data are known. If the
null hypothesis were true, then exactly the same series of data would be
observed irrespective of the treatment level to which that occasion was assigned.
This null hypothesis reasoning can now be used to evaluate whether the observed

data are extreme or unexpected in any way, given that the null hypothesis is true.
A first step is to summarize the data in a test statistic. Suppose Randy and the
physician agreed to take the absolute difference in means as their primary outcome
(absolute difference because they were not sure about the direction of the effect). For
the observed data, this test statistic amounts to 6:1428� 4:8571j j ¼ 1:2857 on the
seven-point scale. The second step is to calculate this test statistic for all random
assignments that could have been chosen. This calculation makes sense, because if the
null hypothesis were true, then the data are a fixed time series of numbers whatever
random assignment was selected.
Suppose an RBD was used, then a total of 128 test statistic values are

calculated (with the observed value as one of them). These 128 values form the
reference distribution in which the observed value is located. A dot plot
representation of the reference distribution for the difference in means between
T and C is shown in Figure 6.6. The calculations needed to construct this
reference distribution are tedious, but fortunately user-friendly software is
available (see Bulté & Onghena, 2008, 2009, 2013; De, Michiels, Vlaeyen, &
Onghena, 2017).
A third step is to calculate the probability to arrive at a test statistic value that

is equal to or even more extreme than the observed value if the null hypothesis
were true. This is the p-value of the randomization test. Figure 6.6 shows that
the observed value of 1.2857 is in the right tail. Actually, there are four positive
values equal to 1.2857 and one even larger, and there are four negative values
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equal to −1.2857 and one even smaller. Therefore, the p-value is
10=128 ¼ :0781: If a traditional 5% significance level were used, this result
would be labeled as “not statistically significant”.
However, as was mentioned before, in design-based inference the data are

analyzed in accordance with the way the data were collected. If the data were
collected using a CRD, then the randomization test p-value would have been
154=3432 ¼ :0449. If the data were collected using a more prudent ATD with
a maximum of two consecutive measurement occasions for the same level, then
the randomization test p-value would have been 24=518 ¼ :0463.
One caveat is that p-values should always be interpreted cautiously. For

a randomized single-case experiment, such as in this example, neither random
sampling nor a population of participants is involved. Hence classical population
inference is out of the question. The only inference that is possible is causal
inference for the particular participant involved in the study. Furthermore, this
causal inference is probabilistic and tentative. There is no 100% certainty that
the sleeping pills are responsible for the increase in dizziness, and the results of

FIGURE 6.6 Dot plot of the randomization distribution for the difference in means
between the E- and the C-scores in Figure 6.2 if an RBD was used
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this experiment cannot guarantee that a reduction of the medication in the
future will have the same beneficial effect as in the actual experiment.

Conclusion

In this chapter, a small sample size solution was provided by turning the
problem upside down. Instead of looking at the population of participants from
which only a small number of participants can be sampled, the starting point can
be an intensive study of a single participant that can be repeated in other
participants. In this perspective, a single participant is considered as the
population and repeated measurements constitute the sample from that
population. If there is more than one participant, then the results for the other
participants are considered replications. In addition, the chapter demonstrated
how randomized single-case experiments can be designed and analyzed. The
resulting inference is about establishing a functional relation between
a manipulated variable and an outcome variable for a single participant, which
can be accomplished by using counterfactual reasoning, as illustrated with an
example.
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Introduction

Testing effects of clinical interventions has been an exciting and demanding
endeavor for many psychology researchers for over seven decades. Most
researches use Randomized Controlled Trial (RCT) designs to answer questions
about the efficacy of their interventions, and the underlying mechanisms; see
also Chapter 10 (Kavelaars). In RCTs, participants are randomized to either an
active intervention under investigation or to a wait-list and/or alternative
intervention condition, and the mean effects on a certain construct (e.g.,
depression symptoms) are compared across conditions. Because of their
experimental character and great applicability, RCTs are seen as the gold
standard for intervention research (Versluis, Maric, & Peute, 2014). At the same
time, several challenges have been identified related to the conduct of RCTs
(i.e., time- and cost-intensiveness) and dissemination of results (i.e., do the
results generalize to participants met in usual clinical practice (Cartwright &
Munro, 2010). In the past two decades one other design has received increasing
attention, namely single-case experimental design (SCED); see also Chapter 6
(Onghena).
SCEDs have been recognized as a valuable alternative for RCTs or as

a necessary initial step (Gaynor & Harris, 2008; Maric, Wiers, & Prins, 2012;
Norell-Clarke, Nyander, & Jansson-Fröjmark, 2011). SCEDs can be utilized in
populations high in heterogeneity or specific comorbidity, when collecting large
data would be unfeasible within the time limits of a research project. A SCED
could also be conducted as a first step in testing effects of innovative



interventions prior to doing this in RCTs. In that way, the two designs can
complement each other. An example of this strategy is illustrated in Jarrett and
Ollendick’s (2012) study in which an innovative therapy protocol has been
tested in eight young clients with comorbid attention deficit hyperactivity
disorder (ADHD) and anxiety disorders. Therapy protocol involved elements of
individual cognitive behavioral therapy (CBT) for anxiety and parent training
for ADHD. As we know almost nothing about which treatment could be used
to tackle this type of comorbidity (Maric, 2018), this study can be seen as an
important first step generating initial information about the effectiveness of this
new therapy form, after which clinical researchers could have a go and test it in
a large group study. Finally, and importantly, the value of SCEDs lays in the
fact that these designs also form a great opportunity to stimulate collaboration
between research and practice, unifying questions that emerge from clinical
practice and research methodology to test these questions on a single-client level
(Borckardt et al., 2008; Maric, 2018).
The goal of the current chapter is to define the most important characteristics

of SCEDs in the context of clinical intervention research and provide a client
case example. We conclude with an outline of the current challenges in the use
of SCEDs in clinical intervention research.

Single-case experimental designs: definition and
most important features

A SCED evaluates treatment effects on a case-by-case basis. The participant
receives several assessments before, during, and after treatment. In contrast to an
RCT, there is no comparison between groups. A SCED is a within-subject
design in which participants are compared with themselves. For example, the
treatment phase (the so-called B phase) is compared to the time period before
the treatment, in which the client did not receive any treatment: the so-called
baseline (A phase). In this way, a participant forms its own “control group”
(Smith, 2012). To form a good control, the participant gets multiple assessments
in the different phases. Even though it seems like there is just one participant
serving the complete study, there are many data points observed and nested in
this one individual. Also, although the term “single-case” suggests that a SCED
concerns the analysis of just one participant, it can also be more than that. For
example, meta-analysis methods are increasingly implemented nowdays based on
multiple SCED studies (Manolov, Guilera, & Sierra, 2014; Onghena, Michiels,
Jamshidi, Moeyaert, & Van Den Noortgate, 2018). SCEDs can be used to
provide answers to the questions related to intervention effectiveness; examples
include: “Does mindfulness work better than doing nothing?” or “Does
cognitive therapy work better than behavioral therapy?” Also, mechanisms
underlying intervention effects could be tested: “Do anxiety symptoms change
before ADHD symptoms change during an intervention or vice versa?” or
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“Does combined child and parent training work via changes in child or parent
behavior?”
These types of questions could be tested using different types of SCEDs. An

informative overview of different designs can be found in Tate et al. (2016) and
Barlow, Nock, and Hersen (2009). Whenever possible and especially in
experimental research it is preferable to have a SCED with at least two phases
(the previously mentioned AB design) or three phases, an ABC design with
baseline period A followed by, for example, two different intervention periods
or one intervention period and a follow-up phase (B and C).
One of the strongest experimental SCEDs is the multiple-baseline single-case

design in which different participants are randomized to different lengths of the
baseline period (e.g., each three clients to the lengths of three, four, and five
weeks). With multiple-baseline SCED it is therefore possible to account for the
passage of time or maturity effects. An example of such a multiple-baseline
SCED can be found in the previously mentioned study of Jarrett and Ollendick
(2012). Eight children with comorbid anxiety disorders and ADHD were
randomized over three different baseline periods (two, three, or four weeks),
and were subsequently treated with a combination of CBT and parent training
over a period of 10 weeks. Greater improvements were found in the treatment
phase as compared to the baseline phase for both anxiety and ADHD symptoms.
Extensive pre-, between-phases, post-, and follow-up assessments of the core

participants’ symptoms or treatment goals could be measured during a single-
case study. Frequent observations during all phases of a SCED study are an
important characteristic of SCED research and are a necessary requirement for
most single-case data-analysis techniques. Therefore, it is useful to have shorter
assessments of participants’ complaints and/or therapy goals that can be
implemented on a weekly, daily, and/or hourly base. If the SCED group of
participants is a rather homogeneous one (e.g., clients mainly with sleeping
problems in the absence of comorbidity) then, for example, one subscale from
extensive assessments taken at pre-treatment can be used and administered on
a weekly basis to all participants. But if a SCED study group is a rather
heterogeneous one in its types of problems, then an elegant solution is to
personalize assessments and administer them regularly over time. The researchers
could then make a selection of a few items from pre-treatment assessments on
which the participant scores are the least adaptive and administer these regularly.
In this, the so-called “idiosyncratic approach”, each participant provides ratings
on his or her own set of items (Weisz et al., 2011).
Currently, many innovative data-analysis approaches are utilized to understand

the single-case data. Because visual inspection of data (i.e., graphs) is susceptible
to bias (for a review, see Brossart, Parker, Olson, & Mahadevan, 2006),
researchers mostly use one or more types of quantitative data-analysis techniques
in their studies. Examples include mixed-model analysis with which estimated
endpoints and rates of change in symptoms between two phases can be
compared (Maric, De Haan, Hogendoorn, Wolters, & Huizenga, 2015), ipsative
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z-score (Gaynor & Harris, 2008), and cross-lagged correlations (Joos, Onghena,
& Pieters, 1996) to investigate mechanisms underlying an intervention, and
Reliable Change Index (Jacobson & Truax, 1991) to calculate pre- to post-
intervention clinically reliable changes in participants’ symptoms. Two of these
methods are illustrated in a case example that follows. A more complete
overview of currently available data-analysis techniques can be found in
Heyvaert and Onghena (2014) and Manolov and Moeyaert (2017).

Clinical case example

A fictional single-case study described here was concerned with the efficacy of
CBT in a 17-year-old girl dealing with social and generalized anxiety disorder.
The main research question was whether exposure therapy (the A phase) is
sufficient in decreasing anxiety complaints in this girl, or whether cognitive
therapy (the B phase) would have additional effects over and above exposure.
Additionally, we were interested in the mechanisms underlying the treatment
efficacy, i.e., how CBT works for this girl. To answer this question, change in
negative cognitions (potential working mechanism) was studied in relation to
changes in anxiety (outcome measure).
Each A and B phase (see Figure 7.1) consisted of five weekly sessions of either

exposure or cognitive therapy. Weekly assessments of anxious symptoms were
conducted (Hogendoorn et al., 2013), and the data is presented in panel A (Figure
7.1). As different types of anxiety disorders can be characterized by different types
of cognitions, negative cognitions are measured with weekly idiosyncratic
assessment (personalized questionnaire) using five items from the Children’s
Automatic Thought Scale-Negative (CATS-N; Hogendoorn et al., 2010) that was
administered at pre-treatment. This data is presented in panel B (Figure 7.1).
To answer the first research question (Does cognitive therapy have an

additional effect over and above exposure therapy?), a mixed-models analysis in
R version 3.6.0 (R Core Team, 2013) was used, using the nlme package
(Pinheiro, Bates, DebRoy, Sarkar, & Team, 2013); see the Open Science
Framework for the data and syntax used (osf.io/am7pr/). Full details of the data
can be found in Maric et al. (2015). As noted on page 232, “The model is
described by the following function:”

yi ¼ βintercept þ β1 � phasei þ β2 � time in phasei

þ β3 � phasei � time in phasei þ εi
ð7:1Þ

In Equation 7.1, yi denotes the outcome variable score at time point i, phasei
denotes the phase in which time point i is contained (coded as 0 for baseline
and 1 for treatment), and time in phasei denotes time points within each phase.
The term εi denotes the residual at time point i. The parameter βintercept is
interpreted as the baseline intercept, β1 as the treatment–baseline difference in
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intercepts, β2 as the baseline slope, and β3 as the treatment–baseline difference in
slopes. Consequently, intercept differences between phases can be directly
assessed by testing whether β1 differs significantly from 0; analogously, slope
differences can be assessed by testing β3. Note that these parameter estimates can
also be interpreted as an effect size (Cumming, 2014).
Four parameters are estimated:

• βintercept = baseline intercept, scores of symptoms at the end of the A phase,
after five observations;

• β1 = phase, difference in scores between end of the B phase (10th observa-
tion) and end of the A phase (5th observation);

• β2 = time in phase, rate of change in scores in th A phase;
• β3= time in phase * phase, difference in rate of change in scores between

the B phase and A phase.

FIGURE 7.1 Panel A: self-reported anxiety feelings of the participant. Panel B:
self-reported negative cognitions of the participant
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The results are displayed in Table 7.1 and indicate a significant change in
anxiety feelings and negative cognitions in the A phase. There are significant
lower anxiety symptoms at the end of the A phase in comparison to the end of
the B phase. Anxiety symptoms decrease at a higher rate during the A phase
than during the B phase. Similarly, significantly lower levels of negative
cognitions are found during the A phase than during the B phase. There are no
significant differences in the rate of change in negative cognitions between the
phases. The results show no additional effects of cognitive therapy over and
above exposure; the results even show increases in anxiety and negative
cognitions during the B phase, which could be explained in different ways (e.g.,
the client becomes more aware of negative cognitions during the cognitive
therapy phase).
To answer the second research question (Are changes in negative cognitions an

important mechanism underlying the effects of CBT?) we analyzed weekly data (10
observation points, both the A and B phases, Figure 7.2) using cross-lagged
correlations. This analysis gives us information about the lags – the measure of
association between the two time series (in our case negative cognitions and anxiety
data) – and about the temporality of changes and direction of correlations between
these two symptoms. The current analysis contains a commonly used test with
a standard number of five lags (Borckardt et al., 2008) and the relationship between
the two variables (negative cognitions and anxiety) is studied forwards and
backwards over time to trace whether cognitions change before anxiety changes or
vice versa.
The results are presented in Table 7.2 and there are two significant

correlations on lags + 1 and + 2 showing that change in anxiety precedes
change in negative cognitions. The correlations are both negative: an increase in

Negative cognitions
Intercept (b0) 3.09 .39 <.001 2.13 4.04
Phase (b1) 3.75 .54 <.001 2.43 5.07
Time_in_phase (b2) -0.05 .17 .799 -0.47 0.37
Time_in_phase * phase (b3) 0.00 .22 .992 -0.55 0.55

TABLE 7.1 Treatment efficacy results using mixed models

Estimate SE p

95% confidence interval

Lower bound Upper bound

Anxious feelings
Intercept (b0) 9.32 .53 <.001 8.02 10.62
Phase (b1) 2.21 .73 .023 0.42 3.99
Time_in_phase (b2) 1.82 .23 <.001 1.25 2.38
Time_in_phase * phase (b3) -2.59 .30 <.001 -3.34 -1.85
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anxiety is related to a decrease in negative cognitions, or a decrease in anxiety is
related to an increase in negative cognitions. Lag -4 shows a significant positive
correlation, which means that change in negative cognitions precedes change in
anxiety. The correlation is positive: the decline in negative cognitions precedes
a decline in anxiety, or an increase in negative cognitions precedes an increase
in anxiety. The expectation based on existing theory (Stallard, 2009) that
decreases in negative cognitions are related to decreases in anxiety symptoms is
only partially confirmed for this participant, because the main results show
increases in anxiety being related to decreases in negative cognitions. However,
single-case results may not always be in line with existing theories based on
large group studies, and especially in the case of working mechanisms, it is
possible that CBT effects can be explained by many different individual
mechanisms.
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FIGURE 7.2 Negative cognitions and anxiety feelings (raw data)
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Conclusion

SCEDs are making their comeback as a powerful method to test intervention
effects on a level of a single participant. A quick Web of Science search for
single-case studies in clinical psychology and psychiatry indeed shows 107
records published between 2019–2009 as opposed to 36 records published
between 1999–2009. Cost-effectiveness, the possibility of investigating
innovative interventions and individual mechanisms of change, and the potential
of SCEDs to improve the quality of mental health care are benefits associated
with this type of research design. Although current SCED methods are very
useful in testing intervention effects, several challenges remain that, it is our
hope, will be addressed in the time to come. First, it is currently unknown how
many individual SCED studies are necessary for inclusion in an intervention
study to be able to conclude that an intervention is effective. Guidelines of the
Task Force of the American Psychological Association (1995) suggest that an
intervention is considered as well-established if a series of at least nine SCED
studies demonstrate efficacy. However, we do not have recent, quantitative,
research-underpinned idea or guidelines about the minimal number of SCEDs
to be included in a research study. Second, to be able to use SCED data
analyses, frequent observations of changes in participants’ symptoms are
required. Third, and related to the previous point, especially in some clinical

TABLE 7.2 Cross-lagged correlations between
negative cognitions and anxiety feelings across
10 treatment sessions

Lag r p

- 05 + .13 .283
- 04 + .47* .032
- 03 + .05 .404
- 02 + .28 .170
- 01 - .31 .188

0 - .31 .224
+ 01 - .72** .007
+ 02 -. 48* .047
+ 03 -. 44 .050
+ 04 -. 22 .207
+ 05 + .33 .073

Note. Negative lag means that the change in negative
cognitions preceded a change in anxiety feelings;
positive lag means that the change in anxiety feelings
preceded a change in negative cognitions.
* p < 0.05
** p < 0.01
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research projects it is not always feasible to have a (very long) baseline period.
This is why single-case design involving only the “treatment phase” is included
in international guidelines (Tate et al., 2016), albeit not as a design that can be
used to draw strong causal inferences. Current data-analysis methods require at
least two phases being compared to each other. However, because of the
practical constraints in clinical research, we should work on the possibilities of
analyzing single-case data in which only one phase (i.e., treatment) is present.
Finally, cross-lagged correlations as described in this chapter are currently used
to investigate mechanisms underlying treatment effects in SCED research,
although with this method we can only investigate correlations of two variables
over time. The question remains whether statistical mediation techniques used
in large group studies could be used for single-case research. Despite these
challenges, SCEDs can currently readily be used as a method to test intervention
effects.
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Introduction

In practice, (test) data for a specific examinee can be limited. A teacher or
psychologist might be interested, for instance, in estimating the math ability of
a specific examinee, but the scope of the math test the examinee completed is
limited. Or, the teacher or psychologist might be interested in the question of
how reliable the examinee’s score is on the test (i.e., the error variance), but the
examinee did not answer enough items or tests to accurately estimate this
reliability. In such cases, it can be beneficial to supplement the information from
the single examinee with other information sources. This chapter explores two
such sources. The first is the rich but often ignored source of teacher
knowledge. The second is the possibility of using test results of more or less
‘similar’ examinees (e.g., examinees with the same or comparable test scores).
This chapter discusses how teacher knowledge and test results of ‘similar’
examinees can be used to improve the estimation of an examinee’s math ability.

Estimating math ability

Imagine that we are interested in the math skills of a specific examinee, ‘David’.
In order to get an idea of David’s math ability, we let him complete a certain
math test. Afterwards, we attempt to estimate two things: Ti, i.e., David’s ‘true’
math ability; and σ2Ti , the error variance of bTi (the estimate of Ti). The latter
tells us something about the test’s suitability to estimate David’s ability. We



could base our estimate of Ti and σ2Ti on David’s single test take1. By doing so,
we might, however, run into two problems. First, the estimate of σ2Ti is quite
unstable after only one (or a few) test(s). By ‘unstable’ we mean that if we could
re-test David over and over again, brainwashing him after every test, the
estimate of σ2Ti based on each of these tests would vary considerably. Second,
because of time constraints, the scope of any math test will be necessarily
limited. Therefore, our notion of David’s math ability might be too limited if
we base our estimate too strictly on bTi. These different problems boil down to
the same underlying problem: we might not have enough information to
satisfactorily estimate Ti and σ2Ti .
One way of solving the above problems is to turn to other sources of

information. In order to estimate Ti; we could, for instance, ask David’s (math)
teacher for information. Having observed David in class for a long period of time,
his teacher has unique knowledge about how David responds to math questions,
whether he is able to come up with suitable strategies to find solutions to math
problems, et cetera. This makes the teacher a very rich – but often ignored –

source of information. Regarding the estimate of σ2Ti , we could not only rely on
David’s test results but also on the test results of ‘similar’ other examinees. ‘Similar’
could, for instance, mean that these other examinees have the same or
a comparable test score as David. Assuming that σ2Ti is comparable for David and
the other selected examinees, we can reach a more stable estimate of σ2Ti .
This chapter discusses in greater detail how teacher knowledge and the test

results of other examinees can be used to, respectively, improve the estimate of
Ti and σ2Ti . Regarding the former, we show how teacher knowledge can be
elicited such that it can be used as an additional information source in assessing
David’s math ability. This is followed by a demonstration of an app for primary
school teachers developed specifically for this purpose. Regarding the latter, we
will explain how a suitable number of ‘other examinees’ can be selected. We
will explain how to create a balanced selection of other examinees in order to
reach a stable estimate of σ2Ti while keeping in mind that the number should
not be so large that this estimate becomes ‘meaningless’ for David. Note that we
use ‘David’ as an example, but the techniques explained in this chapter can be
used for any (educational) test and with any examinee.

Teacher knowledge

When Ti is difficult to estimate based on test data, we could turn to the teacher.
An advantage is that teachers have a broad view of the ability of their pupils,
resulting from class observations, projects, answers to the teacher’s questions, et
cetera. Other than information from ‘similar’ examinees (see next section), the
teacher provides a source of information that is focused on the specific pupil,
such as David. In order to incorporate the teacher’s knowledge in our estimate
of Ti, we can make use of the Bayesian toolbox (see Chapter 1, Miočević,
Levy, and Van de Schoot; as well as Kaplan & Depaoli, 2013; Kruschke, 2014;
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Van de Schoot et al., 2014). The idea of Bayesian statistics is simple: we
incorporate the teacher’s knowledge in a prior distribution. This is a distribution
containing all information that we have collected prior to the (test) data
collection. We then update this prior knowledge with the (test) data to obtain
a posterior distribution, which is a compromise of teacher knowledge and test
data (see Figure 8.1).
The difficulty with this approach is the translation of expert (in this

example, the teacher) knowledge into a prior distribution. This ‘translation’ is
called expert elicitation (see O’Hagan et al., 2006) and several so-called expert
elicitation tools have been developed (see, for instance, Veen, Stoel,
Zondervan-Zwijnenburg, & Van de Schoot, 2017; Zondervan-Zwijnenburg,
Van de Schoot-Hubeek, Lek, Hoijtink, & Van de Schoot, 2017). We
developed an online elicitation instrument specifically tailored to primary
school teachers (see Lek & Van de Schoot, 2018b). With the help of this
elicitation instrument, teachers translate their knowledge about the pupils into
a prior in a structured, easy, and non-technical way. In the remainder of this
section, we discuss the elicitation instrument in detail, using screenshots from
the online app. The Dutch version of the app can be found here: utrecht-
university.shinyapps.io/oordeelsvormingPO/, and the English translation of
this app can be found here: utrecht-university.shinyapps.io/teacherjudgment/.
The annotated R code and potential newer version can be found on the OSF
(osf.io/8uk9z/).

OBSERVATIONS

PROJECTS

TEACHER

PRIOR

Q&A

TEST

THE IDEA

LIKELIHOOD

POSTERIOR =

BALANCE TEACHER & TEST

FIGURE 8.1 The idea of incorporating teacher knowledge in the estimate of math ability
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Steps of the expert elicitation instrument

The elicitation app consists of eight tabs: ‘Home’, ‘Groups’ (Dutch: Groepjes),
‘Student codes’, ‘Positioning’ (Dutch: Positioneren), ‘Class overview’ (Dutch:
Klasoverzicht), ‘Download’, ‘Upload’ and ‘Compare with test results’ (Dutch:
Vergelijken met toetsresultaat). Each tab must be completed to proceed to the next
one (although it is possible to return to a previous tab and adjust data). The app
is built using R (R Core Team, 2013) and the Shiny package (Chang, Cheng,
Allaire, Xie, & McPherson, 2017). Note that, like other Shiny apps, our app
does not yet allow for the possibility of interrupting the process and continuing
at a later time: all tabs (until the Download tab) must be completed in one
session. Also, when left unused for too long, the app will time out and the user
has to reload the app and start from the beginning.

Home

The app starts with an explanation of its purpose and a schematic overview
of the different steps. The overview shows that the first steps (until
‘Download’) must be completed before the teacher administers the test,
whereas the last steps (starting from ‘Upload’) should be taken after the test
results are known.

Defining groups

In the second step, the teacher must divide the class into different groups, each
containing students with comparable math levels (see Figure 8.2). The goal of this
step is to ease the positioning step later; instead of positioning all pupils at once,
teachers can do it for each group of similar pupils separately. There is a maximum
of five groups. Each pupil that takes the test is assigned to a single group. The
teacher can select a label for each group. If the groups are not labeled, they will
simply be called Group 1, 2, 3, 4, and 5. To ensure anonymity, a code is assigned
to each student in a group, consisting of a letter and one or two digits.
Our hypothetical pupil ‘David’ is also placed in a group. Based on his math

ability, the teacher places him in Group 1.

Student codes

The teacher can download either a Word or HTML file with codes for all
pupils in their class (see Figure 8.3). The teacher can, for every student in each
group, enter the student’s name next to the code. In order to comply with
privacy laws, teachers should keep this file confidential. Teachers need this file
again in the next step and when the test results for the students are known, so it
is important not to lose or misplace this file.
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Positioning

In the positioning step, teachers are presented with five ‘puppets’, each of which
represents 20% of the general student population. Drawing from all the information
they have about a specific pupil, the teachers are asked to position their pupils with
respect to these puppets. If David were a relatively poor student compared to other
pupils his age, his teacher might, for instance, position him at the first or second
puppet. Then, the teacher is presented with the opportunity to further refine this
placement for increasing degrees of certainty with more puppets in subsequent
screens; respectively 10, 25, and 50 puppets. In this way, the positioning of the
pupil – potentially – becomes more and more precise. Eventually, the number of
puppets and the positioning of the pupil(s) using these puppets is translated into
a statistical prior distribution (for technical details, see Lek & Van de Schoot, 2018b).

FIGURE 8.2 Grouping of pupils

FIGURE 8.3 Downloading pupil codes
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In the app, the positioning is done as follows. First, the teacher selects a group
by clicking on the tab with the group name (see Figure 8.4A). For every student
in the group (coded, so the teacher should keep the file they created in the
previous tab close at hand), the teacher first positions the student in the range of
the five puppets (see Figure 8.4A). This is similar to asking whether the teacher
thinks the student belongs to the 0–20% range of all, say, Dutch students, to the
21–40% range, the 41–60% range, and so on. If the teacher knows (some of) his/
her students well enough, she or he can further refine the five-point scale by
clicking the ‘Yes’ option in the blue bar at the bottom of the screen. This is
illustrated in Figure 8.4B. The teacher can then proceed to position the pupil on
a 10-point (10-puppet) scale (does this student perform in the 0–10% range, in the
11–20% range, and so on; see Figure 8.5B). This can be refined even further, if
the teacher is sufficiently confident in his or her assessment, to a 25-point scale
(see Figure 8.5C) and a 50-point scale (see Figure 8.5D), by assigning the student
to a puppet on the scale and clicking the ‘Yes’ option in the blue bar on the

(A)

(B)

FIGURE 8.4 Overview of the positioning part: positioning is done per tab for each of
the groups (A); when the teacher is certain enough, he or she can proceed to more
puppets (B)
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FIGURE 8.5 Positioning using different numbers of puppets, with five, 10, 25, and 50
puppets



bottom of the screen. Note that in practice few teachers use the 50-point scale,
probably because the precise positioning of students in such detail is difficult (see
Lek & Van de Schoot, 2018b).
As can be seen in Figures 8.4 and 8.5, the teacher sees the resulting prior

distribution as ‘feedback’. For instance, she or he can see that this distribution
gets increasingly peaked the more puppets are used for positioning. The
coloring helps the teacher to interpret the prior. The darkest green color shows,
for instance, the 68% credible interval of the prior. Clicking the ‘Start here’
button – see left corner, Figure 8.4A – yields an explanation of how the prior
distribution and the coloring can be interpreted.
The teacher can choose to either fine-tune the positioning of a single group

before moving on to the next one, or to work down from positioning all
groups first on the five-point scale before moving on to the 10-point scale. The
downside of the latter method is that the user has to scroll back to the top to
change to a different group, and then has to scroll down again to the correct the
positioning scale.
David is assigned code ‘Y.42’. The teacher knows David fairly well and

recognizes that his math abilities are somewhat below average. David is
therefore represented by puppet 18 out of 50.

FIGURE 8.5 (Cont.)
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Class overview

By clicking the ‘Create overview’ button, the positioning of all students in the
class is visualized by a colored bar (see Figure 8.6A). The width of this colored
bar depends on the precision indicated previously by the teacher (i.e., whether
the teacher used a scale of five, 10, 25, or 50 puppets). Specifically, the x-axis
shows the possible positions from 1 to 50. Whenever the teacher used a scale
smaller than 50 puppets for positioning the student, the colored bar spreads over
more than one position. In Figure 8.6A, for instance, the students ‘B.88’, ‘E.73’,
‘U.24’, and ‘H.35’ from ‘Group 1’ and the student ‘M.39’ from ‘Group 2’
received a position on the five-point (five-puppet) scale (puppets 2, 4, 3, 3, and
5 out of five, respectively), whereas student ‘Y.42’ (David) received a position
on the whole 50-point (50-puppet) scale (puppet 18 out of 50) and student
‘Z.18’ received a position on the 25-puppet scale. Note that each specified
group (in this example, two groups) is represented with a different color.
The app presents an overview per group below the class overview with

absolute positioning (see Figure 8.6B). This overview presents the corresponding

(A)

(B)

FIGURE 8.6 Class overview (A) and group overview (B)
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beta distributions with the percentiles on the x-axis and the probability on the
y-axis. Every student is represented by a different colored line. The lines are
slightly jittered to avoid complete overlap of distributions for students with
equal positioning.

Download

The teacher can now download a .csv file with his or her student positioning by
clicking the ‘Download’ button. The app should not be closed before the
download is completed. Teachers should not make any adjustments to the
downloaded file.

Upload

Once the results of the test are known, teachers can upload the .csv file they
had downloaded in the previous tab (see Figure 8.7). This file contains the
positioning of the students. Uploading this file makes it possible to compare the
positioning of the students with the test results in the next tab.

Compare with test results

For each student, the teacher can enter the percentile score on the test (see the
upper part of Figure 8.8). For most tests, these percentile scores are provided in
the manual that comes with the test. In the resulting figure – see Figure 8.8 –

this percentile score is represented by a black, dashed line. In the same figure,
the teacher’s positioning of the specific student is represented by the
corresponding beta distribution. The location of the dashed black line compared
to the distribution of the teachers’ estimate shows the degree to which the
teacher’s expectations match the test results, and vice versa.
David’s performance on the test slightly exceeded his teacher’s expectation,

although the test result is still within the dark green area of the teacher’s beta
distribution (corresponding to the teacher’s 68% credible interval).

FIGURE 8.7 Uploading the results
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Other (‘similar’) examinees

The error variance σ2Ti for David indicates how David’s test score may fluctuate from
test to test if we were able to test him over and over again. A large error variance, for
instance, indicates that we should be careful with interpreting the obtained test score,
since this test score may differ notably from David’s potential next test score. Just as
with the ability Ti, the error variance σ2Ti is generally unknown and should therefore
be estimated. Usually, the square root of the error variance is estimated, which is
called the ‘standard error of measurement’, here abbreviated as SEm.
There are multiple options to estimate the SEm. The most popular option

within the Classical Test Theory is to base the SEm-estimate on the test results
of all pupils in the test’s norm population. This results in a single SEm-estimate
for all pupils who take the test. In this chapter (and in Lek & Van de Schoot,
2018a) we call this SEm-estimate the ‘single SEm’ or ‘classical SEm’. Another
option is to base the SEm-estimate for a particular pupil on the test results of all
pupils who have the same test score as this pupil. In this way, multiple SEm-
estimates are obtained; one for each possible test score. In this chapter (and in
Lek & Van de Schoot, 2018a) we call this SEm-estimate the ‘conditional SEm’,
since the SEm-estimate is estimated conditionally on the obtained test score.
Finally, it is also possible to base the SEm-estimate solely on the test results of
a specific examinee, such as David (Hu et al., 2016). We call this SEm-estimate
the ‘person-specific SEm’, since a SEm-estimate is obtained for each examinee
individually. What distinguishes the three SEm-estimates is thus the number of
test results that are used in the estimation of the SEm and thus the number of
unique SEm-estimates. At one extreme, we use all available information (i.e.,
the test results of all norm-population examinees) to estimate a single SEm. At

FIGURE 8.8 A comparison with test result(s)
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the other extreme, we use only information from specific examinees to estimate
their corresponding SEms for all examinees individually.
The advantage of using information from many other (similar or not so

similar) examinees is that the resulting SEm-estimate is relatively stable. By
‘stable’ we mean that if we tested David (or any other examinee) again, the
SEm-estimate would be unlikely to change. On the other hand, when the
number of completed test items or tests is small, the limitation of David’s test
result(s) could lead to a very unstable SEm-estimate. The disadvantage, however,
is that the resulting SEm-estimate might not be representative of the ‘true’ error
variance in the case of David (or any other examinee).
Indeed, the more test information we use from other examinees, the more

assumptions we are making about the SEm. When using the person-specific
SEm, for example, we allow a unique error variance for each individual. We
thus anticipate the situation in which not every examinee is tested as accurately
as the next. Examinees differ in, for instance, concentration, test anxiety, and
mother tongue, making it highly unlikely that the ability of these diverse
examinees is measured equally well (Lek, Van de Schoot-Hubeek, Kroesbergen,
& Van de Schoot, 2017).
When using the conditional SEm, on the other hand, we assume that all

examinees with the same test score also have the same SEm. This assumption is
based on the notion that a test measures the ability of children/examinees more
precisely (i.e., with less error) when their ability matches the difficulty of the
test items. Using test score as a proxy for ability, the conditional SEm allows the
SEm-estimate to differ for examinees with different ability levels, but not
between examinees with the same ability level.
Finally, when using the single or classical SEm, we need to assume that every

examinee is tested with an equal measurement error variance (see Molenaar,
2004; Sijtsma, 2009). When the assumption of (conditional) equal measurement

CLASSICAL

CONDITIONAL

J=2J=1

BIAS

PERSON-SPECIFIC

VARIANCE

FIGURE 8.9 Bias-variance trade-off, single-, conditional, and person-specific SEm
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error variance is not met, the classical and conditional SEms lead to biased SEm-
estimates. When choosing between the classical (single), conditional, and
person-specific SEm, we therefore need to balance ‘variance’ (the stability of the
resulting SEm-estimate) and bias (the assumptions we need to make). This is
called the bias–variance trade-off, illustrated in Figure 8.9. Ideally, we want to
use the person-specific SEm to limit the number of assumptions we need to
make to prevent a biased estimate of SEm for David. However, if test data from
David are limited, we might want to base ourselves on test results from other
examinees as well, to prevent a ‘wrong’ SEm-estimate due to instability. In Lek
& Van de Schoot, 2018a), we discuss how one can choose wisely for one of the
SEm-estimate options in specific test situations using the bias–variance trade-off.

Conclusion

Sometimes, our (test) data are too limited to accurately estimate, for instance, the
math ability of a single examinee. In this chapter, we demonstrated how test
information from a single examinee can be supplemented with other information
sources to solve this limited-data problem. We first showed how information from
the examinee’s teacher can be used to obtain a more accurate estimate of a specific
examinee’s math ability (Ti) by using Bayesian statistics. The option to use teacher
knowledge is especially interesting when the scope of the test is (too) limited for the
ability one wants to measure. We then discussed how test results from other (similar
or not so similar) examinees can be used to obtain a more stable estimate of the
error variance of the estimate bTi. Together, these two examples show that test
information from a single examinee can be enriched by other information sources.
In the case of the error variance, we often do this by default. Conventionally, test
results from all norm population examinees are used to estimate the SEm, the
square root of the error variance. This chapter, however, shows that we should be
aware of the restrictive assumptions that are made when opting for this ‘single’ or
‘classical’ SEm. We should think carefully whether test results from a smaller group
of examinees would suffice. While being a rich source of information, teacher
knowledge is often neglected. This chapter demonstrates how teacher knowledge
can be elicited with the help of a purposely developed app. Teacher knowledge can
thus be used to obtain a more accurate estimate of Ti.
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Note

1 Usually, David’s obtained score is used as estimate of Ti; Hu et al. (2016) show how
σ2Ti can be estimated based on a single test take.
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COMBINING EVIDENCE OVER
MULTIPLE INDIVIDUAL ANALYSES
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Introduction

Hypothesis testing is omnipresent in behavioral and biomedical research, and
usually concerns testing for population effects. For example, is there a difference
between groups on average? This chapter presents a Bayesian method to evaluate
hypotheses for each person in a sample and aggregate this result to answer the
question whether a hypothesis holds for everyone in the sample, rather than on
average. Using an empirical data set, the methodology is illustrated step by step:
from formulating the research question and hypotheses to modelling the data
and drawing conclusions. This chapter is structured as follows. First, informative
hypotheses and Bayes factors are introduced and explained. Next, a data set and
corresponding set of hypotheses is introduced that can be used for the question
‘Does everyone have the same best informative hypothesis?’ The section
‘Individual Bayes factors’ describes how individual Bayes factors can be
interpreted. The section ‘Aggregating Bayes factors’ explains how these
individual Bayes factors can be combined. Throughout these sections, the
methods are applied to the example data set and hypotheses. Finally, the
conclusions and limitations are discussed.

Informative hypotheses and Bayes factors

Analysis of variance (ANOVA) and regression models are frequently used in
behavioral and biomedical research. For example, consider a psychology
researcher interested in the effect of interference on a memory task. The
researcher plans an experiment where participants are presented with a word to
memorize, followed by a mask, and then asked to recall the word. The mask is
a random sequence of letters (non-word), a word that differs by one letter from



the target word (similar word), or a random word (different word). The outcome
variable is reaction time. The researcher intends to test the null hypothesis
H0 : μnon�word ¼ μdifferent word ¼ μsimilar word that the mean reaction times in the three
conditions are equal to one another against the unconstrained alternative
Halt : not H0, which states the expectation that at least one of the condition
mean reaction times is not equal to the other conditions.
Analyzing the data by means of null hypothesis significance testing on the group

mean response times implies the research question is whether the theory that all
condition means are equal (i.e., there is no difference in accuracy between the
different conditions) can be rejected. The actual research question might deviate
from this assumption in two ways. First, the researcher might not be interested in
rejecting the null hypothesis, but in finding evidence for a specific theory (Klugkist,
Van Wesel, & Bullens, 2011; Van de Schoot, Hoijtink, & Romeijn, 2011). Specific
expectations can be tested via one-sided or post hoc testing in some cases (Silvapulle
& Sen, 2004). Alternatively, these expectations can be evaluated directly by
formulating informative or order-constrained hypotheses, see Hoijtink (2012) or
Chapter 11 (Vanbrabant & Rosseel). Second, the researcher might not be interested
in whether the average response time is equal across conditions, but whether the
score for each person is equal across groups.
If researchers have specific expectations, they can formulate so-called informative

hypotheses (Hoijtink, 2012; Klugkist, Laudy, & Hoijtink, 2005). Combinations of
order and equality constraints can be placed on the parameters to express an informed
expectation. For example, H1 : μsimilar word 4 μdifferent word 4 μnon�word describes the
expectation that the mean reaction time in the similar word condition is larger than
the mean reaction time in the different word condition, which in turn is larger than
the average response time in the non-word condition. Another informative
hypothesis is H2 : μsimilar word 4 μdifferent word; μnon�word

n o
, which describes the

expectation that the average reaction time in the similar word condition is larger than
both other conditions, with no expected ordering between those average reaction
times. Hypotheses with order constraints (‘<’ and ‘>’) are also referred to as order
constrained hypotheses. Such informative hypotheses can be compared to each other
by means of an F-bar test (Silvapulle & Sen, 2004; Vanbrabant & Rosseel, 2020;
Vanbrabant, Van de Schoot, & Rosseel, 2015) or with Bayes factors (Hoijtink, 2012;
Klugkist et al., 2005), which are used for the method in this chapter. Bayes factors are
defined in Bayes’ theorem, which describes how knowledge about the relative belief
in hypotheses can be updated with evidence in data:

P H1ð Þ
P H2ð Þ �

P datajH1ð Þ
P datajH2ð Þ ¼

P H1jdatað Þ
P H2jdatað Þ ð9:1Þ

Equation 9.1 shows how the prior odds P H1ð Þ=P H2ð Þ, the ratio of the prior
probability of H1 and H2 can be updated with the Bayes factor
P datajH1ð Þ=P datajH2ð Þ, the relative evidence in the data for H1 and H2 into the
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posterior odds P H1jdatað Þ=P H2jdatað Þ, the relative probabilities of the
hypotheses, given the data. A Bayes factor then quantifies the relative evidence
in the data for two hypotheses (Kass & Raftery, 1995). Thus, BF12 ¼ 10 means
that H1 is supported 10 times more by the data than H2. Alternatively,
BF12 ¼ :5 means that H1 is .5 times as much supported by the data than H2, or
in other words, H2 is 1=:5 ¼ 2 times more supported than H1. In addition to
compare the evidence for a pair of hypotheses, the Bayes factor can be used to
find which hypothesis from a set is most supported by the data. The
computation of Bayes factors used in this chapter relies on vast literature on the
topic. This will not be discussed in detail here, but the interested reader is
referred to Kass and Raftery (1995). The computation of Bayes factors for
informative hypotheses with inequality constraints is described in Hoijtink
(2012), Klugkist et al. (2005), Klugkist, Laudy and Hoijtink (2010), and Mulder,
Hoijtink and Klugkist (2010).
Common statistical analyses, like ANOVA and regression, test for the presence

of group-level effects. If F12 ¼ 10, we have 10 times more support that the mean
reaction times are ordered as in H1 compared to the ordering in H2. However, if
an effect is detected at the group level this does not imply that the effect is true for
each individual (Hamaker, 2012). For example, it might be that for part of the
population H1 reflects the true average reaction times well, but that for another
part of the population there is no effect of condition (H0). At the group level, the
conditions appear to have an effect, but this is not true for every individual.
A researcher might not be interested in the average differences between groups, but
in the individual effects (Haaf & Rouder, 2017; Molenaar, 2004). The data can also
be used to analyze hypotheses on a case-by-case level by computing a BF for each
individual. If a researcher is interested in answering the question whether an
informative hypothesis holds for everyone in a sample, he needs to be able to
synthesize the BFs from single-case analyses into an aggregate BF.

Data, model and hypotheses

This section introduces the Time Estimation data set that is used as an example
throughout this chapter. Annotated R code to reproduce the results can be
found on the Open Science Framework (osf.io/am7pr/). The individual-level
model and hypotheses considered for this data set are presented. The first
paragraph introduces the model at the individual level. The next paragraphs
introduce the informative hypotheses considered for the parameters in this
model. The difference between individual and average hypotheses is discussed.
The Time Estimation data set is presented in Van der Ham, Klaassen, Van Schie

and Cuperus (2019). This data set consists of the results of a within-subject
experiment where 29 participants were each exposed to movie clips in two
conditions. In each condition, participants watched 10 movie clips of 7–90 seconds
and rated the emotional valence and arousal on a nine-point Likert scale they
experienced after each clip, and estimated the duration of the clip. The content of
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the movies was chosen such that the set contained a range of levels of arousal and
emotional valence (e.g., starving lion, coconut shells; Van der Ham et al. (2019). Of
the 20 movie clips in total, 10 were presented in the Virtual Reality (VR) condition,
where participants wore a VR headset, and 10 clips were presented in a real life
(RL) scenario in the cinema. The main interest of this experiment is the effect of
condition, valence and arousal on the relative time estimation. That is, the interest is in
the extent to which the mode of watching a clip, its perceived valence and arousal
affect how much duration estimates deviate relative to the true duration.

Individual-level model

Testing whether a hypothesis holds for all individuals requires data to be
collected for multiple individuals and have multiple measurements for each
person to estimate the individual parameters. The example data illustrated in the
previous section has a nested structure. That is, the available measurements are
nested within individuals. For each person i ¼ 1;…; n a complete data set of 20
measurements is available. Since the interest of the research is to measure the
effect of valence, arousal and condition on the relative time estimation, the data are
modelled using the following regression model:

RelTimeEstim ¼ βiintercept þ βiconditionCondition
i
m þ βivalenceValence

i
m

þ βiarousalArousal
i
m þ εim

ð9:2Þ

where the relative time estimation (RelTimeEst) of person i to movie
m ¼ 1;…;M is predicted based on the Condition that movie was presented in
(VR = 0, RL = 1), the rated Valence and the rated Arousal of the movie clip.
By modelling the data for each individual in a separate regression model we can
make predictions at the individual level.

Hypotheses

Hypotheses can be formed for the parameters of any individual model.
A researcher could be interested in testing the null hypothesis

Hi
0 : β

i
condition ¼ βivalence ¼ βiarousal ¼ 0 ð9:3Þ

Note that Hi
0 is the null hypothesis for person i, meaning that n ¼ 29 null hypotheses

can be formulated. The superscript differentiates Hi
0 from the average null hypothesis

H0 : βcondition ¼ βvalence ¼ βarousal ¼ 0 ð9:4Þ

that hypothesizes the average effect of condition, valence and arousal to be all zero.
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A researcher could be interested in whether for all participants Hi
0 is a good

hypothesis. This can be represented in the following so-called For-all hypothesis:

H8i
�ð Þ : H

1
�ð Þ& . . . &Hi

�ð Þ& . . . &HI
�ð Þ ð9:5Þ

where the superscript 8i means that for all i ¼ 1; . . . ; n, the subscript �ð Þ indicates
a common hypothesis number such that the For-all hypothesis H8i

�ð Þ expresses the
expectation that Hi

�ð Þholds for all individuals i.
Van der Ham et al. (2019) were not interested in testing the null hypothesis as

shown in Equation 9.4. Rather, they had formulated three informative hypotheses
about the population regression coefficients. These hypotheses are presented in
the left column of Table 9.1. H1 specifies the expectation that that there is no
effect of condition, while valance and arousal have a positive effect on relative
time estimation, while H2 describes the expectation that all regression coefficients
are positive. Finally, H1c is the complement of H1 and specifies the expectation
that at least one of the regression coefficients for arousal and valence is not
positive or that the effect of condition is different from zero. The equivalent of
these average hypotheses was considered at the individual level. These individual
hypotheses are presented in the right column of Table 9.1. The only difference
with the population level hypotheses is that the hypotheses now concern
individual regression coefficients rather than population regression coefficients.
Summing up, this chapter considers evaluating the same hypothesis at the individual

level over a group of individuals, to evaluate whether a theory holds for everyone.
These hypotheses can take the form of informative hypotheses that are translated
expectations from theories, rather than a standard null or alternative hypothesis.

Individual Bayes factors

Bayesian statistics is well suited to compare multiple hypotheses, whether they
are null hypotheses, unconstrained or informative, like those introduced in the
previous section. A Bayes factor quantifies the relative evidence in the data for

TABLE 9.1 Hypotheses considered for the Time Estimation data. The left column presents
the population hypotheses considered in the original paper by Van der Ham et al. (2019).
The right column presents the equivalence of these hypotheses in subject-specific hypoth-
eses, considered in the current chapter

Population hypotheses Individual hypotheses

H1 : βcondition ¼ 0; βvalence40; βarousal40 Hi
1 : β

i
condition ¼ 0; βivalence4 0; βiarousal40

H2 : βcondition40; βvalence40; βarousal40 Hi
2 : β

i
condition40; βivalence40; βiarousal40

H1c : not H1 Hi
1c : not H

i
1
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two hypotheses (Kass & Raftery, 1995). More specifically, a Bayes factor is the
rate with which the prior beliefs are updated into posterior beliefs, as shown in
Equation 9.1. That is, prior to data collection, a researcher already has
knowledge about the probability of two hypotheses that can be quantified to
express their relative probability. For example, if the researcher expects both
hypotheses to be equally probable before observing the data, the prior ratio is
.5/.5. The prior ratio is updated with data and the resulting Bayes factor then
quantifies how the data influenced this prior knowledge, summing up an
updated ratio. Bayes factors are mostly used to evaluate hypotheses on
population effects (i.e., there are no differences in the average reaction times
between the conditions). In this chapter, the interest is in describing the relative
evidence for two hypotheses for a specific individual. For this purpose, the BF
can be computed per subject. The section ‘Aggregating Bayes factors’
demonstrates how this individual-level evidence can be synthesized.
To analyze individual hypotheses presented in Table 9.1 using BFs, two steps need

to be executed. First, the hypotheses need to be evaluated separately, which is
described in this section. In the next section it is demonstrated how the individual
Bayes factors can be aggregated. For binomial data (e.g., number of successful trials per
condition), a stand-alone Shiny application is also available to evaluate and aggregate
individual-level hypotheses (Klaassen, Zedelius, Veling, Aarts & Hoijtink, 2018).

Analysis

The R (R Core Team, 2013) package bain, developed by Gu, Mulder and
Hoijtink (2017), was used to evaluate informative hypotheses for each person.
All code presented in this chapter is also available on the Open Science
Framework (https://osf.io/am7pr/). To read the data into R the following code
can be used:

#install bain

install.packages(“bain”)

#load bain

library(bain)

Next, the data can be loaded with:

#read data from the online repository

data <- read.table(file = “https://raw.githubusercontent.com/fayette
klaassen/gpbf/master/data.txt”, header = TRUE)

# determine the number of unique ppnrs = the number of cases

N <- length(unique(data$ppnr))

Next, a Bayes factor has to be computed for each person, for the hypotheses in
Table 9.1. The code below first creates an empty list to store the results of each person
in. Inspecting the names() of the data tells us how the variables are stored in R, so
that these names can be used in later functions. A random seed is set to make the
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results replicable. Next, a loop over all subjects is created, such that the data of that
subject is selected. The function bain requires the estimates of the linear model as
input. These are obtained by running the linear regression model lm(), where
TimePerception is predicted by Condition, Valence and Arousal. Finally, the function
bain is executed, where the estimates of the linear model for person i are used to
evaluate the hypotheses provided. The hypotheses can be entered in quotation marks,
separating hypotheses by a semicolon. The names of the variables that were inspected
earlier can be used to refer to the relevant regression coefficients.

# create an empty list to store results

results <- vector(“list”, length = N)

names(data)

## [1] “ppnr” “TimePerception” “Valence” “Arousal”

## [5] “Condition”

set.seed(7561) # seed to create replicable results

for(i in 1:N) {# loop over N individuals

data_i <- data[data$ppnr == i,] #subset data for ppnr == i

fit_i <- lm(formula = TimePerception ~ Condition + Valence + Arousal,

data = data_i) #execute linear model

# save the results of bain analysis.

results[[i]] <- bain(fit_i, “Condition=0 & Valence>0 & Arousal>0;

Condition>0 & Valence>0 & Arousal>0”)

}

Results

To obtain the final results, the code below can be executed. First, looking at the
names of the bain output for the first person tells us there is an object named
fit and a BFmatrix resulting from the analysis. The column labeled ‘BF’ (the
seventh column) of the fit object contains the Bayes factors of each hypothesis,
Hi

1 and Hi
2 in Table 9.1, against their complement (Hi

1c and Hi
2c). The

BFmatrix contains the Bayes factors comparing Hi
1 to Hi

2 and vice versa. The
first row and second column contain the BFi

12.

names(results[[1]]) # view the names of the bain output for first person ([[1]]).

## [1] “fit” “BFmatrix”

## [3] “b” “prior”

## [5] “posterior” “call”

## [7] “model” “hypotheses”

## [9] “independent_restrictions” “estimates”

## [11] “n”
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# view the output of fit and bfmatrix

results[[1]]$fit

## Fit_eq Com_eq Fit_in Com_in Fit Com

## H1 0.691829 1.627527 0.091389727 0.2382186 0.063226065 0.3877072

## H2 1.000000 1.000000 0.003370348 0.1499276 0.003370348 0.1499276

## Hu NA NA NA NA NA NA

## BF PMPa PMPb

## H1 0.16307685 0.878852 0.13755298

## H2 0.01917411 0.121148 0.01896141

## Hu NA NA 0.84348561

results[[1]]$BFmatrix

## H1 H2

## H1 1.0000000 7.254363

## H2 0.1378481 1.000000

To collect the relevant results for all subjects, the following code can be used.
First, an output table is created, with two columns and n rows. Next, a loop
over all persons saves the relevant Bayes factors in this output matrix.

output <- matrix(0, nrow = N, ncol = 2) # create output table with

N rows and 4 columns

colnames(output) <- c(“BF1c”, “BF12”) # name the columns of the

output

for(i in 1:N){# loop over persons

BFtab <- results[[i]]$fit # obtain the fit table of person i

# compute relevant bfs

BF1c <- results[[i]]$fit[1,7]

BF12 <- results[[i]]$BFmatrix[1,2]

# save the 4 bfs in the i-th row of the output matrix

output[i,] <- c(BF1c,BF12)

}

output # view the final output

The individual Bayes factors are presented in Table 9.2. The table shows that
Hi

1 is preferred over Hi
1c for 16 out of 29 subjects, and preferred over Hi

2 for 22
out of 29 subjects. The next step is to synthesize this evidence into an
aggregated BF for H8i

�ð Þ.

Aggregating Bayes factors

Independent Bayes factors can be aggregated into a combined Bayes factor by taking
their product (Klaassen et al., 2018). The interpretation of this product is the evidence
that H1 is preferred over H2 for persons 1;…; n, where n is the number of
individuals. This again shows that the individuals are evaluated separately: their
evidence is combined but kept intact at the individual level. The scale of this product
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depends on the number of observations included and is therefore difficult to compare
from study to study. To make the output comparable over studies, we can take the
geometric mean of the product of Bayes factors, the gPBF. This is the equivalent to an
average, but then for products rather than a sum. The gPBF is the average relative
evidence for two hypotheses in an individual. We can evaluate how many of the
individual Bayes factors describe evidence in favor of the same hypothesis as the gPBF.
This is called the Evidence Rate (ER). The ER is used to evaluate to what extent
individuals indeed come from the same population. If the ER is 1, all individuals show
evidence for the preferred hypothesis by the gPBF. If the ER is (near) 0, almost no

TABLE 9.2 Bayes factors comparing Hi
1 to Hi

1c and to Hi
2 for all

i ¼ 1; . . . ; 29 subjects in the Time Estimation data set. Values above 1 indi-
cate a preference for Hi

1, and values below 1 indicate a preference for Hi
1c and

Hi
2, respectively

i BFi
1c BFi

12

1 0.16 7.25
2 0.96 1.74
3 2.77 1.77
4 0.17 6.97
5 <0.01 <0.01
6 3.25 2.83
7 1.52 2.64
8 8.10 1.57
9 5.48 0.96
10 0.70 9.55
11 0.03 0.01
12 3.66 1.79
13 0.05 8.24
14 0.27 1.02
15 3.71 2.98
16 3.02 3.40
17 0.09 0.20
18 5.39 3.33
19 0.34 4.35
20 1.08 3.36
21 0.08 0.06
22 2.37 1.04
23 1.30 2.43
24 2.50 0.27
25 0.37 6.16
26 2.30 1.87
27 0.80 0.50
28 2.18 2.22
29 1.49 3.12
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individuals show evidence for the preferred hypothesis by the gPBF. Another measure
that can be used to evaluate the geometric mean and the individual Bayes factors is the
Stability Rate (SR). This is the proportion of individual Bayes factors that expresses
evidence for the same hypothesis as the gPBF, but with stronger evidence. This
quantifies the (in)balance of individual Bayes factors. If it is .5, the gPBF is affected
equally by larger a smaller Bayes factors, while if it is close to 1, most cases express
evidence stronger than the mean itself, and only a few cases with relatively weak or
reverse evidence diminish the effect. If the SR is close to 0, this indicates that the
gPBF is determined by a few strong cases, with most other cases expressing weaker
evidence or reverse evidence. Together, these three measures (gPBF, ER and SR)
provide information about how uniform the population can be expected to be with
regard to the considered hypotheses, and what the expected relative evidence is for
a next person.
In what follows it is explained how the evidence of multiple individual Bayes

factors can be aggregated to answer the question ‘Does everyone?’ The results of
the example analysis are presented and interpreted.

Analysis

The individual Bayes factors can then be aggregated using a function available on
the Open Science Framework (https://osf.io/am7pr/). The function requires as
input a matrix with n rows and K columns, where n represents the total of
individuals and K the number of Bayes factors for which the aggregate conclusion
is of interest. The output of the individual analyses created in the previous section
fulfills this requirement and can be used in the function. The output of the
function is a list that contains: a table containing the gPBF for all Bayes factors
considered; the individual Bayes factors used as input; and the sample size n.

gpout <- gPBF(output)

gpout

The function can be applied to any collection of individual Bayes factors. If you
use your own software to compute Bayes factors at the individual level, and create
a matrix of n rows and K columns, the function gPBF()can be applied. This
function computes the geometric product over all n individuals for each of
the m comparisons of interest (for example, m = 3, with BF12 BF1c and BF21). The
ER is computed as the proportion of individual BFs that support the same
hypothesis as the gPBF, and the SR is computed as the proportion of individual BFs
that express stronger evidence than the gPBF.

Results

Table 9.3 presents the gPBF, the ER and the SR for the Time Estimation data.
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The results show that based on the gPBF there is no clear evidence that Hi
1 is

preferred over Hi
1c or H

i
2 for everyone, or vice versa. Specifically, Table 9.3 shows

that gPBF1c ¼ :649, indicating that the average individual evidence is 1.54 times
stronger in favor of Hi

1c compared to Hi
1. The ER for BF8i

1c shows that the
proportion of individual Bayes factors preferring Hi

1c is .448, quantifying the earlier
observation that 44.8% of individual Bayes factors prefer Hi

1c over H
i
1. The SR of

.345 indicates that there are relatively few cases expressing stronger evidence in favor
of Hi

1 than the gPBF. Together with the weak evidence, this indicates that the
hypotheses do not describe the subjects well as a group together. Neither the
informative hypothesis nor its complement can predict the group of subjects
adequately. For the comparison Hi

1 to Hi
2 we find that the gPBF is 1.130, not

indicating a clear preference for either hypothesis. The ER of .759 tells us that most
subjects express support for Hi

1, and the SR of .690 indicates that the gPBF is
influenced somewhat by strong evidence for Hi

2 by some subjects. Indeed, Table 9.2
shows that subjects 5, 11 and 21 express relatively strong evidence for Hi

1 (a factor of
16.67 or higher). The results indicate that the hypotheses considered are not likely to
hold for all subjects. Moreover, it seems possible that while Hi

1 might be a better
description than Hi

2 for some subjects, it clearly does not apply to all individuals.
In the group-level analysis an average preference for H1 over both H1c and H2

was found (Van der Ham et al., 2019). These analyses cannot be compared
thoughtlessly. After all, in the group-level model, individual effects are shrunk to
the average effect and dependent on another. However, we do get some insight
that on average H1 seems to be a good model, while it appears from the individual
analysis to not hold for all individuals. Future research could develop new theories
that might indeed describe all individuals, or try to explain the separation in effects
found in the individual analysis. Perhaps an unmeasured variable explains why for
some individuals Hi

1 is preferred over Hi
2 and for others not.

Conclusion and limitations

This chapter has demonstrated how one can evaluate whether a hypothesis is
supported for all individuals. To answer such question, the geometric Bayes factor
was introduced, which synthesizes the evidence from multiple individuals. The
goal of this chapter is twofold. First, it invites researchers to rethink their own

TABLE 9.3 Geometric mean of the product of individual Bayes factors
(gPBF), Evidence Rate (ER) and Stability Rate (SR) for the comparison of
the For-all hypotheses H8i

1 versus H8i
1c and H8i

2

BF8i
1c BF8i

12

gPBF 0.649 1.130
ER 0.448 0.759
SR 0.345 0.690
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research questions and hypotheses. What is the goal of an experiment? Is it to
show average effects, or demonstrate the iniquitousness of a theory? If an effect,
theory or model holds on average in a population, this is no proof of the
existence of such an effect in any individual specifically. Second, if indeed
a researcher is interested in investigating whether a hypothesis is supported by
everyone, this chapter presents the steps required to analyze this question and
how to draw conclusions. The methodology is easy to use and apply to users
already familiar with Bayesian (order-constrained) hypothesis testing.
The data required for the proposed methodology can also be analyzed with

multilevel models. Multiple measurements are required for each person in
each condition to be able to draw inference about individual effects. In
a multilevel model this data can be modelled, for example, by including
random effects that account for the dependency between individual subjects,
in order to generalize to a population effect. By constraining the individual
effects to be normally distributed around the average effect, a phenomenon
called shrinking occurs: the individual effects are being pulled towards the
mean; see Chapter 5 (Van Erp). A multilevel model can be used to test the
variance of individual effects, but not to evaluate whether a hypothesis applies
to each individual separately. The methodology in this chapter answers
a different question, namely whether the evidence at the individual level is
homogeneous over a sample of individuals.
It is important to keep in mind that the consistency of a Bayes factor depends on

sample size. For the methodology presented in this chapter, that implies that the
number of subjects and measures per condition are both important. The number of
subjects affects the stability of the ER and SR (Klaassen et al., 2018), while the
number of replications affects the consistency of the individual Bayes factors.
Another important consideration is the number of hypotheses to consider in

a comparison. The more hypotheses are considered in a set, the more difficult it
is to find one clear best hypothesis.
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GOING MULTIVARIATE IN CLINICAL
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A Bayesian framework for multiple binary
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Xynthia Kavelaars
DEPARTMENT OF METHODOLOGY AND STATISTICS, TILBURG UNIVERSITY, TILBURG, THE NETHERLANDS

Introduction

Clinical trials often compare a new treatment to standard care or a placebo. If
the collected data provide sufficient evidence that the new treatment is better
than the control treatment, the new treatment is declared superior. Since these
superiority decisions ultimately contribute to a decision about treatment adop-
tion, proper error control is crucial to ensure that better treatments are indeed
selected. Key to regulating decision errors is collecting sufficient information:
A quantity that is often expressed in terms of a minimum number of partici-
pants, or required sample size.
Recruiting sufficiently large samples can be challenging, however. This is espe-

cially true in an era in which medicine is increasingly personalized (Hamburg &
Collins, 2010; Ng, Murray, Levy, & Venter, 2009). Personalization of medicine refers
to the targeting of treatments at specific patient and/or disease characteristics under
the assumption that patients with different (disease) characteristics respond differ-
ently to treatments (Goldberger & Buxton, 2013). Since personalization limits the
target population of the treatment, inclusion and exclusion criteria for trials
become more stringent and the eligible number of participants decreases. This
inherently decreases the sample size of studies conducted with the same resources.
Consequences of small samples may be substantial: Trials may be left underpow-
ered and decisions about superiority might remain inconclusive.
The problem associated with small sample sizes due to stringent inclusion criteria is

illustrated by the CAR-B study (Schimmel, Verhaak, Hanssens, Gehring, & Sits-
koorn, 2018). CAR-B aims to improve treatment for cancer patients with 11–20
metastatic brain tumors (i.e. tumors that originate from another site in the body and
have spread to the brain). These patients have a life expectancy of one or two months



and are currently treated with whole-brain radiation therapy. However, whole-brain
radiation has adverse side effects: The treatment damages brain tissue and results in
severe cognitive impairment. Local radiation of the individual tumors (stereotactic
surgery) is a promising alternative that spares healthy tissue and prevents cognitive
decline without increasing mortality. The protective effect on cognition has been
demonstrated in a related population of patients with fewer brain tumors (Chang
et al., 2009; Yamamoto et al., 2014). However, investigating whether local radiation
reduces side effects in the current target population is difficult: Clinicians are reluctant
to prescribe the alternative treatment and not all referred patients are eligible for par-
ticipation, leaving the researchers unable to recruit the required sample.
To improve decision-making with limited samples, studies such as CAR-B

might combine information from multiple outcomes. The current chapter intro-
duces a Bayesian decision-making framework to combine two binary outcomes.
Since superiority with two outcomes can be defined in multiple ways, several cri-
teria to evaluate treatments are discussed in the “Decision rules” section. Evaluation
of these decision rules requires a statistical analysis procedure that combines the out-
comes. The “Data analysis” section outlines such a multivariate approach for Bayes-
ian analysis of binary outcomes. The proposed decision-making strategy is illustrated
in the “Computation in practice” section, which introduces an online app to ana-
lyze real data (for an online version go to https://utrecht-university.shinyapps.io/
multiple_binary_outcomes/ – for the annotated R code go to https://osf.io/
am7pr/ – and for potential newer versions go to https://github.com/XynthiaKave
laars). Since trials with limited access to participants aim for the smallest sample pos-
sible, the chapter continues with “Sample size considerations” to explain how
interim analyses during the trial may improve efficiency compared to traditional
sample size estimation before running the trial. The “Concluding remarks” section
highlights some extensions of the framework. Throughout the chapter, the com-
parison of local and whole-brain radiation in the CAR-B study serves as an example
with cognitive functioning and quality of life as the outcomes under consideration.

Decision rules

A key element of decision-making is the decision rule: A procedure to decide
whether a treatment is considered superior. When dealing with two outcomes,
superiority can be defined in several ways (Food and Drug Administration,
2017), such as a favorable effect on:

1. The most important outcome (“Single-outcome rule”)
2. Both outcomes (“All rule”)
3. Any of the outcomes (“Any rule”)
4. The sum of outcomes (“Compensatory rule”)

Each of these decision rules weighs the effects of the two outcomes differently.
The Single-outcome rule evaluates the data from one outcome and ignores the
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other outcome in the decision procedure. In the CAR-B study, local radiation
would be the treatment of preference if it impairs cognitive functioning less
than whole-brain radiation, irrespective of the effects on quality of life. The All
rule evaluates both outcomes, and requires favorable effects on each of them.
Compared to whole-brain radiation, more patients should maintain both cogni-
tive functioning and quality of life after local radiation. The Any rule requires
a beneficial effect on at least one outcome and ignores any result on the other
outcome. Local radiation would be considered superior if fewer patients experi-
ence cognitive side effects, a lower quality of life, or both. The Compensatory
rule also requires at least one favorable treatment effect, but the compensatory
mechanism poses a restriction on the second outcome. The new treatment may
perform better, similarly, or even worse than the control treatment on this out-
come, but the rule takes the size of the treatment differences into account to
weigh beneficial and adverse effects. A net advantage on the sum of outcomes is
required, such that several outcome combinations would result in a preference
for local radiation. Superiority is concluded as long as favorable effects on cogni-
tive functioning outweigh unfavorable effects on quality of life or vice versa.
The aforementioned decision rules ultimately lead to a conclusion about the

treatment difference: The new treatment is considered superior if the difference
between the new and the control treatment is larger than zero according to the
decision rule of interest. For each of the decision rules, the corresponding superior-
ity region is plotted in Figure 10.1. These superiority regions graphically represent
how the treatment differences on both individual outcomes should be related to
result in superiority: If the probability that the treatment difference falls in the
marked area is sufficiently large, the treatment would be declared superior.

Selecting a decision rule

The choice for a decision rule should be guided by the researcher’s standard for
superiority. To illustrate this, consider the following situations (see Figure 10.2
for a graphical representation):

1. Local radiation performs better on cognitive functioning as well as quality of life
2. Local radiation performs better on cognitive functioning and similarly on

quality of life
3. Local radiation performs much better on cognitive functioning and slightly

worse on quality of life
4. Local radiation performs slightly better on cognitive functioning and much

worse on quality of life

If outcomes are equally important, most researchers would either (a) set a high
standard and consider local radiation superior if both outcomes demonstrate an
advantage (situation 1), or (b) balance outcomes and consider local radiation
superior if advantages outweigh disadvantages (situations 1–3). Situation 4 is
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unlikely to result in a preference for local radiation, unless cognitive functioning is
much more important than quality of life.
While the All rule applies to the high standard and differentiates situation 1

(superior) from situations 2–4 (not superior), the Compensatory rule balances
results and distinguishes situations 1–3 (superior) from situation 4 (not superior).
The Single and Any rules do not meet these standards and would conclude that
local radiation performs better in all situations, including the fourth. These rules
should be used only when unfavorable effects can safely be ignored in the pres-
ence of a specific (Single rule) or any (Any rule) favorable effect.

Data analysis

To evaluate the decision rules discussed in the previous section, treatment com-
parison requires a procedure to quantify evidence in favor of the new treatment.
The current section introduces the elements of a Bayesian approach to analyze
data from two binary outcomes: likelihood, prior, and posterior distributions.
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Description of the data and specification of the likelihood

Binary data have two values, traditionally labeled as 1 for success and 0 for fail-
ure. In general, success refers to improvement or absence of decline, and failure
indicates the opposite: decline or absence of improvement respectively. Consid-
ering two outcomes together results in two binary responses per participant that
can take four different combinations (see Table 10.1). The patient can have suc-
cesses on both outcomes (xobs11 ); a success on one outcome, but not on the other
(xobs10 or xobs01 ); or failures on both outcomes (xobs00 ). The total number of successes
on a particular outcome equals the sum of simultaneous and separate successes
on that outcome, such that xobs1 ¼ xobs11 þ xobs10 , etc.
The multivariate likelihood of the outcomes is based on the four response fre-

quencies. These four response frequencies reflect (a) the individual success rates,
and (b) the relation between outcomes. The latter serves as an additional source
of information that may contribute to more efficient decision-making (Food and
Drug Administration, 2010).

Specification of prior information

Prior information represents prior beliefs about success rates of individual
treatments as well as the difference between treatments. These prior beliefs
can, for example, incorporate information from comparable studies into the
current one. Prior beliefs about two binary outcomes are quantified by four
prior frequencies, expressed as xprior

11 ; xprior
10 ; xprior

01 , and xprior
00 (Olkin & Trikalinos,

2015). Each of these individual prior frequencies incorporates information
about one of the response frequencies in the data (xobs11 ; x

obs
10 ; x

obs
01 and xobs00 ). Con-

veniently, one can think of these prior observations as an extra dataset, where
the total number of observations in this prior dataset reflects the strength of
the prior beliefs. Strong prior beliefs are translated to many prior observations,
whereas weak prior beliefs can be expressed through small numbers of prior
observations. An uninformative prior specification for the analysis of two binary
outcomes would be a half observation for each response combination, such that
the total number of prior observations equals two (Berger, Bernardo, & Sun,
2015). This specification is also called Jeffrey’s prior and conveys virtually no

TABLE 10.1 Response combinations for two binary outcomes

Outcome 1

Outcome 2

Success Failure Total

Success x11 x10 x1
Failure x01 x00 n� x1
Total x2 n� x2 n
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information about the success rates of individual outcomes or the correlation
between outcomes. If both treatments have this specification, no prior informa-
tion about the treatment difference is provided either.

The posterior distribution

The posterior distribution reflects prior beliefs after they have been updated
with the data and indicate the posterior success rates of individual outcomes in
relation to each other; see also Chapters 1–3 (Miočević, Levy, & Van de
Schoot; Miočević, Levy, & Savord; Van de Schoot, Veen, Smeets, Winter, &
Depaoli). The posterior response frequencies equal the sum of prior and
observed frequencies, such that xpost

11 ¼ xprior
11 þ xobs11 , etc. Examples of posterior

distributions for treatment effects with two outcomes are graphically presented
in Figure 10.2.
Comparison of the two posterior distributions allows for decision-making

about treatment superiority, by quantifying evidence for a relevant treatment
difference as a posterior probability. This posterior probability depends on the
definition of superiority as defined via the decision rule and allows for two
decisions. If the posterior probability exceeds a pre-specified threshold (often
.95 or .99 in clinical trials; Food and Drug Administration, 2010), evidence is
strong enough to consider the treatment superior. If the posterior probability
is lower than the threshold, there is not sufficient evidence to conclude
superiority.

Computation in practice

The online supplement offers a Shiny app to analyze real data using the frame-
work proposed in the previous sections. If the researcher enters the prior
ðxprior

11 ; xprior
10 ; xprior

01 ; xprior
00 Þ and observed ðxobs11 ; x

obs
10 ; x

obs
01 ; x

obs
00 Þ response frequencies for

two treatments, the application:

a. Computes the posterior probability of a treatment difference given the
introduced decision rules

b. Plots the posterior treatment distributions
c. Plots the posterior distribution of the treatment difference
d. Computes the prior, observed and posterior correlations between outcomes

The Shiny app including user guide can be found at https://utrecht-university.
shinyapps.io/multiple_binary_outcomes/ (for the annotated R code and potential
newer versions go to https://github.com/XynthiaKavelaars).
The method and app are illustrated with artificial data from two treatment

distributions with two negatively correlated binary outcome variables (n ¼ 100
cases per treatment). The true success probabilities of the experimental and
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control treatments were .60 and .40 on both outcomes respectively, such that
the experimental treatment performs better on both individual outcomes. The
data were used to quantify evidence in favor of the experimental treatment
according to the different decision rules (Single, Any, All, Compensatory). The
observed response frequencies were entered in the four upper-left cells under
“Experimental treatment” and “Control treatment” in the Data tab (see Figure
10.3). The app subsequently computed the total observed successes and failures
in the margins as well as the observed correlations.
Without any prior knowledge about the treatments or treatment differences,

Jeffrey’s prior served as a prior distribution, such that each response category was
assigned a half observation. After entering the prior frequencies in the Prior tab,
the app provided the successes and failures per outcome and the prior correl-
ation between outcomes (Figure 10.4).
The Treatment distributions tab showed the posterior treatment distributions

and posterior correlations of both treatments (Figure 10.5).

FIGURE 10.3 Screenshot of Data tab

FIGURE 10.4 Screenshot of Prior tab
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The Treatment difference tab (Figure 10.6) presented the distribution of the pos-
terior treatment difference and the evidence in favor of the experimental treat-
ment according to the proposed decision rules.

FIGURE 10.5 Screenshot of Treatment distributions tab

FIGURE 10.6 Screenshot of Treatment difference tab
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Sample size considerations

When the availability of participants is limited, a highly relevant question is how
much data are minimally needed to make a sufficiently powerful decision. Since
the sample size traditionally determines when to stop data collection, researchers
often estimate the required number of participants before running the trial. Effi-
cient a priori sample size estimation is difficult due to uncertainty about one or
multiple treatment differences, regardless of the number of outcomes, since
treatment differences are unknown in advance and need to be estimated. How-
ever, small inaccuracies in their estimation may have important consequences.
Overestimating a treatment difference results in too small a sample to make
a powerful decision, while (limited) underestimation needlessly extends the trial.
In trials with multiple outcomes, the required sample size also depends on the

decision rule as illustrated in Figure 10.7. The figure shows how evidence in
favor of the decision rule under consideration changes for the example data
from the “Computation in practice” section, while increasing the sample size in
steps of one observation per group. Although the posterior probabilities of all
decision rules ultimately approach one and conclude superiority as the data accu-
mulate, different decision rules require different numbers of observations to
arrive at that conclusion. With the data presented in Figure 10.7, the Any rule
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requires fewest observations to cross decision thresholds, followed by the Com-
pensatory and Single outcome rules. The All rule requires the largest sample.
The relative efficiency of decision rules displayed in Figure 10.7 is specific to the

particular scenario, since different relations between outcomes require different
sample sizes to evaluate a specific decision rule (Food and Drug Administration,
2010). To provide an idea of the influence of the correlation between the out-
comes, posterior treatment distributions for three correlation structures are displayed
in Figure 10.8. This influence affects the proportion of overlap between the distri-
bution of the posterior treatment difference and the superiority region of a decision
rule, such that evidence in favor of the new treatment (i.e. posterior probability) as
well as the required sample size to reach the decision threshold differ.
Figure 10.9 illustrates how the amount of evidence for each decision rule depends

on the correlation when treatment differences are identical. The Single rule is not
sensitive to the correlation: The proportion of the difference distribution that over-
laps with the superiority region is similar for each correlation structure. The
required sample size to conclude superiority will be the same. The All rule has
a (slightly) larger proportion of overlap between the distribution of the difference
and the superiority region when the correlation is positive. Compared to negatively
correlated outcomes, the same amount of evidence can thus be obtained with
a smaller sample. The Any and Compensatory rules demonstrate the relationship
between the correlation structure and sample size more clearly. The distribution of
the treatment difference falls completely in the superiority region when outcomes
are negatively correlated (implying a posterior probability of one), while uncorrel-
ated or positively correlated data result in a part of the distribution outside the
superiority region (i.e. a posterior probability below one). The sample size will be
smallest with negatively correlated outcomes.
In summary, several sources of uncertainty complicate a priori sample size

estimation in trials with multiple outcomes: Treatment differences on individual
outcomes, the correlation between outcomes, and the decision rule influence
the required number of observations. The difficulty of accurately estimating the
sample size interferes with the potential efficiency gain of multiple outcomes,
such that a priori sample size estimation may be inadequate with small samples
and multiple outcomes (Rauch & Kieser, 2015).
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Adaptive trial design

To reduce the impact of unknown information on the efficiency of trials the
sample size can be estimated while running the trial, using a method called
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adaptive stopping (Berry, Carlin, Lee, & Muller, 2010). Adaptive stopping per-
forms one or multiple interim analyses and stops the trial as soon as evidence is
conclusive, such that efficiency is optimized. Compared to a priori sample size
estimation, adaptive stopping may result in early trial termination if the treat-
ment difference is larger than expected (i.e. underestimated). If the treatment
difference appears smaller than anticipated (i.e. overestimated) and evidence
remains inconclusive, the trial may be extended beyond the planned sample size.
Adaptive stopping thus forms a flexible alternative that embraces the uncertain-
ties of the traditional a priori estimated sample size (Bauer, Bretz, Dragalin,
König, & Wassmer, 2016; Thorlund, Haggstrom, Park, & Mills, 2018).
Although interim analyses form an attractive approach to improve efficiency,

adaptive trials must be designed carefully (Food and Drug Administration, 2010;
Sanborn & Hills, 2014). The final decision about superiority potentially requires
several interim decisions to evaluate whether evidence is strong enough to draw
a conclusion. Without properly adjusting the design to repeated decision-making,
the risk of falsely concluding superiority (i.e. Type I error) over all decisions is
larger than anticipated, as shown in Figure 10.10 (Sanborn & Hills, 2014). To
keep the Type I error risk over all decisions acceptable, the Type I error rate for
individual decisions must be adjusted (Jennison & Turnbull, 1999). A 5% Type
I error risk over multiple decisions consequentially results in individual decisions
that have a Type I error risk below 5%. The size of the adjustment depends on
the number of interim decisions: More decisions require a larger adjustment of
the Type I error rate for individual decisions (see Figure 10.10).
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FIGURE 10.10 The empirical Type I error probability as a function of the number of
interim analyses for different nmin when the decision threshold is not corrected for the
number of interim analyses. Dashed lines indicate the desired thresholds of α ¼ :05
(posterior probability = .95) and α ¼ :01 (posterior probability = .99)

Going multivariate in clinical trial studies 151



A key element in Type I error control is the decision threshold: the lower
limit for the posterior probability to conclude superiority. The decision thresh-
old equals 1�α, where α is the maximum Type I error probability (Marsman &
Wagenmakers, 2017). A 5% risk of an incorrect superiority decision (α = .05)
results in a minimal posterior probability of .95. A very high threshold might be
attractive to minimize Type I errors, but does not contribute to efficient deci-
sion-making: A larger sample size is required to regulate the chance to detect
a true treatment difference (i.e. to protect power). The decision threshold thus
relates the Type I error and required sample size via the number of interim ana-
lyses (Shi & Yin, 2019). Limiting the number of decisions is key to efficiently
designing an adaptive trial (Jennison & Turnbull, 1999). To this end, the Food
and Drug Administration (2010) recommends balancing the number of interim
analyses with decision error rates, by carefully choosing three design parameters:

1. The sample size to look at the data for the first time (nmin)
2. The number of added participants if the previous analysis did not provide

sufficient evidence (interim group size)
3. The sample size to stop the trial if evidence is not strong enough to con-

clude superiority (nmax)

The sample size at the first interim analysis (nmin) should not be too small for two
reasons. First, a small interim sample size could detect unrealistically large treatment
effects only and needlessly increases the number of interim analyses. Second, very
small samples increase the probability of falsely concluding superiority (Schönbrodt,
Wagenmakers, Zehetleitner, & Perugini, 2017). As shown in Figure 10.7, the poster-
ior probability is unstable with few observations and becomes more stable as the
number of observations increases. Single observations can be influential in small sam-
ples, and this influence diminishes as the sample size increases. A larger nmin automatic-
ally reduces the number of interim analyses as well as the Type I errors and requires
a smaller correction of the decision threshold, as illustrated in Figure 10.10. However,
a too large nmin limits efficiency: Superiority may have been concluded with a smaller
sample and potential participant recruitment is needlessly extended.
If the first interim analysis did not result in conclusive evidence, the sample size

can be increased in several steps. The interim group size of added participants
should be chosen with the inconclusive results of the previous analysis in mind,
such that the new sample provides a reasonable chance of detecting a treatment dif-
ference given the earlier lack of evidence. The number of observations between
interim analyses may be the same throughout the trial, or can differ per interim ana-
lysis if that would benefit the trial’s efficiency. It should be chosen carefully, how-
ever, since too small and too large group sizes both reduce efficiency (Jennison &
Turnbull, 1999). A too small group size needlessly increases the number of interim
analyses, while a too large group size reduces the flexibility to terminate the trial as
soon as the decision criterion has been met.
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Ideally, the sample size to terminate the trial if the data do not provide suffi-
cient evidence for superiority (nmax) equals the sample size that is required to
detect the smallest treatment effect of clinical interest (Food and Drug Adminis-
tration, 2010). In practice, nmax will often be limited by the maximum number
of available participants and may be smaller than optimal, which has the same
consequence as a too small (a priori estimated) sample size: A limited nmax
restricts the power to detect small treatment differences.

Concluding remarks

The current chapter presented a Bayesian framework for decision-making with
multiple outcomes and illustrated how decisions with two outcomes may help
a small sample, when (a) using a decision rule that combines information from
two outcomes efficiently, and (b) designing a trial adaptively. Without giving all
the mathematical details, I have tried to provide a clear intuition to the approach
and software to carry out the analysis.
The proposed approach has several extensions that may accommodate more

realistic decisions. First, more than two outcomes can be included, such that
researchers might weigh treatment differences on three or more relevant aspects.
Increasing the number of outcomes may further improve efficiency, but more
outcomes also increase the complexity of the data analysis.
Second, although equal importance of outcomes was assumed throughout the chap-

ter, unequal importance of outcomes could be incorporated. The Compensatory rule
in particular could be adapted easily to, for example, include survival into a decision;
an outcome that is in many cases more important than cognitive side effects. How-
ever, user-friendly software packages for more outcomes remain to be developed.
Third, the applicability of adaptive designs can be strongly improved with clear

guidelines on the concrete choice of design parameters. Optimal design of interim
analyses is necessary to do justice to the potential flexibility of adaptive trials.
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Introduction

In this chapter we introduce the R package restriktor that enables easy
application of evaluating informative hypotheses. In many psychological fields,
researchers have specific expectations about the relation between the means of
different groups or between (standardized) regression coefficients. For example,
in experimental psychology, it is often tested whether the mean reaction time
increases or decreases for different treatment groups (see, for example, Kofler et al.,
2013). In clinical trials, it is often tested whether a particular treatment is better
or worse than other treatments (see, for example, Roberts, Roberts, Jones, &
Bisson, 2015). In observational studies, researchers often have clear ideas about
whether the direction of the effects is positive or negative (see, for example, Rich-
ardson, Abraham, & Bond, 2012), indicated by symbols like “<” and “>”. Test-
ing such specific expectations directly is known under various names, such as
one-sided testing, order-constrained hypothesis testing, constrained statistical inference, and
informative hypothesis testing. For the remainder of this chapter, we will refer to
this kind of analysis as informative hypothesis testing (IHT; Hoijtink, 2012).
Many applied researchers are already familiar with IHT in the context of the clas-

sical one-sided t-test, where one mean is restricted to be greater or smaller than
a fixed value (e.g., �1 4 0) or another mean (e.g., �1 4 �2). The method of con-
straining parameters readily extends to the AN(C)OVA and multiple regression (e.g.,
linear, logistic, Poisson) setting where more than one constraint can be imposed on
the (adjusted) means or regression coefficients (Silvapulle & Sen, 2005). IHT has



several benefits compared to classical null-hypothesis significance testing (e.g.,
H0 : �1¼ �2 ¼ �3 ¼ �4 against Halt: not all four means are equal). First, testing
specific expectations directly does not require multiple significance tests (Hoijtink,
2012; Klugkist, Van Wesel, & Bullens, 2011; Van de Schoot et al., 2011). In this
way, we avoid an inflated Type I error rate or a decrease in power that results from
corrections of the significance level �. Second, to avoid multiple testing issues with
ordered means, an ANOVA is often combined with contrasts to directly test the spe-
cific pattern. However, contrast tests are not the same as informative hypothesis tests
(Baayen, Klugkist, & Mechsner, 2012). Third, incorporating order constraints in the
analysis will result in substantially more power (e.g., Bartholomew, 1961a, 1961b;
Kuiper & Hoijtink, 2010; Perlman, 1969; Robertson, Wright, & Dykstra, 1988; Van-
brabant, Van de Schoot, & Rosseel, 2015; Van de Schoot & Strohmeier, 2011). Van-
brabant et al. (2015) showed that using ordered means and multiple one-sided
regression coefficients yields adequate power with 50% of the sample size required by
ANOVA and regression (respectively).
Evaluating an informative hypothesis requires two hypothesis tests, which are

in the statistical literature often called hypothesis test Type A and hypothesis test Type
B. Under the null hypothesis test of hypothesis test Type A, only the parameters
(e.g., means or regression coefficients) that are involved in the order-constrained
hypothesis are constrained to be equal (e.g., HA0 : �1 ¼ �2 ¼ �3 ¼ �4) and it is
tested against the order-constrained hypothesis (e.g., HA1 : �15�25�35�4).
For hypothesis test Type B, the null hypothesis states that all restrictions hold in
the population (e.g., HB0 : �15�25�35�4) and it is tested against the hypoth-
esis where no constraints are imposed on the parameters (e.g., HB1: at least one
restriction is violated), although some equality constraints (if present) may be pre-
served under the alternative unconstrained hypothesis. Rejecting the null hypoth-
esis would mean that at least one order constraint is violated. To find evidence in
favor of an order-constrained hypothesis, a combination of hypothesis test Type
B and hypothesis test Type A (in this order) is used. The rationale is that if
hypothesis test Type B is not significant, we do not reject the null hypothesis that
all restrictions hold in the population. However, hypothesis test Type B cannot
make a distinction between inequality and equality constraints. Therefore, if
hypothesis test Type B is not significant, the next step is to evaluate hypothesis
test Type A. If we reject HA0 we can conclude that at least one inequality con-
straint is strictly true. Then, if we combine the evidence of hypothesis test Type
B and hypothesis Type A, we can say that we have found indirect evidence in
favor of (or against) the order-constrained hypothesis.
In the remainder of this chapter, we demonstrate for four examples how to

evaluate informative hypotheses using restriktor. For each example, we show
(1) how to set up the constraint syntax, (2) how to test the informative hypothesis,
and (3) how to interpret the results. In the first example, we impose order con-
straints on the means of a one-way ANOVA model. In the second example, we
impose order constraints on the means of an ANOVA model, where we test
whether the effect size is at least small according to guidelines for Cohen’s d. In the
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third example, we impose order constraints on the standardized regression coeffi-
cients of a linear model. In the fourth example, we impose order constraints on
newly defined parameters; that is, on three covariate-conditional effects of gender
on the outcome variable. To ensure the reproducibility of chapter results, the data
sets for each of the examples are available in the restriktor package. More
information about how to import your own data into R can be found online at
www.restriktor.ugent.be/tutorial/importdata.html. Before we continue with the
examples, we first explain how to get started. The annotated R code described
below can also be found on the Open Science Framework (osf.io/am7pr/).

Getting started

Installing restriktor

To install restriktor, open R, and type:

install.packages(“restriktor”)

If the restriktor package is installed, the package needs to be loaded into
R. This can be done by typing:

library(restriktor)

If the package is loaded, the following startup message should be displayed (note
that the version number 0.2–15 changes in future releases):

## This is restriktor 0.2-15

## restriktor is BETA software! Please report any bugs.

A more detailed description about how to get started with restriktor can be
found online at restriktor.org/gettingstarted.html.

The constraint syntax

The easiest way in restriktor to construct the constraint syntax for factors is to
use the factor-level names (e.g., A, B, C), preceded by the factor name (e.g., Group).
For covariates, we can refer simply by their name. Order constraints are defined via
inequality constraints (<, or >) or by equality constraints (==). The constraint syntax is
enclosed within single quotes. For example, for a simple order-constrained hypothesis
with three means (i.e., H : �1 5 �2 5 �3), the constraint syntax might look as
follows:

myConstraints <-' GroupA < GroupB

GroupB < GroupC '

More information about the constraint syntax can be found online at restrik
tor.org/tutorial/syntax.html.
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Testing the informative hypothesis

In restriktor, the iht() function is used for IHT. The minimal require-
ments for this function are a constraint syntax and a fitted unconstrained model.
In an unconstrained model no (in)equality constraints are imposed on the means
or regression coefficients. Currently, iht() can deal with unconstrained
models of class lm (standard linear model/ANOVA), mlm (multivariate linear
model), rlm (robust linear model) and glm (generalized linear model). By
default, the function uses the F-bar test statistic (Kudô, 1963; Wolak, 1987).
The F-bar statistic is an adapted version of the classical F statistic and can deal
with order constraints. More information about all available options can be
found online at restriktor.org/tutorial/contest.html.

Estimation of the restricted estimates and inference

Instead of testing the informative hypothesis, the (restricted) regression coeffi-
cients/means might be of interest. In this case, the restriktor() function
can be used. The first argument to restriktor() is the fitted unconstrained
linear model. The second argument is the constraint syntax. The output shows
the restricted estimates and the corresponding standard errors, t-test statistics,
two-sided p-values, and the multiple R2. The output also provides information
about the type of computed standard errors. By default, conventional standard
errors are computed but heteroskedastic robust standard errors are also available.
Again, more information about all available options can be found online at
restriktor.org/tutorial/restriktor.html.

Example 1: Ordered-constrained means of a one-way
ANOVA model

In this example, we use the “anger management” data set. These data denote
a person’s decrease in aggression level between week 1 (intake) and week 8 (end
of training) for four different treatment groups of anger management training,
namely (1) no training, (2) physical training, (3) behavioral therapy, and (4)
a combination of physical exercise and behavioral therapy. The purpose of the
study was to test the assumption that the exercises would be associated with
a reduction in the mean aggression levels. In particular, the hypothesis of interest
was H1 : �No5 �Physical ¼ �Behavioral

� �
5�Both. This hypothesis states that the

decrease in aggression levels is smallest for the “no training” group, larger for the
“physical training” and “behavioral therapy” group, with no preference for either
method, and largest in the “combination of physical exercise and behavioral ther-
apy” group (Hoijtink, 2012, pp. 5–6).
In practice, hypothesis H1 is usually evaluated with an ANOVA, where the

null hypothesis H0 : �No ¼ �Physical ¼ �Behavioral ¼ �Both is tested against the
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unconstrained hypothesis Hunc: not all four means are equal. The results from
the global F-test revealed that the four means are not equal (F 4;36ð Þ ¼ 18:62,
p5 :001). At this point, we do not know anything about the ordering of the
means. Therefore, the next step would be to use pairwise comparisons with
corrections for multiple testing (e.g., Bonferroni, Tukey, and FDR). The
results with FDR (False Discovery Rate) adjusted p-values showed three sig-
nificant (p ≤ .05) mean differences (MD), namely between the “Behavioral-
No” exercises (MD ¼ 3:3, p ¼ :001), the “Behavioral-Physical” exercises
(MD ¼ 2:3, p ¼ :018) and the “Both-Physical” exercises (MD ¼ 3:3,
p ¼ :001). A graphical representation of the means is shown in Figure 11.1.
Based on the results of the global F test and the pairwise comparisons, it
would not be an easy task to derive an unequivocal conclusion about hypoth-
esis H1.
In what follows, we show all steps and the restriktor syntax to evaluate

the informative hypothesis H1 directly.

Step 1: Set up the constraint syntax

In R, categorical predictors are represented by “factors”. For example, the
“Group” variable has four factor levels: “No”, “Physical”, “Behavioral”, and
“Both”. In addition, the factor levels are presented in alphabetical order and it may
therefore be convenient to re-order the levels. This can be done in R by typing:
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FIGURE 11.1 Means plot: reduction of aggression levels after eight weeks of anger
management training
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AngerManagement$Group <- factor(AngerManagement$Group,

levels = c("No", "Physical",

"Behavioral",

"Both"))

Next, the constraint syntax for hypothesis H1 might look as follows:

myConstraints1 <- ' GroupNo < GroupPhysical

GroupPhysical == GroupBehavioral

GroupBehavioral < GroupBoth '

Step 2: Test the informative hypothesis

Since an ANOVA model is a special case of the multiple regression model, we
can use the linear model for our ANOVA example. Then, we can fit the
unconstrained linear model as follows:

fit_ANOVA <- lm(Anger ~ -1 + Group, data = AngerManagement)

The tilde ~ is the regression operator. On the left-hand side of the operator we
have the response variable Anger and on the right-hand side we have the
factor Group. We removed the intercept (-1) from the model so that the esti-
mates reflect the group means. Next, we can test the informative hypothesis
using the iht() function. This is done as follows:

iht(fit_ANOVA, myConstraints1)

The first argument to iht() is the fitted unconstrained linear model.
The second argument is the constraint syntax. By default, the function prints an
overview of all available hypothesis tests. The results are shown below. Some
parts are removed due to its length.

Restriktor: restricted hypothesis tests (36 residual degrees of freedom):

Multiple R-squared reduced from 0.674 to 0.608

Constraint matrix:

GroupNo GroupPhysical GroupBehavioral GroupBoth op rhs active

1: 0 1 -1 0 == 0 yes

2: -1 1 0 0 >= 0 no

3: 0 0 -1 1 >= 0 no

Overview of all available hypothesis tests:

Global test: H0: all parameters are restricted to be equal (==)

vs. HA: at least one inequality restriction is strictly true (>)

Test statistic: 25.4061, p-value: <0.0001
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Type A test: H0: all restrictions are equalities (==)

vs. HA: at least one inequality restriction is strictly true (>)

Test statistic: 25.4061, p-value: <0.0001

Type B test: H0: all restrictions hold in the population

vs. HA: at least one restriction is violated

Test statistic: 7.2687, p-value: 0.04518

At the top of the output the constraint matrix is shown. This matrix is constructed
internally based on the text-based constraint syntax but could have been constructed
manually. The constraint matrix is comparable to the contrast matrix but treated dif-
ferently in the constraint framework. The “active” column indicates if a constraint is
violated or not. If no constraints are active, this would mean that all constraints are in
line with the data. In the remainder, an overview of the available hypothesis tests is
given. Information about how to obtain a more detailed output for each hypothesis
test can be found in the help file or online at restriktor.org/tutorial/contest.html.

Step 3: Interpret the results

To evaluate the informative hypothesis H1, we first conduct hypothesis test Type
B. Not rejecting this hypothesis test would mean that the order constraints are in line
with the data. The results from hypothesis test Type B, however, show that hypoth-
esis H1 is rejected in favor of the best-fitting (i.e., unconstrained) hypothesis
(�FB0;1;2;36ð Þ ¼ 7:27, p ¼ :045)1. In other words, the constraints are not supported by
the data and we conclude that the informative hypothesis H1 does not hold.

Estimation of the restricted estimates and inference

Instead of testing the informative hypothesis H1, the restricted means might be
of interest. The restricted means can be computed as follows:

restr_ANOVA <- restriktor(fit_ANOVA, constraints = myConstraints1)

By default, the print() function prints a brief overview of the restricted
means:

print(restr_ANOVA)

Call:

conLM.lm(object = fit_ANOVA, constraints = myConstraints1)

restriktor (0.1-80.711): restricted linear model:

Coefficients:

GroupNo GroupPhysical GroupBehavioral GroupBoth

-0.20 1.95 1.95 4.10
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We can clearly see that the GroupPhysical and the GroupBehavioral
means are constrained to be equal. If desired, a more extensive output can be
requested using the summary() function:

summary(restr_ANOVA)

Call:

conLM.lm(object = fit_ANOVA, constraints = myConstraints1)

Restriktor: restricted linear model:

Residuals:

Min 1Q Median 3Q Max

-3.100 -1.275 -0.025 1.200 5.050

Coefficients:

Estimate Std. Error t value Pr(>|t|)

GroupNo -0.20000 0.65233 -0.3066 0.7609210

GroupPhysical 1.95000 0.46127 4.2275 0.0001544 ***

GroupBehavioral 1.95000 0.46127 4.2275 0.0001544 ***

GroupBoth 4.10000 0.65233 6.2851 2.895e-07 ***

–--

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.0629 on 36 degrees of freedom

Standard errors: standard

Multiple R-squared reduced from 0.674 to 0.608

Generalized Order-Restricted Information Criterion:

Loglik Penalty Goric

-84.1621 2.8918 174.1079

The output shows the restricted group means and the corresponding (standard)
standard errors, t-test statistics and two-sided p-values. The multiple R2 ¼ :674
refers to the unconstrained model and the R2 ¼ :608 refers to the order-
constrained model. The reduction in R2 provides additional evidence that at least
one order constraint is violated. Both R2s are equal only if all constraints are in
line with the data. The last part of the output provides information for model
selection using the generalized order-restricted information criterion (GORIC),
which is a modification of the Akaike information criterion. More information
and an example can be found online at restriktor.org/tutorial/example6.html.

Example 2: Ordered-constrained means with effect sizes

The p-value is not a measure for the size of an effect (Nickerson, 2000). Therefore,
in an AN(C)OVA the question should be whether the differences between the
group means are relevant. To answer this question, the popular effect-size measure
Cohen’s d (Cohen, 1988) can be used, and is given by: d ¼ �max � �minð Þ=�pooled,
where �max is the largest and �min is the smallest of the m means, and �pooled is the
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pooled standard deviation within the populations. According to Cohen, values of
0.2, 0.5, and 0.8 indicate a small, medium, and large effect, respectively.
In this example, we use the Zelazo, Zelazo, and Kolb (1972) data set, which

is available in restriktor. The data consist of ages in months at which
a child starts to walk for four treatment groups. For simplicity we only consider
three treatment groups. The excluded group is the “Control” group. The first
treatment group (“Active”) received a special walking exercise for 12 minutes
per day beginning at the age of one week old and lasting seven weeks.
The second group (“Passive”) received daily exercises but not the special walk-
ing exercises. The third group (“No”) were checked weekly for progress (the
other two groups got daily exercises) but they did not receive any special exer-
cises. The purpose of the study was to test the claim that the walking exercises
are associated with a reduction in the mean age at which children start to walk.
If we ignore the effect sizes, the informative hypothesis can be formulated as:

H2 : �Active5�Passive5�No. The results from hypothesis test Type
B (�FB

0;1;2;14ð Þ ¼ 0, p ¼ 0) and hypothesis test Type A (�FA0;1;2;14ð Þ ¼ 5:978,
p ¼ :028) provide evidence in favor of the informative hypothesis. However,
for practical relevance of the treatments, the mean differences between the
groups should at least indicate a small effect. To answer this question, we refor-
mulate hypothesis H2 such that the effect sizes are included. The pooled within
group standard deviation equals 1.516:

Hd
2 ¼

�Passive��Activeð Þ
1:516

40:2

ð�No� �PassiveÞ
1:516

40:2:

This hypothesis states that we expect at least 0.2 * 1.516 standard deviations
between the means, which indicates a small effect size. Next, we show how to
evaluate this informative hypothesis.

Step 1: Set up the constraint syntax

Again, we use the factor-level names preceded by the factor name to construct
the constraint syntax. The effect sizes can be easily computed within the con-
straint syntax using the arithmetic operator /:

myConstraints2 <- ' (GroupPassive - GroupActive ) / 1.516 > 0.2

(GroupNo - GroupPassive) / 1.516 > 0.2 '

Step 2: Test the informative hypothesis

Since we excluded the “Control” group, we need to take a subset of the ori-
ginal data. The subset() function in R is an easy way to select observations.
This is done in R by typing:
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subData <- subset(ZelazoKolb1972, subset = Group != "Control")

Then, the unconstrained linear model can be fit as follows:

fit_ANOVAd <- lm(Age ~ -1 + Group, data = subData)

Next, we test the informative hypothesis using the fitted unconstrained model
fit_ANOVAd and the constraint syntax myConstraints2:

iht(fit_ANOVAd, constraints = myConstraints2)

Step 3: Interpret the results

The results from hypothesis test Type B (�FB0;1;2;14ð Þ ¼ 0, p ¼ 1) and hypothesis
test Type A (�FA0;1;2;14ð Þ ¼ 3:19, p ¼ :089) show that if we include a small effect
size in the informative hypothesis, the initial significant results become irrele-
vant. This clearly demonstrates the importance of including effect sizes in the
hypothesis.

Example 3: Order-constrained (standardized) linear regression
coefficients

In this example, we show how order constraints can be imposed on the stand-
ardized regression coefficients, denoted by �Z , of a linear model. We use the
“exam” data set, which is available in restriktor. The model relates students’
“exam scores” (“Scores”) to the “averaged point score” (“APS”), the amount of
“study hours” (“Hours”), and “anxiety score” (“Anxiety”). It is hypothesized
that “APS” is the strongest predictor, followed by “study hours” and “anxiety
scores”, respectively. In symbols, this informative hypothesis can be written as
H3 : �Z

APS 4 �Z
Hours 4�Z

Anxiety. Since the hypothesis is in terms of which pre-

dictor is stronger, we should be aware that each predictor has its own scale. To
avoid spurious conclusions, the predictor variables should be standardized first2.
This can be done in R by typing:

Exam$Hours_Z <- (Exam$Hours - mean(Exam$Hours)) / sd(Exam$Hours)

Exam$Anxiety_Z <- (Exam$Anxiety - mean(Exam$Anxiety)) / sd(Exam$Anxiety)

Exam$APS_Z <- (Exam$APS - mean(Exam$APS)) / sd(Exam$APS)

Step 1: Set up the constraint syntax

Then, the constraint syntax corresponding H3 might look as follows:

myConstraints3 <- ' APS_Z > Hours_Z

Hours_Z > Anxiety_Z '
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Step 2: Test the informative hypothesis

Next, we fit the unconstrained linear model. The response variable is “Scores”
and the predictor variables are the three centered covariates:

fit_exam <- lm(Scores ~ APS_Z + Hours_Z + Anxiety_Z,

data = Exam)

The informative hypothesis H3 can be evaluated using the unconstrained
model fit_exam and the constraint syntax myConstraints3:

iht(fit_exam, constraints = myConstraints3)

Step 3: Interpret the results

The results from hypothesis test Type B show that the order-constrained
hypothesis is not rejected in favor of the unconstrained hypothesis

(�FB0;1;2;16ð Þ ¼ 0, p ¼ 1). The results from hypothesis test Type A show that the

null hypothesis is rejected in favor of the order-constrained hypothesis

(�FA0;1;2;16ð Þ ¼ 12:38, p ¼ :003). Thus, we have found strong evidence in favor of

the informative hypothesis H3.

Example 4: Testing order constraints on newly
defined parameters

Here, we show how order constraints can be imposed between newly defined
parameters, e.g., simple slopes. The original data are based on two cohort studies
of children from 0 to 4 and 8 to 18 years old with burns, and their parents (e.g.,
Bakker, Van der Heijden, Van Son, & Van Loey, 2013; Egberts et al., 2016).
Since the original data are not publicly accessible, we simulated data based on
the original model parameters. This simulated data set is available in restriktor.
For illustrative reasons we focus only on the data provided by the mother. For
the current illustration we included five predictor variables in the data set:
a child’s gender (0 = boys, 1 = girls), age, the estimated percentage of the total
body surface area affected by second or third degree burns (“TBSA”), and par-
ental guilt and anger feelings in relation to the burn event. The model relates
post-traumatic stress symptoms (PTSS) to the five predictor variables and can be
written as a linear function:

PTSSi e �intercept þ �1genderi þ �2agei þ �3guilti þ �4angeri þ �5TBSAi

þ �6 genderi � guiltið Þþ�7 genderi � angerið Þ þ �8 genderi �TBSAið Þ þ "i;
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where �intercept is the intercept, �1 to �5 are the regression coefficients for the main
effects, and �6 to �8 are the regression coefficients for the interaction effects.
We hypothesized that the mean difference in PTSS between mothers of girls and

mothers of boys would increase for simultaneously higher levels of guilt, anger, and
TBSA. To test this informative hypothesis, we selected three different settings for
guilt, anger, and TBSA, namely small, medium, and large. For illustrative reasons, for
the small level we chose the values 0, 0, 1 for guilt, anger, and TBSA respectively.
For the medium level we chose the variable means, which are 2.02, 2.06, and 8.35,
respectively, and for the large level we chose 4, 4, and 20, respectively. Then, the
resulting three effects (small, medium, large) can be calculated respectively as follows:

smallEffect ¼ �1 þ �60þ �70þ �81

mediumEffect ¼ �1 þ �62:02þ �72:06þ �88:35

largeEffect ¼ �1 þ �64þ �74þ �820:

Note that each effect reflects a mean difference between boys and girls. Then,
the informative hypothesis can be expressed as:

H4 : smallEffect 5 mediumEffect 5 largeEffect:

Step 1: Set up the constraints syntax

A convenient feature of the restriktor constraint syntax is the option to
define new parameters, which take on values that are an arbitrary function of
the original model parameters. This can be done using the: = operator. In this
way, we can compute the desired effects and impose order constraints among
these effects. Then, the constraint syntax might look as follows:

myConstraints4 <- 'smallEffect := gender + 0*gender.guilt +

0*gender.anger +

1*gender.TBSA

mediumEffect := gender + 2.02*gender.guilt +

2.06*gender.anger +

8.35*gender.TBSA

largeEffect := gender + 4*gender.guilt +

4*gender.anger +

20*gender.TBSA

smallEffect < mediumEffect

mediumEffect < largeEffect'

It is important to note that variable/factor names of the interaction effects in objects
of class lm, rlm, glm, and mlm contain a semi-colon (:) between the variable
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names (e.g., gender:guilt). To use these parameters in the constraint syntax,
the semi-colon must be replaced by a dot (.) (e.g., gender.guilt).

Step 2: Test the informative hypothesis

Based on outlier diagnostics3 we identified 13 outliers (approximately 4.7% of
the data). Therefore, we use robust methods. The unconstrained robust linear
model using MM estimation (Yohai, 1987) can be fitted as follows:

library(MASS)

fit_rburns <- rlm(PTSS ~ gender*guilt + gender*anger +

gender*TBSA + age,

data = Burns, method = "MM")

On the right-hand side of the regression operator (∼) we included the three
interaction effects using the * operator. The main effects are automatically
included. Note that the interaction operator * is not an arithmetic operator as
used in the constraint syntax. Then, the informative hypothesis can be evaluated
as follows:

iht(fit_rburns, constraints = myConstraints4)

Step 3: Interpret the results

The results from hypothesis test Type B (�FBMM 0;1;2;269ð Þ ¼ 0, p ¼ 1) show that
the order-constrained hypothesis is not rejected in favor of the unconstrained
hypothesis. The results from hypothesis test Type A show that the null hypoth-
esis is rejected in favor of the order-constrained hypothesis
(�FAMM 0;1;2;269ð Þ ¼ 5:35, p ¼ :044). Hence, we can conclude that the data provide
enough evidence that the gender effect increases for higher levels of guilt, anger,
and TBSA.
The non-robust results from hypothesis test Type A would have led to

a different conclusion, namely that the null hypothesis would not have been
rejected in favor of the order-constrained hypothesis (�FA0;1;2;269ð Þ ¼ 3:65,
p ¼ :107). This clearly demonstrates that ignoring outliers may result in mis-
leading conclusions.

Conclusion

IHT has been shown to have major benefits compared to classical null-
hypothesis testing. Unfortunately, applied researchers have been unable to use
these methods because user-friendly freeware and a clear tutorial were not avail-
able. Therefore, in this chapter we introduced the user-friendly R package
restriktor for evaluating (robust) informative hypotheses. The procedure
was illustrated using four examples. For each example, we showed how to set
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up the constraint syntax, how to evaluate the informative hypothesis and how to
interpret the results. All results were obtained by the default settings of the soft-
ware package restriktor. If desired, they can readily be adjusted.
We only discussed frequentist methods for evaluating informative hypotheses.

Of course, examples 1–4 could have been evaluated in the Bayesian framework;
see Chapter 12 (Zondervan-Zwijnenburg & Rijshouwer; see also Berger &
Mortera, 1999; Gu, Mulder, Deković, & Hoijtink, 2014; Hoijtink, 2012;
Klugkist, Laudy, & Hoijtink, 2005; Mulder, Hoijtink, & Klugkist, 2010) but we
believe that the frequentist methods are a welcome addition to the applied user’s
toolbox and may help convince applied users unfamiliar with Bayesian statistics
to include order constraints in their hypothesis. In addition, robust IHT as dis-
cussed in this chapter does not seem to exist in the Bayesian framework (yet).
It must be noted that the restriktor package is not finished yet, but it is

already very useful for most users. The package is actively maintained, and new
options are being added. We advise the reader to monitor the restriktor website
(restriktor.org) for updates.

Notes

1 The null distribution is a mixture of F distributions mixed over the degrees of free-
dom. Therefore, in this example, the p-value PrðF � FobsÞ approximately equals
w0PrðF0;36�FobsÞ þ w1PrðF1;36�Fobs=1Þþw2PrðF2;36�Fobs=2Þ, where Pr F0;36 � Fobs

� �
equals 0 by definition. Hence the notation Fð0;1;2;36Þ. w is the level probability,
the probability that the order-constrained maximum likelihood estimates have j levels
(under the null-hypothesis), where m = the number of inactive order constraints; and the
wm sum to 1.

2 Standardized regression coefficients can be obtained by standardizing all the predictor vari-
ables before including them in the model. For example: ZðAPSiÞ ¼ ðAPSi�
meanðAPSÞÞ=sdðAPSÞ, where sd is the standard deviation.

3 The outliers were identified with robust Mahalanobis distances larger than the 99.5%
quantile of a �2

8 distribution.
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Introduction

Concerns about the replicability of studies were expressed as early as in 1979 by
Robert Rosenthal, who believed that future insights would solve this problem.
However, the field of psychological science is still struggling to establish replic-
ability, as was clearly shown with the Reproducibility Project: Psychology
(RPP; Open Science Collaboration, 2015). Increased awareness of the noisiness
of results obtained using small samples is an important step towards improving
this situation (Lindsay, 2015). Results obtained with smaller samples are less
likely to be replicated than those obtained with larger samples (Cohen, 1962).
One of the difficulties in replicating small sample research is that small samples

are particularly sensitive to “researcher degrees of freedom”: decisions that
researchers make in the design and analysis of the data (Simmons, Nelson, &
Simonsohn, 2011). For example, researchers decide to combine categories,
exclude scores, add comparisons, add covariates, or transform measures. Unfor-
tunately, modifications are more common if results do not support the hypoth-
esis. For example, the impact of an extreme score will more often be detected
and adjusted if it causes a non-significant result as compared to a significant
result. With small samples, these decisions can easily affect the significance of
results, leading to inflated false-positive rates (Simmons et al., 2011).
Another issue is publication bias: studies with statistically significant results are

published more often than studies with non-significant results. Small sample
studies are often underpowered, leading to non-significant results and hence



a reduced chance to be published. On the other hand, small studies that do find
significant effects appear impressive and are more likely to be published.
Thus, researcher degrees of freedom and publication bias can lead to overesti-

mation of effects and an inflated false-positive rate in the literature (Simmons
et al., 2011). Small sample findings therefore can easily be spurious, meaning
that their replication is of great importance.
Different replication research questions require different methods. Here, we

distinguish four main research questions that can be investigated if a new study
is conducted to replicate an original study:

1. Is the new effect size similar to the original effect size?
2. Is the new effect size different from the original effect size?
3. Are the new findings different from the original findings?
4. What is the effect size in the population?

Note that questions 1 and 2 differ in where the burden of proof lies. Question 1
looks to provide support for the equality of effect sizes, whereas question 2 is
aimed at falsifying the claim of equality of effect sizes in favor of a conclusion
that the effect size was not replicated.
For all four replication research questions we recommend statistical methods

and apply them to an empirical example. Note that Anderson and Maxwell
(2016) also documented replication research questions and associated methods,
although not specifically for small samples. In the current chapter, we adopt sev-
eral suggestions from Anderson and Maxwell (2016) and add more recent
methods. R-code (R Core Team, 2017) for reproducing all chapter results is
provided as Supplementary Material available on the Open Science Framework
(https://osf.io/am7pr/). We demonstrate the four replication research methods
for the replication of Henderson, De Liver, and Gollwitzer (2008) by Lane and
Gazerian (2016). First, we introduce the original study by Henderson et al. and
its replication by Lane and Gazerian. This is followed by a discussion of the four
replication research questions and their associated methods.

Example: original study and its replication

Henderson et al. (2008) conducted a series of experiments showing that people
who planned the implementation of a chosen goal (i.e., people with an “imple-
mental mind-set”) have stronger attitudes, even towards topics unrelated to their
actions. Experiment 5 is the one that was replicated by Lane and Gazerian
(2016). It is designed to demonstrate that a focus on information that supports
the previously made decision is the reason that attitude strength increases with
an implemental mind-set. The experiment included three conditions with 46
participants in total. The first condition was a neutral condition in which partici-
pants described things they did on a typical day. The second condition was an
implemental one-sided focus condition. Participants in this condition chose
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a romantic topic to write about and wrote down three reasons for that choice.
The third condition was the implemental two-sided focus condition in which
participants made their choice and wrote down three reasons for and three
reasons against this choice. Afterwards, participants in all conditions answered
three questions rating their attitude ambivalence with respect to the issue of
making public a list with names of convicted sex offenders (e.g., “I have strong
mixed emotions both for and against making the list of convicted sex offenders
available to the general public rather than just the police”).
The descriptive statistics of the data from the experiment by Henderson et al.

(2008) are provided in Table 12.1. The effect of the conditions on attitude ambiva-
lence was significant, using an alpha value of .05, as Henderson et al. report:
F 2; 43ð Þ ¼ 3:36, p ¼ :044, η2 ¼ :13, ω2 ¼ :09, r ¼ :26. We have added the effect
size ω2, because it is less biased than effect size η2 for small samples (Okada, 2013).
Furthermore, we also computed the effect size r as used in the RPP as an additional
effect size measure (see Appendix 3 of the RRP available at osf.io/z7aux). Assuming
that all predictors (i.e., the dummy condition variables) contributed equally to the
explained variance, r2 is the explained variance per predictor, and r is the correlation
coefficient per predictor. If the conditions did not contribute equally, r2 and r are the
average explained variance or correlation coefficient per condition.
Post hoc comparisons revealed that the implemental mind-set, one-sided

group demonstrated significantly lower amounts of ambivalence compared to
the implemental mind-set, two-sided, group: t 28ð Þ ¼ 2:45, p ¼ :021, Cohen’s
d ¼ :93, Hedges’ g ¼ :50. For the t-test we added Hedges’ g to correct for an
upward bias that Cohen’s d shows with small samples. Hedges’ g is obtained by
multiplying Cohen’s d by the correction factor (1� 3

4df�1Þ (Hedges, 1981). The
mean of the neutral mind-set group was in the middle, but it was not signifi-
cantly higher or lower than the means of other conditions (see descriptive statis-
tics in Table 12.1). Henderson et al. (2008) write: “Critically, the findings
showed that it was the evaluatively one-sided analysis of information, rather
than simply the act of deciding itself, that fostered a spillover of decreased
ambivalence” (pp. 406–407).
Lane and Gazerian (2016) replicated the experiment with 70 participants, but

found no significant effect of condition on ambivalence: F 2; 67ð Þ ¼ 1:70, p ¼ :191,

TABLE 12.1 Descriptive statistics for confirmatory information processing from the original
study: Henderson et al. (2008), and the new study: Lane and Gazerian (2016)

Neutral One-sided implemental Two-sided implemental

n μ (SD) n μ (SD) n μ (SD)

Original 16 1.23 (1.64) 15 0.16 (1.85) 15 1.82 (1.86)
New 24 -0.38 (1.44) 23 -0.14 (1.66) 23 0.39 (1.25)
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η2 ¼ :05, ω2 ¼ :02, r ¼ :16 (see also the descriptive statistics in Table 12.1). The
post hoc difference test between the one-sided and two-sided implemental mind-set
groups was not significant either: t 44ð Þ ¼ 1:24, p ¼ :222, Cohen’s d ¼ :36, Hedges’
g ¼ :25. Based on the lack of significance in the new study, Lane and Gazerian con-
clude that the effect may not replicate.

Four replication methods

Evaluating the significance (and direction) of the effect in the new study and using
it as a measure for replication, as was a main method of Lane and Gazerian, is called
“vote-counting”. Vote-counting, however, does not take into account the magni-
tude of the differences between effect sizes (Simonsohn, 2015), it is not a statistical
test of replication (Anderson & Maxwell, 2016; Verhagen & Wagenmakers, 2014),
and it leads to misleading conclusions in underpowered replication studies (Simon-
sohn, 2015). Thus, vote-counting is a poor method to assess replication. In the fol-
lowing, we discuss four alternative replication research questions and methods.

Question 1: Is the new effect size similar to the original effect size?

A frequentist approach to this replication research question is the equivalence
test (e.g., Walker & Nowacki, 2011). This test requires the researcher to specify
a region of equivalence for the difference between the original and new effect
size. If the confidence interval of the difference between effects falls entirely
within this region, the effect sizes are considered equivalent. However, it is diffi-
cult to set a region of equivalence that is reasonably limited while at the same
time the confidence interval for the difference between effects has a chance to
entirely fit within the interval. Therefore, we do not elaborate on the equiva-
lence test and focus instead on Bayesian approaches.
To evaluate whether the new effect size is similar to the original effect size,

we can compute a Bayes factor (BF; Jeffreys, 1961); see also Chapter 9 (Klaas-
sen). A BF expresses the shift in belief, relative to our prior belief, after observ-
ing the data for two competing hypotheses. A BF of 1 is undecided. BFs smaller
than 1 indicate preference for the null hypothesis, whereas BFs larger than 1
favor the alternative hypothesis. The two competing hypotheses in the BF can
be operationalized in many ways, but in the replication setting, one of the
evaluated hypotheses is often the null effect (i.e., the effect size is zero). To
evaluate the current research question, a proper alternative hypothesis is that the
effect in the new study is similar to the effect in the original study (Harms,
2018a; Ly, Etz, Marsman, & Wagenmakers, 2018; Verhagen & Wagenmakers,
2014). In this case, the BF evaluates whether the new study is closer to a null
effect, or closer to the original effect, where the original effect forms the prior
distribution in the BF for the new effect. Verhagen and Wagenmakers (2014)
developed this BF for the t-test. Harms (2018a) extended the Replication BF to
the ANOVA F-test and developed the ReplicationBF R package to
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compute it based on the sample sizes and test statistics of the original and new
study. For the ANOVA by Henderson et al. (2008) replicated by Lane and
Gazerian (2016), we obtain a Replication BF of 0.421, which means that the evi-
dence for the null hypothesis of no effect is 2.40 (i.e., 1/0.42) times stronger than
the evidence for the alternative hypothesis that the effect is similar to that in the
original study. See Figure 12.1 for a visualization by the ReplicationBF
package. The R package also includes the Replication BF for t-tests as proposed
by Verhagen and Wagenmakers (2014). For the post hoc t-test we find
a Replication BF of .72, which is again in favor of a null effect. Thus, the
Replication BF does not support replication of the omnibus ANOVA effect, nor
does it support the replication of the post hoc result that the one-sided mind-set
group scores lower on ambivalence than the two-sided mind-set group.
Ly et al. (2018) provided a simple calculation to obtain the Replication BF by

Verhagen and Wagenmakers (2014) for all models for which a BF can be
obtained: Evidence Updating (EU) Replication

BF ¼ BF combined data
BF original data

ð12:1Þ

This calculation (12.1) assumes, however, that the data are exchangeable (see
Chapter 2 for a discussion on exchangeability; Miočević, Levy, & Savord). If
the original and new study are not based on the same population, the com-
bined data may demonstrate artificially inflated variances due to different
means and standard deviations. To minimize the impact of non-exchangeable
datasets, Ly et al. (2018) suggest transforming the data. Here, the grand mean
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FIGURE 12.1 The Replication BF by Harms (2018a). The original study is the prior
for the effect size and the replication study is the posterior based on that prior and the
new study. The ratio of the two distributions at 0 on the x-axis is the Replication BF
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in Henderson et al. (2008) is actually 1.03 points higher than the grand mean
in Lane and Gazerian (2016). To address this issue, we converted the responses
to Z-scores.
To compute the BFs for the combined and original datasets, we can use the

point-and-click software JASP (JASP Team, 2018) or the BayesFactor
package (Morey & Rouder, 2018) in R. For both software packages, the BF for
the combined data is 1.50, and the BF for the original data is 1.59. Hence, the
EU Replication BF = 1.50/1.59 = .94, which favors the ANOVA null hypoth-
esis that the effect is zero. For the post hoc analysis with the alternative hypoth-
esis that the one-sided mind-set group scores lower than the two-sided mind-set
group, the BF for the combined data is 6.66 (see Figure 12.2 for the accom-
panying JASP plot) and the BF for the original data is 5.81. Hence, the EU
Replication BF = 6.66/5.81 = 1.15 for the replication of the original effect.
Thus, the EU Replication BF is ambiguous about the replication of the omnibus
ANOVA effect (i.e., BF = .94), nor does it provide strong support for the repli-
cation of the post hoc result.
Note that the BFs according to the method presented in Ly et al. (2018) are

higher than those calculated by the ReplicationBF package by Harms (2018b),
even though both are extensions of Verhagen and Wagenmakers (2014). Harms
(2018a) and Ly et al. (2018) discuss several differences between both approaches: (1)

FIGURE 12.2 BF with default prior settings in the combined data for the one-sided t-test.
The ratio of the two distributions at 0 on the x-axis is the BF
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both methods use different priors (i.e., uniform in ReplicationBF R package,
Cauchy in JASP and the BayesFactor R package), (2) the EU Replication BF
assumes exchangeability to compute the BF for the combined data, and (3) for
ANOVA models the BF computed in the ReplicationBF package is based on
the sample size and test statistics, whereas JASP and the BayesFactor package use
a more elaborate model that involves the full dataset(s). JASP currently also has
a Summary Statistics module for t-tests, regression analyses, and analyses of frequen-
cies. Whenever possible, we recommend applying both methods to obtain a more
robust evaluation of replication.

Question 2: Is the new effect size different from the original effect size?

To test whether the new effect size is different from the effect size in the ori-
ginal study, we would preferably compute a confidence interval for the differ-
ence in effect sizes. The literature does not provide such an interval for η2 or
ω2. However, with an iterative procedure based on descriptive statistics we can
obtain separate confidence intervals for ω2 in the original and new study (Stei-
ger, 2004). Let us denote the original study with subscript original, and the new
study with subscript new. For the original study ω2

original ¼ :09, 95% CI [.00, .30]
(see Supplementary Materials for all calculations). For the new study ω2

new ¼ :02,
95% CI [.00, .22]. With these confidence intervals, we can calculate
a confidence interval for the difference between both effect sizes, Dω2, by
applying the modified asymmetric method introduced by Zou (2007) for correl-
ations and squared correlations. This method takes into account that some effect
sizes have asymmetric distributions or cannot take on negative values (such as
ω2). Dω2 ¼ :07, 95% CI [-.15, .29]. Since zero is in the confidence interval of
the difference between the effect sizes, we do not reject the hypothesis that the
effect sizes are equal, and thus we retain the hypothesis that the new effect repli-
cates the original one.
For the post hoc difference between the one-sided and two-sided implemental

conditions we can compute the 95% confidence interval for standardized mean
differences (i.e., Cohen’s doriginal ¼ :93 and Cohen’s dnew ¼ :36) as given in Bonett
(2009) and included in the Supplementary Materials. The difference between
Cohen’s d for both studies is .57, 95% CI [-0.96, 2.10]. Since zero lies in the
confidence interval, we do not reject replication of the original effect size.
Alternatively, Patil, Peng, and Leek (2016) describe how non-replication of

an effect size can be tested with a prediction interval. A 95% prediction interval
aims to include the (effect size) estimate in the next study for 95% of the repli-
cations. Patil and colleagues (see Supplementary Materials) apply this method on
r as calculated in the RPP. Following their methods, we find that the prediction
interval for roriginal ¼ :26 ranges from -.12 to .57. The estimate for the new
study, rnew ¼ :16, lies within the interval of estimates that are expected given
replication (i.e., -0.12 to 0.57). Hence, we do not reject replication of the ori-
ginal effect size. Note that Patil et al. apply their method on r, which is
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considered problematic when r is based on more than two groups (see, for
example, Appendix 3 at osf.io/z7aux). The post hoc t-test value of roriginal is .42
with a prediction interval ranging from -0.03 to 0.73. For the new
study, rnew ¼ :18. Again, the correlation estimate for the new study lies within
the prediction interval, and we do not reject the hypothesis that the original
effect has been replicated.
The confidence intervals for the difference between effect sizes and the pre-

diction intervals in this example can be considered to be quite wide. If the study
results are uncertain (i.e., based on small samples), the associated confidence and
prediction intervals will less often reject replication of the original effect size.
However, especially with small studies, a failure to reject replication does not
necessarily imply replication, but rather a lack of power, which suggests that the
above methods may be inadequate for small samples.

Question 3: Are the new findings different from the original findings?

In contrast to the first two replication research questions which concerned effect
sizes, the current question concerns study findings in general. The prior predict-
ive p-value can be used to answer this question (Box, 1980; Zondervan-
Zwijnenburg, Van de Schoot, & Hoijtink, 2019). The calculation of the prior
predictive p-value starts with the simulation of datasets from the predictive dis-
tribution (with the sample size used in the new study) that are to be expected,
given the original results. Subsequently, the new observed data from the replica-
tion attempt are compared to the predicted data with respect to relevant findings
as summarized in HRF . This hypothesis includes the relevant findings of the original
study in an informative hypothesis (Hoijtink, 2012) and can include the ordering of
parameters (e.g., μ14 μ2), the sign of parameters (e.g., μ1 4 0; μ2 5 0), or the
exact value of parameters (e.g., μ1 ¼ 3; μ2 ¼ �2). Any combination of constraints
is possible. The deviation from the hypothesis for each of the predicted datasets and
for the new dataset is expressed in the statistic that we call �F. Lower �F values
indicate a better fit with the relevant features specified in HRF . With α ¼ :05,
replication of the study findings is rejected if the misfit with HRF in the new
study is equal to or higher than in the extreme 5% of the predicted data. All com-
putations can be conducted in an online interactive application presented at osf.io
/6h8x3 or with the ANOVAreplication R package (Zondervan-Zwijnenburg,
2018). The online application (utrecht-university.shinyapps.io/anovareplication)
and R package can take either raw data or summary statistics and sample sizes
as input.
The results and conclusion of Henderson et al. (2008) lead to the

following: HRF : μOne�sided implemental 5 ðμTwo�sided implemental; μNeutralÞ; Cohen’s
dOne�sided implemental; Two�sided implemental 4 :8.
If we run the test, we find that the prior predictive p-value = .130. Hence,

we do not reject replication of the original study findings. Figure 12.3 shows
the statistic �F for each of the predicted datasets and the replication by Lane and
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Gazerian (2016). Note that we do not have to run a post hoc analysis with this
method, because the conclusion for the post hoc contrast was incorporated in
HRF with “Cohen’s dOne�sided implemental; Two�sided implemental4 :8”. For the prior
predictive p-value, an original study with large standard errors (e.g., due to
a small sample) leads to a wide variety of predicted datasets, thus making it hard to
reject replication of the original study conclusions. With the ANOVAreplication
R package we can calculate the power to reject replication when all means would be
equal in the new study. Here, the statistical power was only .66, which means that
the probability that we do not reject replication incorrectly (i.e., a Type II error) is
1-.66=.34. When we calculate the required sample size to obtain sufficient power,
we find that a sample size of 41 per group would be required to reject replication of
HRF in a sample with equal group means.

Question 4: What is the effect size in the population?

At the end of the day, most researchers are concerned with the effect in the
population. To determine the population effect based on an original and new
study, numerous meta-analytic procedures have been proposed. For close repli-
cations, the fixed-effect meta-analysis can be used, which assumes that there is
one underlying population from which both studies are random samples. Conse-
quently, there is only one underlying true effect size. However, the standard
fixed-effect meta-analysis does not take publication bias into account. As
a result, standard fixed-effect meta-analyses overestimate effect sizes.
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FIGURE 12.3 Prior predictive p-value. The histogram concerns �F scores for each of the
10,000 predicted datasets with respect to the replication hypothesis. The thick black
line represents the 5,805 predicted datasets that had an �F-score of exactly 0 and were
perfectly in line with the replication hypothesis. The red line indicates the �F-score of
2.20 for the new study. The �F score for the new data is positioned in the extreme
13.0% of the predicted data (prior predictive p = .130)
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The frequentist hybrid meta-analysis (Van Aert & Van Assen, 2017b), and the
Bayesian snapshot hybrid method (Van Aert & Van Assen, 2017a) are two meta-
analytic methods developed for situations with a single replication effort that
take into account the significance of the original study (which could be caused
by publication bias). Both methods are part of the puniform R package (Van
Aert, 2018) and available as online interactive applications. The required input
are descriptive statistics and effect sizes. The frequentist hybrid meta-analysis
results in a corrected meta-analytic effect size and its associated confidence inter-
val and p-value. The output also includes the results of a standard fixed-effect
meta-analysis for comparison. The Bayesian snapshot hybrid method quantifies
the relative support, given the original and replication study, for four effect size
categories: zero, small, medium, and large. Currently, both methods can be used
for correlations and t-tests. However, the correlation for the original ANOVA
as computed by the RPP cannot be used for the meta-analytic methods, because
its standard error cannot be computed for more than two groups.
For the post hoc t-test results of Henderson et al. (2008) and Lane and Gazer-

ian (2016), the bias-corrected Hedges’ g is .37, 95% CI [-0.48, 0.94], p ¼ :232.
Thus, we cannot reject the hypothesis that the effect in the population is zero.
The standard (uncorrected) fixed-effect meta-analytic estimate was .60, 95% CI
[0.12,1.07], p ¼ :014. Whereas the fixed-effect meta-analytic effect sizes was sig-
nificant at α ¼ :05, the hybrid meta-analysis effect size is lower and has a wider
95% confidence interval. The snapshot hybrid method with equal prior prob-
abilities for the four effect size categories indicated that a small effect size
received the highest support (37.8%), followed by no effect size (30.2%),
a medium effect size (25.5%), and a large effect size (6.6%).
Besides meta-analyses that take significance of the original study into account,

we can also calculate the BF for an effect versus no effect, based on the scaled
combined data using JASP. The BF in favor of an ANOVA effect is 1.50. The
BF in favor of a post hoc t-test effect is 6.66. Hence, the evidence in the com-
bined data is positive with respect to the existence of an effect. Note that this
combined analysis does not correct for publication bias and assumes exchangeability.
Alternatively, Etz and Vandekerckhove (2016) developed a BF for t-tests, univariate
F-tests (i.e., for up to two groups), and univariate regression analyses that takes into
account publication bias, but unfortunately this BF has only been developed for the
MATLAB software package, which is not commonly used in the social sciences and
will not be described further.

Discussion

In this chapter, we presented replication research questions and associated statis-
tical techniques. In the example we used, the replication BFs pointed mostly
towards a null effect instead of a replication of the original effect; the confidence
intervals around the difference between effect sizes indicated that the difference
between the original and new study may be zero, but that they had low power;
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the prior predictive p-value demonstrated non-replication of the original study
conclusions; and meta-analyses indicated that the population effect is small, anec-
dotal, or not significantly different from zero.
We also discussed how the different methods perform with small samples. BFs

and the Bayesian snapshot meta-analysis have the advantage over null-hypothesis
significance testing (NHST) methods (e.g., confidence intervals and the prior
predictive p-value) that they cannot be underpowered. The evidence by the BF
may not be overwhelming, but at least it indicates the relative plausibility of one
hypothesis over the other after observing the data. With additional data and
Bayesian updating methods (see also Chapter 9), the evidence can become more
convincing. NHST methods, on the other hand, often result in non-significant
findings with small samples, and it remains unclear whether the (non)replication
effect was absent, or whether the analysis was underpowered.
An advantage of the prior predictive p-value is that it allows the user to test

the replication of the original study findings summarized in HRF . This hypoth-
esis can include multiple parameters, and it can convey information on their size
and ordering. In the ANOVA setting, the effect size (e.g., η2) does not provide
information about the direction of the effect. Hence, it is useful to evaluate rele-
vant features that can cover the ordering of group means.
The preferred method to test replication depends on the replication research ques-

tion at hand. Furthermore, given a replication research question, it can be insightful
to apply multiple methods to test replication (Harms, 2018a). Testing replication
yields more meaningful results with larger sample sizes, and this holds for all methods
described in this chapter. Testing replication of small sample research is challenging,
but since small samples are more susceptible to researcher degrees of freedom, it is of
utmost importance to critically evaluate small sample results with replication studies.
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1 We report BF up to two decimal places, but use all available information for calculations.
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SMALL SAMPLE META-ANALYSES
Exploring heterogeneity using MetaForest
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Introduction

Meta-analysis is the act of statistically summarizing the findings of several studies
on a single topic (Borenstein, Hedges, Higgins, & Rothstein, 2009). Some con-
sider meta-analyses to be the golden standard of scientific evidence (Crocetti,
2016). This reputation is not entirely deserved, however, as meta-analysis comes
with its own pitfalls. One of these is that meta-analyses often present a small
sample problem. The fact that each of the studies included in the meta-analysis
is based on a larger sample of participants does not mean that the problem of
small sample sizes is any less relevant than in primary research. Particularly in the
social sciences, the number of studies on any topic is typically low, because con-
ducting research is cost- and time-intensive. In an investigation of 705 psycho-
logical meta-analyses, the median number of studies was 12 (Van Erp, Verhagen,
Grasman, & Wagenmakers, 2017), and in 14 meta-analyses from education sci-
ence, the median number of studies was 44 (De Jonge & Jak, 2018). Small
sample sizes thus appear to be the rule, rather than the exception.
The issue of small sample sizes is compounded by a related challenge:

Between-studies heterogeneity (Higgins & Thompson, 2002). Differences
between the studies can introduce heterogeneity in the effect sizes found. These
two problems are related, because small samples have limited statistical power to
adequately account for sources of between-studies heterogeneity. In this chapter,
I discuss how the related problems of small sample sizes and between-studies
heterogeneity can be overcome using MetaForest: A machine-learning-based
approach to identify relevant moderators in meta-analysis (Van Lissa, 2017).
After presenting the general principles underlying this technique, I provide
a tutorial example for conducting a small sample meta-analysis, using the
R package metaforest (Van Lissa, 2018).



Models for meta-analysis

Classic meta-analysis can be conceptualized as a weighted average of study effect
sizes, where studies with a larger sample accrue greater weight. The simplest
statistical model used to assign these weights is the so-called fixed-effect model
(Hedges & Vevea, 1998). The fixed-effect model does not account for between-
studies heterogeneity. This model assumes that all studies tap into one true effect
size (T ), and that any differences between observed effect sizes are due to sam-
pling error. This assumption is probably valid when the included studies are
very close replications.
In most cases, however, this assumption is too restrictive, and we assume that

some between-studies heterogeneity exists. If we can assume that the heterogen-
eity is “random”, or normally distributed, we can use a random-effects model,
which assumes that each study taps into an underlying (normal) distribution of
true effect sizes (Hedges & Vevea, 1998). The random-effects model estimates
the mean and standard deviation of this distribution. This model is the appropri-
ate choice if the studies are similar (e.g., replications from different labs), but
some small unknown random differences might have crept in. In the random-
effects model, the weight accorded to each effect size is no longer purely based
on its sample size – it is also based on the estimated between-studies heterogen-
eity. In the hypothetical case that the between-studies heterogeneity is estimated
to be zero, the weights are the same as in the fixed-effect model. When hetero-
geneity is larger, however, the study weights are adjusted to be more equal,
because each study now conveys some information about a different area of the
underlying distribution of effect sizes. If the between-studies heterogeneity
would be huge, all studies would be weighted equally.

Between-studies heterogeneity

A common application of meta-analysis in the social sciences is to summarize
a diverse body of literature on a specific topic. The literature typically covers similar
research questions, investigated in different laboratories, using different methods,
instruments, and samples (Maxwell, Lau, & Howard, 2015). The assumption of the
random-effects model, that there is one underlying normal distribution of true
effect sizes, likely breaks down in such cases (Hedges & Vevea, 1998), because these
between-studies differences might introduce heterogeneity in the effect sizes.
Researchers can account for between-studies differences by coding them as mod-

erator variables, and controlling for their influence using meta-regression (Higgins &
Thompson, 2004). Similar to classic regression, meta-regression posits that the out-
come – in this case, the effect size of a study – is a function of the value of the
moderators for that study. Both the fixed-effects and random-effects model can be
extended to meta-regression. The advantage of coding between-studies differences
as moderators, rather than using them as exclusion criteria, is that all studies can be
included, as long as any differences are controlled for using meta-regression.
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Too many moderators

Like any regression-based technique, meta-regression requires relatively many
cases per parameter (Guolo & Varin, 2017). But in heterogeneous fields of
research, there are often many potential moderators. We typically do not know
beforehand which moderators will affect the effect size found. If we just include
all moderators in a meta-regression, we risk overfitting the data (Higgins &
Thompson, 2004). Overfitting means that the model fits the observed data very
well, but does not generalize to new data, or the population (Hastie, Tibshirani,
& Friedman, 2009). This is because it captures noise in the data, not just genu-
ine effects. The more moderators are included, the more prone a model
becomes to overfitting.
The problem of small samples is compounded by the existence of between-

studies differences that could potentially influence the effect size of a study. The
more potential moderators, the larger the sample that would be required to
adequately account for their influence. Moreover, these two problems tend to
go hand in hand. When there is a small body of literature on a given topic, it
tends to be comprised of idiosyncratic studies.

How to deal with moderators?

Based on my experience as a statistical consultant, I have found that the ques-
tion of how to deal with moderators is one of the most common challenges
researchers face when conducting a meta-analysis. One common approach
appears to be to diligently code moderators, but then omit them from the
analysis. Most data sets I have requested from authors of published meta-
analyses contained more moderators than discussed in the paper. In one
extreme case, a meta-analysis of 180 studies reported a single moderator,
whereas the raw data set contained over 190 moderators – more variables
than studies. Of course, the problem of having many potentially relevant
moderators is not resolved by failing to report them. They will introduce
between-studies heterogeneity regardless. It is unlikely that this selective
reporting is ill-intentioned, as I have found most authors of meta-analyses to
be very willing to share their data. A more likely explanation is that authors
lack concrete guidelines on how to whittle down the list of potential moder-
ators to a manageable number.
A second common practice appears to be to preselect moderators using uni-

variate meta-regressions, and to retain those whose p-value falls below a certain
threshold. This is problematic, as (1) the p-value is not a measure of variable
importance, (2) repeated tests inflate the risk of false positive results, and (3)
coefficients in the model are interdependent, and omitting one moderator can
influence the effect of others. Another approach is to run a model including all
moderators, and then eliminate non-significant ones. This is problematic for all
but the second aforementioned reasons. Additionally, when the number of
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moderators is relatively large compared to the number of studies included, the
risk of overfitting increases.

A method for exploratory moderator selection

What is needed is a technique that can explore between-studies heterogeneity
and perform variable selection, identifying relevant moderators from a larger set
of candidates, without succumbing to overfitting. The recently developed Meta-
Forest algorithm meets these requirements (Van Lissa, 2017). MetaForest is an
adaptation of the random forest algorithm (Breiman, 2001; Strobl, Malley, &
Tutz, 2009) for meta-analysis. Random forests are a powerful machine learning
algorithm for regression problems, with several advantages over linear regression.
First, random forests are robust to overfitting. Second, they are non-parametric,
and can inherently capture non-linear relationships between the moderator and
effect size, or even complex, higher-order interactions between moderators.
Third, they perform variable selection, identifying which moderators contribute
most strongly to the effect size found.

Understanding random forests

The random forest algorithm combines many tree models (Hastie et al., 2009).
A tree model can be conceptualized as a decision tree, or a flowchart: Starting
with the full data set, the model splits the data into two groups. The splitting
decision is based on the moderator variables; the model finds a moderator vari-
able, and the value on that variable, along which to split the data set. It chooses
the moderator and value that result in the most homogenous post-split groups
possible. This process is repeated for each post-split group; over and over again,
until a stopping criterion is reached. Usually, the algorithm is stopped when the
post-split groups contain a minimum number of cases.
One advantage of regression trees is that it does not matter if the number

of moderators is large relative to the sample size, or even exceeds it. Second,
trees are non-parametric; they do not assume normally distributed residuals or
linearity, and intrinsically capture non-linear effects and interactions. These
are substantial advantages when performing meta-analysis on a heterogeneous
body of literature. Single regression trees also have a limitation, however,
which is that they are extremely prone to overfitting. They will simply cap-
ture all patterns in the data, both genuine effects and random noise (Hastie
et al., 2009).
Random forests overcome this limitation of single regression trees. First,

many different bootstrap samples are drawn (e.g., 1,000). Then, a single tree is
grown on each bootstrap sample. To ensure that each tree learns something
unique from the data, only a small random selection of moderators is made
available to choose from at each splitting point. Finally, the predictions of all
tree models are averaged. This renders random forests robust to overfitting:
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Because each tree captures some of the true patterns in the data, and overfits
some random noise that is only present in its bootstrap sample, overfitting can-
cels out on aggregate. Random forests also make better predictions: Where
single trees predict a fixed value for each “group” they identify in the data,
random forests average the predictions of many trees, which leads to smoother
prediction curves.
An earlier chapter pointed out that bootstrapped confidence intervals for

hypothesis testing are not valid as a small sample technique (see also Chapter 18
by Hox). As samples get smaller, their representativeness of the population
decreases. Consequently, bootstrap resampling will be less likely to yield an
accurate approximation of the sampling distribution. The purpose of bootstrap-
ping in random forests is different from hypothesis testing, however: It aims to
ensure that every tree model explores some unique aspects of the data at hand.
Thus, concerns regarding bootstrapped hypothesis tests are not directly relevant
here.

Meta-analytic random forests

To render random forests suitable for meta-analysis, a weighting scheme is
applied to the bootstrap sampling, which means that more precise studies
exert greater influence in the model building stage (Van Lissa, 2017). These
weights can be uniform (each study has equal probability of being selected
into the bootstrap sample), fixed-effects-based (studies with smaller sampling
variance have a larger probability of being selected), or random-effects-based
(studies with smaller sampling variance have a larger probability of being
selected, but this advantage is diminished as the amount of between-studies
heterogeneity increases). Internally, MetaForest relies on the ranger
R package; a fast implementation of the random forests in C++ (Wright &
Ziegler, 2015).

Tuning parameters

Like many machine learning algorithms, random forests have several “tuning
parameters”: Settings that might influence the results of the analysis, and whose
optimal values must be determined empirically. The first is the number of candi-
date variables considered at each split of each tree. The second is the minimum
number of cases that must remain in a post-split group within each tree. The
third is unique to MetaForest; namely, the type of weights (uniform, fixed-, or
random-effects). The optimal values for these tuning parameters are commonly
determined using cross-validation (Hastie et al., 2009). Cross-validation means
splitting the data set many times; for example, into 10 equal parts. Then, predic-
tions are made for each of the parts of the data, using a model estimated on all
of the other parts. This process is conducted for all possible combinations of
tuning parameters. The values of tuning parameters that result in the lowest
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cross-validated prediction error are used for the final model. For cross-
validation, MetaForest relies on the well-known machine learning
R package caret (Kuhn, 2008).

Understanding the output

The output of a MetaForest analysis is somewhat different from what researchers
schooled in the general linear model might be familiar with. Three parts of the
output, in particular, warrant further clarification.

Predictive performance

Just like regression, random forests offer a measure of explained variance similar
to R2. Whereas R2 refers to the variance explained in the data used to estimate
the model, random forests provide an estimate of how much variance the model
would explain in a new data set (Hastie et al., 2009). This distinction between
“retrodictive” and “predictive” performance is important: The retrodictive R2

increases with every moderator added to the model, even when the model is
overfit. However, such an overfit model would make terrible predictions for
new data.
Random forests provides an estimate of predictive performance, called R2

oob

(Breiman, 2001). The subscript oob stands for “out-of-bag” and refers to the way
this estimate is obtained: By predicting each case in the data set from those trees
that were trained on bootstrap samples not containing that case. A second esti-
mate of predictive R2, R2

cv, is obtained during cross-validation (cv), by predict-
ing cases not used to estimate the model. Predictive R2 becomes negative when
a model is overfit, because the model makes worse predictions than the mean
for new data. A negative R2

oob or R2
cv can thus be interpreted as a sign of over-

fitting. Positive values estimate how well the model will predict the effect sizes
of new studies.

Variable importance

The second relevant type of output are variable importance metrics, which
quantify the relative importance of each moderator in predicting the effect
size. These metrics are analogous in function to the (absolute) standardized
regression coefficients (βz) in regression: They reflect the strength of each
moderator’s relationship with the outcome on a common metric. However,
whereas betas reflect linear, univariate, partial relationships, MetaForest’s vari-
able importance metrics reflect each moderator’s contribution to the predict-
ive power of the final model across all linear-, non-linear-, and interaction
effects. Variable importance is estimated by randomly permuting, or shuffling,
the values of a moderator, thereby annulling any relationship that moderator
had with the outcome, and then observing how much the predictive
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performance of the final model drops. If performance drops a lot, the moder-
ator must have been important. Variable importance can be negative when
a moderator is weakly associated with the outcome, and random shuffling
coincidentally strengthens the relationship. Such moderators can be dropped
from the model. In the R package metaforest, variable importance can
be plotted using the VarImpPlot() function.

Effects of moderators

Random forests are not a black box: Partial dependence plots can be used to visualize
the shape of the marginal relationship of each moderator to the effect size, averaging
over all values of the other moderators. Researchers commonly inspect only univari-
ate marginal dependence plots. Exploring all possible higher-order interactions swiftly
becomes unmanageable; with just 10 moderators, the number of bivariate interactions
is 45, and the number of trivariate interactions is 120. In order to plot bivariate inter-
actions with a specific moderator of theoretical relevance, you can use the Par-
tialDependence() function in conjunction with the moderator argument.

Accounting for dependent data

Studies often report multiple effect sizes; for example, because several relevant
outcomes have been measured. In traditional meta-analysis, one might account
for this dependency in the data by using a multilevel analysis (Van Den Noortgate,
López-López, Marín-Martínez, & Sánchez-Meca, 2015). With random forests,
dependent data leads to an under-estimation of the aforementioned out-of-bag
error, which is used to calculate R2

oob and variable importance (Janitza, Celik, &
Boulesteix, 2016). If the model has been estimated based on some effect sizes
from one study, it will likely have an advantage at predicting other effect sizes
from the same study. Thus, the out-of-bag error will be misleadingly small, and
hence, the R2

oob will be positively biased. In MetaForest, this problem is over-
come by using clustered bootstrap sampling, as proposed by Janitza et al. (2016).

Suitability for small samples

MetaForest has been evaluated in simulation studies, in terms of its predictive
performance, power, and ability to identify relevant versus irrelevant moderators
(Van Lissa, 2017). The full syntax of these simulations is available at osf.io
/khjgb/. To determine practical guidelines for the usage of MetaForest with
small samples, it is instructive to examine under what conditions a model esti-
mated using MetaForest predicts new data with greater accuracy than the mean
at least 80% of the time. The simulation studies indicated that MetaForest met
this criterion in most cases with as few as 20 included studies, except when the
effect size of moderators was small (data were simulated based on a linear model,
with an effect size of .2), and residual heterogeneity was very large (as compared
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to values commonly reported in psychological meta-analyses; Van Erp et al.
(2017). This suggests that MetaForest is suitable as a small sample solution.
In applied research, the true effect size and residual heterogeneity are

unknown. So how do you determine whether MetaForest has detected any reli-
able effects of moderators? One possibility is to adapt the published syntax of
these simulation studies to conduct a custom-made power analysis. Second, with
a larger data set, one could set aside part of the data, a “test set”. One could
then estimate the model on the remaining part of the data, the “training set”,
and compute a predictive R2 on the test set; R2

test. With small samples, how-
ever, this approach is problematic, because what little data there is should go
into the main analysis. Consequently, the most feasible small sample solution
might be to examine the R2

oob or R2
cv, as alternatives to the R2

test.

Feature pre-selection

One pitfall with random forests is that they can overfit if a data set contains
many irrelevant predictors; moderators unrelated to the outcome. Recall that at
every split of each tree, a random subset of moderators is made available to
choose from. If there are many “noise” predictors, the model will occasionally
be forced to select among only irrelevant predictors. This risk is increased when
the sample is small, and there are relatively many predictors relative to cases.
Thus, it might be desirable to eliminate some noise variables. As mentioned
before, noise variables can be identified by their negative variable importance.
However, in a small model with many noise variables, these variable importance
metrics can vary substantially when re-running the analysis, due to Monte Carlo
error introduced by the random aspects of the analysis – Bootstrap sampling, and
the random subset of variables considered at each split. Consequently, it can be
useful to replicate the analysis, visualize the distribution of variable importance
metrics, and filter out variables that have a (mostly) negative variable importance
across replications. This is accomplished by using the preselect() function,
which can implement a simple replication of the analysis, or a bootstrapped rep-
lication, or a recursive selection algorithm.

Using MetaForest for small samples

To illustrate how to use MetaForest to identify relevant moderators in a small
sample meta-analysis, I will re-analyze the published work of Fukkink and Lont
(2007), who have graciously shared their data. The authors examined the effect-
iveness of training on the competency of childcare providers. The sample is small,
consisting of 78 effect sizes derived from 17 unique samples. Exploratory moder-
ator analysis was an explicit goal of the original work: “The first explorative ques-
tion concerns the study characteristics that are associated with experimental
results.” Data for this tutorial are included in the metaforest package.
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# Install metaforest. This needs to be done only once.

install.packages(“metaforest”)

# Load the metaforest package

library(metaforest)

# Assign the fukkink_lont data to an object called “data”

data <- fukkink_lont

# Set a seed for the random number generator,

# so analyses can be replicated exactly.

set.seed(62)

For any random forest model, it is important to check whether the model converges.
Convergence is indicated by stabilization of the cumulative mean squared out-of-bag
prediction error (MSEoob), as a function of the number of trees in the model. We run
the analysis once with a very high number of trees, and pick a smaller number of trees,
at which the model is also seen to have converged, to speed up computationally heavy
steps, such as replication and model tuning. We re-examine convergence for the final
model.

# Run model with many trees to check convergence

check_conv <- MetaForest(yi~.,

data = data,

study = “id_exp”,

whichweights = “random”,

num.trees = 20000)

# Plot convergence trajectory

plot(check_conv)

This model has converged with approximately 10,000 trees (Figure 13.1). We now
apply moderator pre-selection with this number of trees, using the preselect()
function. The “recursive” pre-selection algorithm conducts one MetaForest ana-
lysis, drops the moderator with the most negative variable importance, and then re-
runs the analysis, until all remaining variables have positive importance. This recursive
algorithm is replicated 100-fold. Using preselect_vars(), we retain only those
moderators for which a 50% percentile interval of the variable importance metrics
does not include zero (variable importance is counted as zero when a moderator is not
included in the final step of the recursive algorithm). The results of this preselection
can be plotted using plot () (see Figure 13.2).

# Model with 10000 trees for replication

mf_rep <- MetaForest(yi~.,

data = data,

study = “id_exp”,

whichweights = “random”,

num.trees = 10000)

# Recursive preselection

preselected <- preselect(mf_rep,

replications = 100,

algorithm = “recursive”)

# Plot results

plot(preselected)
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# Retain moderators with positive variable importance in more than

# 50% of replications

retain_mods <- preselect_vars(preselected, cutoff = .5)

Next, we tune the model using the R package caret, which offers a uniform
workflow for any machine learning task. The function ModelInfo_mf() tells
caret how to tune a MetaForest analysis. As tuning parameters, we consider all
three types of weights (uniform, fixed-, and random-effects), the number of can-
didate variables at each split from 2–6, and a minimum node size from 2–6. We
select the model with smallest root mean squared prediction error (RMSE) as the
final model, based on 10-fold clustered cross-validation. Clustered cross-validation
means that effect sizes from the same study are always included in the same fold,
to account for the dependency in the data. Note that the number of folds cannot
exceed the number of clusters in the data. Moreover, if the number of clusters is
very small, one might have to resort to specifying the same number of folds as
clusters. Model tuning is computationally intensive and might take a long time.

# Load caret

library(caret)

# Set up 10-fold clustered CV

grouped_cv <- trainControl(method = “cv”,

index = groupKFold(data$id_exp, k = 10))
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FIGURE 13.1 Convergence plot
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# Set up a tuning grid

tuning_grid <- expand.grid(whichweights = c(“random”, “fixed”, “unif”),

mtry = 2:6,

min.node.size = 2:6)

# X should contain only retained moderators, clustering variable, and vi

X <- data[, c(“id_exp”, “vi”, retain_mods)]

# Train the model

mf_cv <- train(y = data$yi,

x = X,

study = “id_exp”, # Name of the clustering variable

method = ModelInfo_mf(),

trControl = grouped_cv,

tuneGrid = tuning_grid,

num.trees = 10000)

# Extract R^2_cvVan Lissa,

r2_cv <- mf_cv$results$Rsquared[which.min(mf_cv$results$RMSE)]

FIGURE 13.2 Replicated variable importance for moderator pre-selection
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Based on the root mean squared error, the best combination of tuning parameters
were uniform weights, with four candidate variables per split, and a minimum of
two cases per terminal node. The object returned by train already contains the
final model, estimated with the best combination of tuning parameters.

# Extract final model

final <- mf_cv$finalModel

# Extract R^2_oob from the final model

r2_oob <- final$forest$r.squared

# Plot convergence

plot(final)

We can conclude that the model has converged (Figure 13.3), and has a positive
estimate of explained variance in new data, R2

oob ¼ 0:13, R2
cv ¼ 0:48. Now, we

proceed to interpreting the moderator effects, by examining variable importance
(Figure 13.4), and partial dependence plots (Figure 13.5).

# Plot variable importance

VarImpPlot(final)

# Sort the variable names by importance

ordered_vars <- names(final$forest$variable.importance)[

order(final$forest$variable.importance, decreasing = TRUE)]
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FIGURE 13.3 Convergence plot for final model
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# Plot partial dependence

PartialDependence(final, vars = ordered_vars,

rawdata = TRUE, pi = .95)

We cannot conclude whether any of these findings are “significant” (except per-
haps by bootstrapping the entire analysis). However, the PartialDepen-
dence() function has two settings that help visualize the “importance” of
a finding: rawdata, which plots the weighted raw data (studies with larger
weights are plotted with a larger point size), thereby visualizing the variance
around the mean prediction, and pi, which plots a (e.g., 95%) percentile inter-
val of the predictions of individual trees in the model. This is not the same as
a confidence interval, but it does show how variable or stable the model predic-
tions are.
The analysis has revealed, for example, that effect sizes tend to be stronger

when the dependent variable is in line with the content of the intervention, and
that single-site training interventions tend to have bigger effect sizes (Figure
13.4). Because these variables are binary, their effects could also be parsimoni-
ously modeled by a linear regression analysis. Indeed, the original paper reported
significant effects for these variables. Non-linear effects, on the other hand, are
more easily overlooked in a linear meta-regression.
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This exploratory moderator analysis could be followed with meta-regression,
focusing only on the relevant moderators. The binary predictors could be
straightforwardly included. For the continuous variables, one might consider
a piecewise linear approach: Creating dummy variables at the inflection points
identified from the partial dependence plots, and then interacting these dummy
variables with the continuous variable itself. However, the exploratory nature of
this follow-up analysis should always be emphasized; it is merely a way to look
at the same results from the familiar linear regression framework.

What to report

The preceding paragraphs offer a step-by-step instruction on how one might go
about conducting a MetaForest analysis on a small sample meta-analytic data set.
One could simply apply these steps to a different data set. If readers are

FIGURE 13.5 Marginal relationship of moderators with effect size
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concerned with the amount of space required to report and explain this type of
analysis in a journal whose readership might be relatively unfamiliar with the
machine learning approach, then one might simply report the analysis summary,
and cite appropriate publications for MetaForest (Van Lissa, 2017), and random
forests in general (e.g., Strobl et al., 2009). Because it is essential that the analysis
process is reproducible and transparent, the annotated syntax – and, preferably,
the data – can be published as supplementary material on the Open Science
Framework (www.osf.io), and referred to in the paper. For example:

We conducted an exploratory search for relevant moderators using Meta-
Forest: a machine-learning-based approach to meta-analysis, using the
random forests algorithm (Van Lissa, 2017). Full syntax of this analysis is
available on the Open Science Framework, DOI:10.17605/OSF.IO/
XXXXX. To weed out irrelevant moderators, we used 100-fold replicated
feature selection, and retained only moderators with positive variable
importance in > 10% of replications. The main analysis consisted of
10.000 regression trees with fixed-effect weights, four candidate variables
per split, and a minimum of three cases per terminal node. The final
model had positive estimates of explained variance in new data,
R2

oob ¼ 0:13, R2
cv ¼ 0:48. The relative importance of included moderators

is displayed in Figure X. The shape of each moderator’s marginal relation-
ship to the effect size, averaging over all values of all other moderators, is
illustrated in Figure XX.

Several published studies illustrate ways to apply and report MetaForest analyses.
For example, Curry et al. (2018) used MetaForest to examine moderators of the
effect of acts of kindness on well-being (full syntax and data available at github.
com/cjvanlissa/kindness_meta-analysis). Second, Bonapersona et al. (in press)
used MetaForest to identify moderators of the effect of early life adversity on
the behavioral phenotype of animal models, with full syntax and data available at
osf.io/ra947/. Third, Gao, Yao, and Feldman (2018) used MetaForest to exam-
ine moderators of the “mere ownership” effect.

Final thoughts

MetaForest is a helpful solution to detect relevant moderators in meta-analysis,
even for small samples. Its main advantages over classic meta-regression are that
it is robust to overfitting, captures non-linear effects and interactions, and is
robust even when there are many moderators relative to cases. One remaining
concern, which cannot be addressed by any statistical solution, is the generaliz-
ability of these findings to genuinely new data. When the sample of studies is
small, it is unlikely to be representative of the entire “population” of potential
studies that could have been conducted. Machine learning techniques, such as
MetaForest, aim to optimize a model’s performance in “new data” – but the
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estimates of performance in “new data”, based on bootstrap aggregation and
cross-validation, are still conditional on the present sample.
What implications might this have? To understand the problem, we might

imagine conducting a primary study on the link between father involvement
and child well-being, and drawing a sample by selecting one citizen of every
country in the European Union. Whether this study will generate any reliable
insights that generalize beyond this selective sample depends, in part, on the
strength of the effect, and the heterogeneity between our different Europeans.
But it also depends on the universality of the phenomenon under study. If
father involvement benefits children all around the world, we will be more
likely to detect an effect, even in such a heterogeneous sample. If the association
is not universal, it might be moderated, and we can measure these moderators
and use an inductive approach like MetaForest to identify which ones make
a difference.
Another remaining concern is that the cumulative nature of science means

that researchers are typically building upon the work of their predecessors. Con-
sequently, we might ask whether it is ever possible for a body of literature to be
considered a random sample of the population of all possible studies that “could
have been”. If the answer is no, then it would be prudent to consider every
meta-analysis to be, to some extent, merely a descriptive instrument;
a quantitative summary of the published literature.
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Introduction

Researchers frequently use questionnaires with several items measuring the same
underlying construct. Because structural equation modeling (SEM) is increasingly
used in the behavioral sciences, modeling such scales as latent constructs is both
common and advantageous. Advantages include correcting for measurement
error, making minimal psychometric assumptions, establishing factorial invariance
across time and groups, evaluating model fit, and broad flexibility for confirma-
tory modeling. When examining the associations among several latent constructs,
however, model complexity increases, which can be problematic in small sam-
ples. One solution is parceling. Parceling involves making aggregates of two or
more item-level indicators by averaging the items, and then using these aggre-
gate-level indicators to represent the latent constructs (Little, Cunningham,
Shahar, & Widaman, 2002; Matsunaga, 2008). In this chapter, we provide an
overview of (a) the key advantages of parcels, (b) specific advantages for small
samples, and (c) methods for building parcels.



Benefits of parceling

Parceling is helpful in addressing several issues stemming from the sources of
variance that are commonly found in item-level data, some of which are par-
ticularly important when working with small sample sizes. Independent of the
desired true source of variance, undesirable item-level variance can come from
a number of sources when some but not all items are impacted by effects such
as method contamination, acquiescence response bias, social desirability, priming,
and item-wording characteristics such as negatively valenced items, subordinate
clauses, common parts of speech, and the like (Little, Cunningham, Shahar, &
Widaman, 2002). Other problems from item-level data, when compared to
aggregate-level data, include lower reliability, lower communality, smaller ratio
of common-to-unique factor variance, and greater likelihood of distributional
violations, which are particularly problematic with small samples.
Items constructed from scales also have fewer, larger, and less equal intervals

between scale points when compared to parcels. A seven-point Likert scale, for
example, will have responses at each integer along that scale, while a composite
parcel will include values that fall between the points on the continuum, creat-
ing a more continuous scale of measurement. Table 14.1 provides a summary of
the benefits of parceling (for thorough reviews of the benefits of parceling, see
Little, Cunningham, Shahar, & Widaman, 2002; Little, Rhemtulla, Gibson, &
Schoemann, 2013; Matsunaga, 2008).
One key benefit of parceling is that it can diminish the impact of sources of

variance that emanate from both sampling error and parsimony error. Figure
14.1 shows an item-level solution for two constructs where six items for each
construct are available. In the Figure, we have indicated one potential dual load-
ing (λ7;1) and two correlated residuals (θ8;6 and θ12;10) that arise because of sam-
pling variability around a true value that is essentially zero. These relationships
are represented using dashed lines because they are indicated in the data but are
errors in that they arise only from sampling variability and are specific to this
hypothetical sample. We have also indicated a couple of correlated residuals that
are not trivial in the population and should be estimated as part of the true

TABLE 14.1 Some of the key benefits of parceling

Psychometric benefits Model estimation and fit benefits

Parcels (vs. items) have: Models with parcels (vs. items) have:
Higher reliability Lower likelihood of correlated residuals
Greater scale communality Lower likelihood of dual factor loadings
Higher common-to-unique factor variance ratio Reduced sources of sampling error
Lower likelihood of distributional violations Reduced sources of parsimony error
More, tighter, and more-equal intervals

Note. Based on Little, Cunningham, Shahar, and Widaman (2002).
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item-level solution for these items (θ3;1, θ5;2 and θ11;8). When correlated resid-
uals and dual factor loadings emerge in a model because of sampling variability,
parceling minimizes their impact by reducing the magnitude of the variances
leading to these effects. Even when effects are true in the population, parceling
can provide a simplified rendering of the information with no loss of generality
regarding the means, variances, and covariances among the constructs that are
included in a model. An appropriate model at the item level, such as the model
in Figure 14.1, would necessitate that the true correlated residuals be estimated.
These effects are true in the population and, as such, have a clear theoretically
justified reason for these parameter estimates. Normally, such effects would be
anticipated a priori and would be expected to emerge across any sample, big or
small, when this particular item set is administered. As such, if not specified, the
item-level model is mis-specified and all parameters that are associated with each
mis-specified model would be biased.
Returning to the dashed-line parameters, which are only resulting from sam-

pling variability, they should be ignored and left unestimated because they are
not true in the population. On the other hand, if left unestimated, the model fit
would be relatively poorer and the model parameters could also be biased
because the magnitudes of these unestimated parameters are sufficiently larger
than zero; they cannot be ignored and treated as if they were zero. Here, the
unestimated yet untrue parameter reflects a “lose-lose” situation. No theoretical
reason other than chance can be offered to explain the observed relationship
and, if estimated, the parameter would not be expected to replicate in a new
sample.
Parceling explicitly addresses problems of correlated residuals and unexpected

dual factor loadings. For example, when items with a correlated residual are
aggregated, the effect of the correlation is removed though isolation in the
residual term of the new aggregate. Specifically, if Items A1 and A3 are averaged
then the shared true parameter (θ3;1) becomes isolated in the residual variance of

FIGURE 14.1 Item-level solution for two constructs with six items each: Sampling
Error and Parsimony Error illustrated. λ = Estimated loading of an indicator on
a construct. ψ = Variance of a construct or covariance between two constructs. θ =
Residual variance of an indicator or residual covariance between two indicators
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the parceled indicator when the parcel-level model is estimated. Similarly, if
Items B2 and B5 are averaged into a parcel then the shared true parameter θ11;8
becomes isolated in the residual variance of the parceled indicator. And the same
is true if Items A2 and A5 are averaged – the shared true parameter (θ5;2)
becomes isolated within the residual term of the parcel. For the dual factor load-
ing, λ7;1, and the correlated residual labeled θ8;6, parceling has the advantage of
significantly reducing the sources of variance that are causing these unintended
effects. A6 would be averaged with A4 in this hypothetical example and B1
would be averaged with B3. The shared residual that was associated with A6
and B1 would become one-quarter of its original magnitude. The reduction in
the size of the residual correlation would likely render the effect trivially small
again, which could then be ignored without introducing any bias.
Even when correlated residuals and cross-loadings are seen in the population,

if the phenomenon is unimportant to the model and the parameter estimates are
of theoretical interest, the reduction of these effects through parceling can be
advantageous – that is, parsimony error is minimized. Reducing the unwanted
sources of variance via parceling can reduce bias in the estimated model that
occurs when correlated residuals and cross-loadings are omitted. In fact, although
the item-level model in the population may have correlated residuals and/or
cross-loadings, the parcel model in the population is less likely to have these
effects, or at least their magnitude may be reduced to the point of being nonin-
fluential (Little, Rhemtulla, Gibson, & Schoemann, 2013).
To understand the above discussion better, we turn to the traditional factor

analytic model of item structure. Specifically, item-level indicators can be repre-
sented by three sources of variance. The first is the variance shared between the
items that comes from the common factor (i.e., the construct) that the item
measures. This “true score” (T ) is the variance you are trying to model and is
the target component of the item’s variance. There is also “specific” variance (s)
that is not associated with the true score but is itself a stable and reliable source
of variance that comes from the systematic nature of the item itself. This source
of variance is, by definition, independent of the true score. The third and final
source of variance is the random error (ε) that is unassociated with either the
true score or the specific variance.
These latter two elements, s and ε, are also, by definition, uncorrelated with

each other and have means of zero. The sum of these two elements is referred
to as the item’s uniqueness. Across all items in a pool of items, the s and ε of
each item is assumed to be uncorrelated with all other s and ε elements. Because
ε represents the truly random error aspect of measurement, it must, by necessity,
be uncorrelated with all other ε’s and s’s. The s component of a given item, on
the other hand, is unlikely to be truly uncorrelated with all other s’s. In fact, the
common saying that s is assumed to be uncorrelated with all other s’s is not
quite an accurate statement. The real assumption is that the s’s are trivially cor-
related with other s’s such that they can be treated as if they were zero correl-
ated with the other s’s. The whole idea behind item parcels is to reduce the size
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of the s’s and thereby reduce the size of any correlation that an s may have with
any other s in a given analysis model.
When parcels are computed, the variance that is shared among the items is pre-

served while the variance that is not shared among the items is reduced. Because
items included in parcels tap into the same construct, the T portion is common/
shared across items. Because s and ε are either uncorrelated or trivially correlated
across items, they are reduced when aggregating items into parcels. The propor-
tion of the “true” score relative to the uniqueness will be higher in the parcel than
in the individual items. Thus, for a two-item parcel as illustrated in Figure 14.2,
the parcel is expected to include the variance of the true score plus one-quarter of
each of the four sources of variance not associated with the common factor: (1)
the specific variance of item 1, (2) the specific variance of item 2, (3) the random
error of item 1, (4) the random error of item 2 (i.e., the variance of the parcel is
now equal to the shared variance of T þ 1

4 of the variance of s1, s2, ε1, ε2). For
complete covariance algebra demonstrating this reduction in specific variance and
random error, see Little, Rhemtulla, Gibson, and Schoemann (2013). Figure 14.2
shows that by reducing the effect of specific variance (s1 and s2) and random error
(ε1 and ε2) associated with item-level measurement, parceling allows for a more
accurate model of the true construct variance.

Benefits of parceling for small sample size

Small sample size is a concern for researchers in the behavioral sciences, where
low-powered studies remain common. Regarding factor structures, subject-to-

1

1

2

2

FIGURE 14.2 Variance of parcel composed of two averaged indicators. T = true score;
s = specific variance; ε = random error
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item ratio rules of thumb persist, the most common being 5:1 or 10:1. How-
ever, Barrett and Kline (1981) showed that subject-to-item ratios have no effect
on factor stability. Two personality surveys, one with sub-scaled indicators and
the other without, were given to respondents in various sized groups. Factor sta-
bility held in groups with ratios as low as 3:1 and 1.25:1. While Barrett and
Kline (1981) recommend a minimum of 50 observations to exhibit
a distinguishable factor pattern, they also emphasize that when using “strong”
variables with known factor structures, underlying patterns will be present
regardless of sample size. Lastly, they state that when compared to the statistical
errors of bad sampling of target populations, the errors due solely to small
sample size are minimal. A simulation study by Velicer and Fava (1998) also
showed that for any given sample size, strong factor loadings and a minimum of
three indicators per factor will have a positive effect on model fit and parameter
estimation. Additionally, they concluded that careful variable sampling and
strong factor loadings can compensate for low sample size and rules should not
exist for sample size as a function of manifest indicators.
Parceling can help meet these recommendations for small sample sizes since

factor loadings for the parcels are stronger than for the items. In fact, one common
reason for creating parcels is because sample size is small (Williams & O’Boyle,
2008). Although it has been shown that with a small sample size, latent variable
models can have lower power than scale-score path models when estimating struc-
tural paths, one suggestion to increase power has been to parcel similarly con-
structed items and constraining the parcel loadings to be equal (if the parcels have
similar measurement properties; Ledgerwood & Shrout, 2011). Parcels have also
been recommended for small sample sizes because fewer parameters are needed in
the model estimation (Bagozzi & Edwards, 1998) and convergence issues are less
likely to occur. Likewise, a simulation study by Orçan and Yanyun (2016) showed
several advantages of parceling in SEM with a small sample sizes. First, by reducing
model complexity, the likelihood of estimation difficulties decreased. Second,
parcel-level analysis produced more reasonable Type I error rates for the chi-square
test, with rejection rates being too high when analyses were done at the item level.
Third, maximum likelihood with robust standard errors (MLR) estimation
methods at the item level showed much higher Type I error rates than MLR esti-
mation at the parcel level. Lastly, Orçan and Yanyun (2016) note that since the
item-level and parcel-level analyses produce similar structural estimates but the
item-level model had increased chances of misfit, common attempts to improve
model fit by adding parameters in item-level analyses may lead to over-
parameterized and, therefore, mis-specified models, particularly in small samples.
Thus, parceling may be particularly advantageous in small samples.

Arguments against parceling

Although, as seen above, parceling has numerous advantages, there are also argu-
ments against parceling that have persisted in the literature. It is beyond the
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scope of this chapter to review all these arguments. Although thorough reviews
of the arguments both pro and con with parceling can be found in Little, Cun-
ningham, Shahar, and Widaman (2002) and Matsunaga (2008), we discuss the
two main arguments against parceling here. The first is that when constructs are
multidimensional, parcels can negatively affect the measurement model by pro-
viding biased loading estimates and can make the structural relations in the
model more difficult to interpret (e.g., Bandalos, 2002). This argument holds
when parcels are randomly or improperly created. On the other hand, when
parcels are properly constructed, they can clarify rather than obscure the struc-
ture of multidimensional constructs (Graham & Tatterson, 2000). The second
main argument against parceling is that it may mask model misspecification.
From this point of view, since cross-loadings and residual correlations are more
difficult to detect when modeling with parcels, estimates and other model
parameters may be biased. Furthermore, since model fit is usually improved
with parceling, researchers may falsely believe that misspecification is not present
(e.g., Bandalos, 2002; Marsh, Ludtke, Nagengast, Morin, & Von Davier, 2013).
Thoughtful parcel creation and careful examination of local misfit of a parcel-
level solution easily mitigate this potential problem.
As mentioned above, parceling will also reduce Type II error where

researchers would conclude that cross-loadings and residual correlations exist in
the population when they do not. A recent simulation study (Rhemtulla, 2016)
showed that parceling produces similar or reduced-bias estimates more often
than the item-level models. Furthermore, although parcel models had lower
power than item models to detect within-factor misspecifications and single
cross-loadings, they had higher power to detect multiple cross-loadings and
structural model misspecifications (Rhemtulla, 2016). In order to avoid misspeci-
fication, it has been recommended to model data at the item level to identify
potential sources of misspecification and to inform the choice of a parceling
scheme (Bandalos & Finney, 2001; Little, Rhemtulla, Gibson, & Schoemann,
2013; Rhemtulla, 2016). Furthermore, the root mean square error of approxi-
mation (RMSEA) and the standardized root mean square residual (SRMR) fit
indices can be useful in identifying misspecification as they were found to
increase in parcel models compared to item models when there was misspecifica-
tion (Rhemtulla, 2016).

Building parcels

When parcels are constructed thoughtfully, they are efficient, reliable, and valid
indicators of latent constructs (Little, Cunningham, Shahar, & Widaman, 2002;
Little, Rhemtulla, Gibson, & Schoemann, 2013). There are several ways in
which you could construct a parcel, but first it is essential to gain a thorough
understanding of the items and the data. The level of thoughtfulness stems from
knowing the items themselves and the ways in which they are constructed, as well
as understanding the behavior of the items in a given sample. This knowledge
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is often accomplished by running an item-level analysis to examine the item-
level content, reviewing the matrix of correlations among the items, and
running item-level reliability analysis (Little, Rhemtulla, Gibson, & Schoe-
mann, 2013). Once you have a thorough understanding of your items and
how they behave, you can decide on the method you will use to construct
your parcels.
The first method of parceling items is random assignment, in which one

assigns items to a parcel group randomly without replacement, leading to parcels
that contain roughly equal “true score” variance (T ). This method is predicated
on the strong assumption that all items are interchangeable in the population
and sampling variability is low. As such, it is best to only use this method when
one has a large set of items with high communality (i.e., high loadings in an
item-level measurement model) from which to create parcels (Little, Rhemtulla,
Gibson, & Schoemann, 2013). Ideally, items should come from a common pool,
such as items that share a common scale on a questionnaire. If items come from
different scales using different metrics of measurement, the items can be rescaled
to be on a common metric prior to creating a parcel (Little, Rhemtulla, Gibson,
& Schoemann, 2013). One proposed procedure of using the random assignment
parceling method is to take the average model results of hundreds or thousands
of item-to-parcel allocations, which has the added benefit of providing an esti-
mate for the amount of parcel-allocation variability within your set of items
(Sterba & MacCallum, 2010).
Another method of parceling involves examining the item characteristics of

your measure either from existing validation studies or from your own data.
This examination is particularly important for items that demonstrate correlated
residual variances or are known to cross-load onto two constructs. Items that
share these characteristics should be placed in the same parcel, and in the case of
cross-loading items, the parcel may need to still allow a cross-loading within the
model (Little, Rhemtulla, Gibson, & Schoemann, 2013). If existing empirical
information about your items is limited, your own preliminary analysis should
inform these decisions.
The third way one could construct parcels is by using the SEM model to

inform your parceling. This process begins by specifying a single-construct model
that includes all items associated with the construct. Then, the three highest-
loading items are used as the anchors with which to create parcels, first by
combining the highest-loading item with the lowest-loading item, then the next
highest with the next lowest, then the third highest with the third lowest. If more
items remain unparcelled, the procedure would continue by placing lower-
loading items with higher-loading parcels until a balance is achieved (Landis, Beal,
& Tesluk, 2000; Little, Cunningham, Shahar, & Widaman, 2002). Note that the
number of items in a given parcel does not have to be equal across all parcels for
a given construct. In fact, you may find that one item is particularly good and you
do not want to parcel it with another item. The other remaining items can be
used to create parcels while leaving the one item alone as an indicator of the
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construct. We strongly recommend averaging in these scenarios so the parcels and
the lone item stay on the same scale of measurement (sums of items will change
the means and variances to be on different metrics).
For multidimensional items, two methods have been proposed in order to com-

bine items that share specific reliable variance. A first option would be to assign
items that correlate the most strongly with each other to the same parcel (Landis,
Beal, & Tesluk, 2000; Rogers & Schmitt, 2004). The second option would be to
assign items that share secondary facet-relevant content to the same parcel (Hall,
Snell, & Foust, 1999; Little, Cunningham, Shahar, & Widaman, 2002).
These above methods are recommended when dealing with already existing

data, or data generated from existing item inventories. An alternative method for
parcel construction is to design questionnaires that contain an a priori parceling
scheme (Little, Cunningham, Shahar, & Widaman, 2002). For example, the
Control, Agency, and Means-Ends Interview (Little, Oettingen, & Baltes, 1995)
includes parceling instructions. The questionnaire includes six questions, three of
which are worded in a positive direction (e.g., “I can try hard”), and three of
which are worded in a negative direction (e.g., “I am just not very smart”) and
then reverse-coded. Instructions are to construct parcels based on one positive
item and one negative item, so that the bias associated with question valence
can be reduced.

Parceling with missing data

When computing parcels, there may be items with missing data within parcels.
Indeed, item-level missing data is common, notably because participants may
skip or refuse to answer some items. Item-level missing data may also be inten-
tionally introduced by a researcher through a planned missing-data design (Little
& Rhemtulla, 2013; Rhemtulla & Hancock, 2016). Although little research has
examined how different missing-data handling procedures influence results with
parcels, research on item-level missing data when computing scales can be
informative.
When using multiple imputation, one could either impute before or after par-

celing items. When computing scales, no differences in bias have been found
when comparing imputation before and after computing the scales, but imputing
items before computing scales had an important power advantage. Indeed, scale-
level imputation required a 75% increase in sample size to achieve the same
power as item-level imputation (Gottschall, West, & Enders, 2012). If effects
were similar with parcels, this power difference means that imputing items
before parceling would increase power, which may be particularly important in
small samples. However, the ability to impute items simultaneously would
depend on the number of variables since the number of cases must exceed the
number of variables. Furthermore, the power advantage when imputing items
for parcels may be lower than when imputing items for scales. Indeed, item-
level imputation is notably advantageous because within-scale correlations are
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stronger than between-scale correlations, and between-parcel correlations may
be closer to within-scale correlations.
A study also examined full information maximum likelihood (FIML)

approaches to item-level missing data, where scales are computed without
imputing items first (Mazza, Enders, & Ruehlman, 2015). Results showed
that simply entering scales with missingness without further information for
missing-data handling provided highly biased parameters. Bias was eliminated,
and power was equivalent to item-level imputation, if the individual items were
included as auxiliary variables. A remaining issue is that too many auxiliary vari-
ables can lead to convergence issues. One solution that provided the same
power and results was to use an average of complete items with the individ-
ual incomplete items as auxiliary variables (Mazza, Enders, & Ruehlman,
2015). Thus, although FIML approaches to item-level missingness when using
parcels still need to be examined, research on scales suggests that individual
items with missingness should be included as auxiliary variables. Note that
when using this method, any item missing on the parcel would result in
a missing score on the parcel – the technique of proration, where available
items are averaged although some are missing, should be avoided (Lee,
Bartholow, McCarthy, Pedersen, & Sher, 2014; Mazza, Enders, & Ruehlman,
2015).

Conclusion

Parceling has many benefits, particularly for small sample sizes since they can
increase power and reduce estimation difficulties. However, parcels will only be
beneficial with thoughtful construction of the parcels based on thorough under-
standing of the items and data. Furthermore, parcels are not beneficial for all
research questions since it is not ideal to fully represent the dimensionality of
measurement (Little, Cunningham, Shahar, & Widaman, 2002). Therefore, par-
celing should be strongly considered by researchers when using latent-variable-
based SEM with a small sample size, but always taking into account the goals of
their study.
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Introduction

When thinking about sample size in multilevel modeling, it is important to real-
ize that there are potential sample size issues at several distinct levels. The con-
cern is usually about the highest-level sample size, because sampling at the
higher level often means sampling organizations or groups, which may be
limited by the costs or by having a small population at that level. For example,
if the higher-level population is provinces in the Netherlands, there are only 12
provinces and no amount of research effort is going to increase that number.
Even if there is a large population within the small number of clusters at the
highest level, as in business surveys, obtaining cooperation at the organizational
level can be difficult and therefore costly (Snijkers, Haraldsen, Jones, & Willi-
mack, 2013). Small group sizes at the lowest level are problematic with moder-
ate or small higher-level samples sizes, although such issues can dissipate if the
sample at the higher level is large enough (McNeish, 2014). For example, data
from couples have at most two units in each group, which is a small sample
size. If not all members of the couples participate, the average cluster size could
be as low as 1.7, which is very small. The same goes for multilevel analysis of
repeated measures or panel studies, where the lowest level may be two or three
measurement occasions, and some individuals not participating in all waves of
data collection. All these are small samples too.
Different estimation methods are available for the parameters of multilevel

regression and structural equation models. Maximum Likelihood (ML) estimation
is the estimation method of choice for most multilevel models and data. For non-
normal data, Weighted Least Squares (WLS) is often used instead of ML.
Both ML and WLS are large-sample estimation methods, with sample size
requirements that are not absolute but dependent on the size and complexity of



the model. Bayesian estimation methods are gaining in popularity, as Bayesian
estimation is not a large-sample method. This does not mean that all is well at all
sample sizes, but in general Bayesian estimation is expected to be more precise at
small sample sizes. The performance of different estimation methods is discussed
in the sections on multilevel regression and multilevel structural equation model-
ing (MSEM).
The current chapter discusses problems that may arise in the presence of small

samples and potential remedies for small sample issues. The discussion of small
sample sizes in multilevel regression assumes that the reader has some familiarity
with multilevel regression, as explained for example in the introductory chapter
of Hox, Moerbeek, and Van de Schoot (2018) available online (multilevel-
analysis.sites.uu.nl/). This chapter discusses sample size issues and potential solu-
tions in multilevel regression and multilevel structural equation models, with
both ML/WLS and Bayesian estimation.

Multilevel regression models

The most straightforward multilevel model is multilevel regression, with a single
outcome variable at the lowest level, and predictor variables at all available levels
(Hox et al., 2018; Snijders & Bosker, 2012). In this model, two kinds of param-
eters are estimated: regression coefficients and variances. If we have individuals
nested in groups, the regression coefficients for the individual predictor variables
are assumed to vary across the groups, so they have variance components at the
group level. In ordinary multiple regression, the residual variance is seldom
interpreted. Conversely, in multilevel regression, the distribution of the variance
of the outcome variable across the different levels is important, and the values of
the variances of the regression coefficients is also important. As a consequence,
the accuracy of the estimates of both the regression coefficients (commonly
called the fixed part of the regression equation) and the variances (commonly
called the random part of the regression equation) is important.
An often-suggested rule of thumb is the 30/30 rule (30 lower-level units in

30 clusters), discussed by Bickel (2007, p. 207). There is quite a number of
simulation studies investigating the accuracy of parameter estimates and their
associated standard errors under a variety of conditions. The seminal study in
this area was performed by Maas and Hox (2005), who found that 10 clusters
was insufficient with traditional multilevel regression, but that 30 was sufficient.
Ferron, Bell, Hess, Rendina-Gobioff, and Hibbard (2009), Baldwin and Felling-
ham (2013), Stegmueller (2013), and Bell, Morgan, Schoeneberger, Kromrey,
and Ferron (2014) extend Maas and Hox (2005) to include different sample size
conditions and investigations of corrective procedures, including Bayesian
methods (see McNeish & Stapleton, 2016a, for a review of small sample studies
in multilevel regression). McNeish and Stapleton (2016b) then conducted
a “Battle Royale” simulation to compare the performance of 12 different small
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sample methods for higher-level samples of under 15 to determine where par-
ticular methods break down.
Generally however, there is no applicable rule like 30/30 or any other set of

alternative numbers, because minimum sample size requirement fluctuates based
on model complexity, the number of random effects, and the intraclass correl-
ation, among other factors. Nonetheless, there are indications when estimates of
standard errors become biased, and some suggestions for remedies.
The capability to obtain accurate estimates and standard errors with few clus-

ters is the result of two improvements in estimation and testing. The first
improvement is to use Restricted Maximum Likelihood (REML) estimation
instead of Full ML (FML). FML estimates the variance components in the
model while assuming that the fixed effects (the regression coefficients) are
known. With large sample sizes, this works fine. However, with smaller sample
sizes the regression coefficients are estimated with a considerable amount of
uncertainty. As a result, the variances are also estimated poorly and are generally
much too small. The standard errors are also estimated poorly, and generally too
small, so the type I error rate for the fixed effects is inflated. REML separates
the estimation of the fixed effects and the variance components by removing the
fixed effects when the variance components are estimated. As a result, the vari-
ance components are estimated more accurately. Subsequently, the fixed effects
are estimated conditional on these variance components. With large samples,
REML and FML are equivalent. With smaller samples, REML generally leads to
much better estimates.
The sampling variance of the fixed estimates (regression coefficients) is generally

taken from the Fisher information matrix. In large samples, this is a good indicator
of the variability of the estimates. In small samples, it is only a poor approximation
of the variability. Consequently, with small samples, calculating the standard
normal Z-statistic by dividing an estimate by its standard error does not work
well. The problem is not only that this ignores the degrees of freedom, but also
with small samples the standard errors are estimated with a negative bias. Several
corrections have been proposed for these twin problems. The most promising cor-
rection is the Kenward–Roger correction, which consists of two steps; see Chap-
ter 16 (Rosseel) for more details. First, it estimates the small sample bias in the
standard errors and adjusts the standard errors for that bias. Second, it estimates the
effective degrees of freedom. The degrees of freedom are estimated on the basis of
the parameter estimates for the model under consideration, and it is common to
obtain fractional values for the degrees of freedom. A similar but less compelling
correction is the Satterthwaite correction, which estimates the degrees of freedom,
but does not correct the standard errors.
In most multilevel regression software, the variances are tested with a Z-statistic.

Even in large samples, this is a poor procedure, because it assumes that the underlying
statistic has a normal sampling distribution. The null distribution for variances is
skewed because negative variances are not permissible; the skew is magnified with
smaller samples. If the software bounds the variance estimates to be non-negative,
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a 50:50 mixture chi-square distribution is required to obtain proper p-values (Savalei
& Kolenikov, 2008; Stram & Lee, 1994). Otherwise, the null test value (i.e., whether
the variance is equal to 0) is on the boundary of the parameter space (the null test
value is the lowest possible number allowed), which can inflate p-values.
Table 15.1 gives some rough guidelines for minimal number of clusters in

multilevel regression for estimates to be stable and trustworthy. Note that these
values should not be used as universal recommendations to determine sample
sizes for having power to detect effects, because sufficient sample sizes are heav-
ily influenced by multiple factors. The values in Table 15.1 are based on models
used in small sample multilevel regression simulations (see McNeish & Stapleton,
2016a, for an overview), which should serve as a coarse approximation for
models with about five or fewer fixed effects, continuous outcomes, no missing
data, and one or two variance components. Longitudinal designs need larger
sample sizes because they typically have a more complicated covariance struc-
ture. Fortunately, in longitudinal designs we have measurement occasions nested
within individuals, and the minimum requirements refer to the sample of
respondents, and usually obtaining more respondents is simpler than obtaining
more clusters in cross-sectional studies.
With small samples at the lowest level (e.g., dyadic data or few repeated meas-

ures), estimation of random slopes is severely limited. For example, in
a longitudinal model with two measurement occasions, we can specify a random
intercept and a random slope for the variable Time. If there is also a covariance
between the intercept and the slope for Time, we fully exhaust the degrees of
freedom at the lowest level. As a result, the residual variance at the lowest level
equals zero, and software that cannot constrain this variance to zero fails. If we
have a second predictor variable in addition to Time, a random slope cannot be
added because such a model has too few degrees of freedom to be identified and
estimation will fail. As a consequence, small samples at the lowest level must
assume a simple variance structure. Marginal models to account for clustering
that do not use random effects such as generalized estimating equations or clus-
ter-robust errors may be worth considering with small lower-level sample sizes
as well (McNeish, 2014).

TABLE 15.1 Some rough guidelines about minimal number of groups

ML REML REML-KR corr.

Cross-sectional
Fixed part 30 20 5–8
Random part 30–40 7–10 —

Longitudinal
Fixed part 50 20 15
Random part 50–75 25 —
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Non-normal outcomes, such as categorical data or counts, require special esti-
mation procedures. Specifically, a generalized linear model must be specified
within the multilevel estimation procedure. There are two issues here. First,
these outcome variables provide less information than continuous distributions,
and consequently require larger sample sizes than models for continuous out-
comes (Moineddin, Matheson, & Glazier, 2007). The second issue pertains to
estimation. One of two methods are generally used to estimate non-normal out-
comes in multilevel regression. The first approximates the nonlinear likelihood
with a linear model using Taylor series expansion (Breslow & Clayton, 1993).
This method is computationally efficient, but known to be biased. The second
method is numerical approximation of the correct likelihood using adaptive
Gaussian quadrature (Pinheiro & Bates, 1995). With large samples, simulations
have shown that numerical approximation is superior to Taylor expansion (Pin-
heiro & Chao, 2006). With small samples, however, the advantage is less clear
because numerical approximation uses FML, so the more accurate REML
method cannot be used, and there is also no available small sample bias or
degree of freedom correction such as Kenward–Roger. So, the Taylor expansion
approach may be preferable with smaller samples. Additional discussion of
sample size for multilevel models with non-normal outcomes can be found in
McNeish (2016a) for binary outcomes or McNeish (2019) for count outcomes.

Multilevel structural equation models

A more complicated multilevel model is MSEM. Structural equation modeling
is a very general statistical model that combines factor analysis and regression or
path analysis. The interest is often on theoretical constructs, which are repre-
sented by the latent (unobserved) variables (factors). The relationships between
the constructs are represented by regression (or path) coefficients between the
factors, while the relationship between the latent variables and the observed vari-
ables are represented by factor loadings (which are also regression coefficients).
In MSEM, observed and latent variables and a model for their relations can be
formulated at all available levels. Just as in multilevel regression, regression coef-
ficients for individual variables may vary across clusters. All this makes MSEM
much more complex than multilevel regression, which is actually a special case
of the more general MSEM.
In MSEM, all the complexities of SEM can be modeled at two or more

levels. Since SEM models are based on relations between variables they are
founded on covariance structures between variables (one of the first programs
for SEM was called ACOVS, for Analysis of COVariance Structures; Joreskog,
Gruvaeus, & Van Thillo, 1970). Some models – for example, growth curve
models – can be specified both as a multilevel regression model and a MSEM.
In these cases with small samples, a multilevel specification is preferred due to
REML estimation and Kenward–Roger corrections. In SEM, we have only
FML estimation and large-sample Z-tests (McNeish & Matta, 2018). Essentially,
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using an MSEM package for these types of models is equivalent to using
a multilevel regression approach with the worst possible modeling choices. On
the other hand, MSEM has goodness-of-fit measures for the fit of the model
and latent variables that allow corrections for measurement error (Wu, West, &
Taylor, 2009). For a general introduction to SEM we refer to Kline (2016),
who briefly describes multilevel SEM. For an introduction to multilevel SEM
we refer to the chapters on SEM in Hox et al. (2018).
There have been many simulations on minimal sample sizes for single-level

SEM. Minimal sample sizes depend strongly on the complexity of the model
and the type of data, but most simulations point to a minimal sample size of 100
(e.g., Kline, 2016, p. 292), with 50 as a lower limit when the model is relatively
simple. This is much higher than the minimal sample sizes suggested for multi-
level regression. With small samples, both standard errors for the parameter esti-
mates and the global model test are untrustworthy. In addition, the chi-square
statistics used to evaluate the model tends to be too high with smaller samples,
leading to an operating Type I error rate that is much higher than the nominal
level; i.e., models are rejected too often (Curran, Bollen, Paxton, Kirby, &
Chen, 2002). McNeish and Harring (2017) report a simulation of a small
growth curve model, with the results showing that 100 subjects are needed for
acceptable results, and discuss small sample corrections to the chi-square test for
samples as low as 20. These corrections are not implemented in current SEM
software, but are easy to compute manually.

Bayes estimation

Bayesian estimation is an entirely different way to approach the estimation prob-
lem; see Chapters 2–4 (Miočević, Levy, & Savord; Van de Schoot, Veen,
Smeets, Winter, & Depaoli; Veen & Egberts). ML estimation is based on fre-
quentist reasoning: if I could do the analysis on an infinite number of random
samples from my population, what would the distribution of my estimates be? If
the population value is actually zero, what is the probability of obtaining the
estimate that I just found? In Bayesian estimation, the parameter under consider-
ation always has a probability distribution that describes the distribution of pos-
sible values. Before data are observed, this distribution is the prior distribution,
which describes the prior knowledge or beliefs about the possible parameter
values. After the data have been observed, the information in the data is com-
bined with the prior distribution to produce the posterior distribution that
describes the possible values after observing the data.
Bayesian estimation has some important advantages over frequentist estima-

tion. Firstly, unlike ML estimation, it does not rely on asymptotic reasoning;
Bayesian estimation is valid in small samples. In addition, the estimated values
are always in the right range. For example, with ML estimation in small samples,
it is quite possible for a variance estimate to be negative, which is an impossible
value.
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The default priors in most software are chosen to be uninformative; for
example, a normal distribution with a very large variance for the regression coef-
ficients, or a wide inverse gamma distribution for the variances. Even unin-
formative priors provide some information; for example, the information that
a variance parameter cannot be negative. With uninformative priors Bayesian
estimation tends to be no better with small samples than REML estimation
(McNeish, 2016b; Smid, McNeish, Miočević, & Van de Schoot, 2019). With
accurately specified informative priors, Bayesian estimation is much better
than ML or REML estimation, or Bayesian estimation with uninformative priors
(Smid et al., 2019). The disadvantage of informative priors is that an informative
prior that is wide of the mark will strongly bias the results (Depaoli, 2014).
There must be strong justification for an informative prior; for example, by
basing it on previous research, information from experts, or a pilot study. A nice
discussion of the use of informative priors with small samples is given by Van de
Schoot, Broere, Perryck, Zondervan-Zwijnenburg, and Van Loey (2015). For
a comparative review of Bayesian and frequentist methods with small samples in
MSEM, see Smid et al. (2019).
Bayesian estimation is attractive in MSEM with small samples. For example,

Meuleman and Billiet (2009) carried out a simulation study to evaluate how
many countries are needed for accurate MSEM estimates. They specified
within-country sample sizes comparable to the within-country samples in the
European Social Survey (around 1,200). The number of countries was varied
from 20 to 100. They conclude that 20 countries are not enough for accurate
estimation. They do not suggest a specific lower limit for the country-level
sample size; Hox, Van de Schoot, and Matthijsse (2013) concluded that a sample
of 60 countries produces acceptable results, which confirms the suggestion that
about 50 clusters is the minimum for accurate estimation in MSEM. Hox et al.
(2013) replicate the simulation using Bayesian estimation with uninformative
priors. Their main result is that a sample of about 20 countries is sufficient for
accurate Bayesian estimation, while a sample size of 10 countries yielded results
that were judged inaccurate.
Table 15.1 does not mention Bayesian estimation because suggestions are

highly dependent on specification of the prior. With uninformative priors,
Bayesian estimation should work with the sample sizes indicated for ML. Bayes-
ian estimation with weakly informative priors roughly corresponds to the
REML column, and Bayesian estimation with strongly informative priors is typ-
ically appropriate with lower samples than suggested for REML with the Ken-
ward–Roger correction (McNeish, 2016b).

Discussion

Multilevel regression and MSEM are complex models and given that the degree
of complexity of the model is one of the determinants of minimal sample size, it
is difficult to give firm rules of thumb. This leads to one clear recommendation
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with smaller samples: keep the model simple. In multilevel modeling, random
slopes complicate the model; with small samples these should be specified rarely
and with caution. Similarly, MSEM models with latent variables are complex
and the number of latent variables must be judiciously monitored.
Some of the approaches described elsewhere in this book can also be used in

multilevel analysis. For example, randomization tests can be applied in multilevel
data, by constructing a null model where subjects are randomly assigned to
groups, and individual predictor variable values are randomly permuted between
individuals within groups. Unfortunately, there is no multilevel software that
implements this, so this option is only available to researchers that can write
their own program.
Bootstrapping is often mentioned as a possible approach to small samples or dis-

tributional problems. However, this option is of limited usefulness, since bootstrap-
ping is not a small sample technique. Yung and Chan (1999) discuss bootstrapping
in small (single-level) samples. They conclude that existing simulation studies show
that the bootstrap generally performs better than asymptotic methods. They do not
provide clear recommendations for the minimal sample size for the bootstrap to
work, citing simulation studies where the recommended minimal sample size varies
from 20 to 400 (Yung & Chan, 1999, p. 100). Given such results, the bootstrap is
not the best approach when the problem is small sample sizes. In addition, multi-
level bootstrapping is complicated (Preacher & Selig, 2012). The straightforward
but naïve notion that we simply bootstrap clusters and subsequently bootstrap indi-
viduals within groups is incorrect. Not only will it lead to different sample sizes in
different bootstrap samples, it also fails to maintain the dependence structure across
bootstrap samples. Most software implements multilevel bootstrapping by only
resampling groups. This makes sense only if the multilevel structure consists of
repeated measures within subjects. The correct approach to multilevel bootstrap-
ping is the residual bootstrap, where the model is fitted to the data and the residuals
are bootstrapped, after they have been adjusted to reflect the estimated covariances
exactly (Goldstein, 2011), for a review of the issues in multilevel bootstrapping).
A study by Cameron, Gelbach, and Miller (2008) showed that the “wild boot-
strap”, which is similar to the residual bootstrap, was effective with as few as five
clusters, which is even lower that the minimal sample size reported in Yung and
Chan (1999). Unfortunately, the residuals bootstrap is not implemented in all soft-
ware (but is available in MLwiN (Rasbash, Steele, Browne, & Goldstein, 2019)
and Mplus (Muthén & Muthén, 2017); the wild bootstrap can be carried out in the
R package clusterSEs (Esarey & Menger, 2018).
Another straightforward remedy if the number of groups is small is a fixed-effect

model that includes all possible dummy variables to model the clusters (McNeish
& Kelley, 2019). In this approach, we can validly use Ordinary Least Squares pro-
cedures for single-level regression, which does not assume large samples, or com-
parative methods for single-level SEM, some of which work with smaller samples.
An important disadvantage of the fixed-effect approach is that there can be
no second-level variables in the model, and no random slopes. However, if the
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interest is only in the fixed effects of the lowest-level variables, these approaches
are simple and effective with as few as four clusters (McNeish & Stapleton, 2016b).
Whether ML estimation or Bayesian estimation is used, with small samples

convergence problems and inadmissible estimates are likely to occur. With ML
estimation, supplying good starting values for the estimation procedure often
helps. Some software allows the estimation procedure to be automatically
repeated with different starting values, which allows an evaluation of the estima-
tion procedure. If using different starting values leads to different “converged”
estimates, all estimates are questionable. With Bayesian estimation, more and
longer chains are often needed to converge on the correct posterior distribution.
Regarding issues in Bayesian estimation with small samples, we refer to Hox
et al. (2013) for a discussion of issues with uninformative priors, and Van de
Schoot et al. (2015) for a discussion involving informative priors.
This review of issues in multilevel data with small sample sizes focusses on the

accuracy of parameter estimation and standard errors. One important issue has
been conspicuously neglected, which is the issue of power. With small samples,
the power to reject an incorrect null hypothesis is low. It is difficult to provide
general rules here, because we are investigating complex multivariate models,
and the power to reject an incorrect null hypothesis will be different for differ-
ent parameters. Furthermore, the power for a test of a specific parameter also
depends on the multilevel structure. Having 20 countries is a small sample, but
if the within-country sample size is 1,200, some parameters can still be tested
with high power, while other parameters may only be tested with high power if
the effect size is very large. The general recommendation is to assess the power
for a specific parameter given the model and the data, and the most general
approach to do this is simulation (cf. Hox et al., 2018, Chapter 12).
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Introduction

Structural equation modeling (SEM) is a statistical modeling procedure that is
used in the social and behavioral sciences to study the relationships among latent
variables (Bollen, 1989). Usually, a structural equation model can be divided into
two parts: The measurement part relates the latent variables to a set of observed
variables or indicators, and the structural part represents the hypothesized relation-
ships among these latent variables. A typical model is presented in Figure 16.1.
SEM has a bad reputation when it comes to sample size requirements,

which is likely due to a combination of factors. First, structural equation
models can become quite large, involving many (observed and latent) vari-
ables. As a result, many parameters must be estimated, and a reasonable
amount of data is needed to obtain good-quality estimates for those
parameters. Second, the statistical machinery behind (traditional) SEM is based
on large sample theory, which implies that good performance (of both point
estimation and inference) is only guaranteed when the sample size is large
enough. Third, some simulation studies in the SEM literature have suggested
that huge sample sizes are needed in order to yield trustworthy results. And
although these findings were only relevant for specific settings (one infamous
example is the so-called “Asymptotically Distribution Free” or ADF estima-
tion method), these studies fueled the now conventional wisdom that SEM
can only be used if the sample size is reasonably large (say, n > 500) or even
very large (n > 2000).
For many reasons, however, small sample sizes are simply a reality. When this

is the case, many applied researchers hesitate to use SEM and instead employ
suboptimal procedures, such as regression or path analysis based on sum scores.
Unfortunately, these procedures often lead to biased results and misinformed



conclusions. Perhaps a better strategy would be to keep the spirit of SEM but to
also look for solutions to handle the small sample problem. In this chapter, I will
describe some of these solutions. For readers seeking guidance on choosing an
appropriate sample size for their study, I suggest reading Muthén and Muthén
(2002) or Wolf, Harrington, Clark, and Miller (2013).
The remainder of this chapter is organized into three sections: First, I discuss

some issues that may arise with small sample sizes in SEM. Next, I present four
alternative estimation approaches that may be used (instead of traditional SEM)
when the sample size is small. Finally, I describe some small sample corrections
for test statistics and standard errors.

Some issues with small samples sizes in SEM

Consider a fairly large model similar to the model in Figure 16.1. If all observed
variables are continuous, the default estimator in most (if not all) SEM software
packages is maximum likelihood. Usually, the maximum likelihood estimator is

FIGURE 16.1 A typical structural equation model with a structural part (within the dashed
box) and multiple measurement models. Age is an observed variable, but X1, X2, X3, M,
and Y are latent variables. Each latent variable is measured by a set of observed indicators.
For example, X1 is measured by a set of r indicators: x11, x12, x13, …, x1r
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a good choice because it features many desirable statistical properties. In add-
ition, the maximum likelihood approach can be adapted to handle missing data
(under the assumption that data are missing at random), and so-called “robust”
standard errors and test statistics have been developed to deal with non-normal
data and mis-specified models.
However, if the sample size is rather small (say, n < 200), then several problems

may arise; this has been well documented in the literature (Bentler & Yuan, 1999;
Boomsma, 1985; Nevitt & Hancock, 2004). First, the model may not converge,
which means that the optimizer (the algorithm trying to find the values for the model
parameters that maximize the likelihood of the data) has failed to find a solution that
satisfies one or more convergence criteria. On rare occasions, the optimizer is simply
mistaken. In this case, changing the convergence criteria, switching to another opti-
mization algorithm, or providing better starting values may solve the problem. But if
the sample size is small, it may very well be that the data set does not contain enough
information to find a unique solution for the model.
A second problem may be that the model converged but resulted in a non-

admissible solution. This means that some parameters are out of range. The
most common example is a negative variance. Another example is a correlation
value that exceeds 1 (in absolute value). It is important to realize that some esti-
mation approaches (both frequentist and Bayesian) may—by design—never pro-
duce out-of-range solutions. Although this may seem like a desirable feature, it
merely masks potential problems with either the model or the data. It is import-
ant that users notice negative variances (or other out-of-range parameters; Sava-
lei & Kolenikov, 2008). Negative variances are often harmless, but they can be
a symptom of structural misspecification. Several ways to test for structural mis-
specification are discussed in Kolenikov and Bollen (2012).
A third problem relates to the fact that maximum likelihood is a large sample

technique. This implies that working with small sample sizes may lead to biased
point estimates, standard errors that are too small, confidence intervals that are
not wide enough, and p-values for hypothesis tests that cannot be trusted.

Possible solutions for point estimation

In this section, I briefly describe four alternative approaches to estimate param-
eters in an SEM framework with small sample sizes. The purpose of this section
is not to give an exhaustive overview of all possible solutions, or to compare
them under different settings, but to briefly introduce these solutions because
they are not widely known among applied users. I limit myself to frequentist
methods and solutions that are available in free and open-source software.

Penalized likelihood estimation

Penalized likelihood methods (or regularization methods) have been devel-
oped in the (statistical) machine-learning literature and are particularly useful
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when the sample size is small—compared to the number of variables in the
model (Hastie, Tibshirani, & Friedman, 2009). Penalized likelihood methods
are similar to ordinary likelihood methods (like maximum likelihood estima-
tion) but include an additional penalty term to control for the complexity of
the model. The penalty term can be formulated to incorporate prior know-
ledge about the parameters or to discourage parameter values that are less
realistic (e.g., far from zero). Two popular penalty terms are the l2 or ridge
penalty, and the l1 or lasso (least absolute shrinkage and selection operator)
penalty (Tibshirani, 1996).
To illustrate how this penalization works, imagine a univariate regression

model with a large number of predictors. Without any penalization, all the
regression coefficients are computed in the usual way. However, the ridge pen-
alty term will shrink (all) the coefficients towards zero, whereas the lasso penalty
will additionally shrink tiny coefficients all the way to zero. In the latter
approach, only “strong” predictors (for which there is strong support in the
data) survive, while “weak” predictors that can hardly be distinguished from
noise are eliminated. In general, adding penalty terms leads to models that are
less complex, and this is particularly beneficial if the sample size is small. Alter-
native penalty terms have been proposed to overcome some of the limitations of
the ridge and lasso penalties. Two recent penalties are smoothly clipped absolute
deviation (SCAD; Fan & Li, 2001) and minimax concave penalty (MCP;
Zhang, 2010). Interestingly, penalized likelihood methods are closely related to
Bayesian estimation methods. In particular, ridge and lasso penalties correspond
to Gaussian and Laplace priors, respectively, whereas both SCAD and MCP cor-
respond to certain improper priors (Huang, Chen, & Weng, 2017).
Although these penalization approaches have been around for a few decades,

they have only recently been applied to SEM (Jacobucci, Grimm, & McArdle,
2016; see also Huang et al., 2017). Fortunately, we now have access to several
free and open-source R packages that have implemented these methods for
SEM. Two examples are the regsem package (Jacobucci, Grimm, Brandmaier,
Serang, & Kievit, 2018) and the lslx package (Huang & Hu, 2018).
A disadvantage of these penalized methods is that the user needs to indicate

which parameters require penalization, and how much. In an exploratory ana-
lysis, it may be useful and even advantageous to penalize parameters towards
zero if little support for them can be found in the data. However, SEM is usu-
ally a confirmatory approach, and the user needs to ensure that all parameters
that are initially postulated in the model are not removed by the penalization.

Model-implied instrumental variables

Bollen (1996) proposed an alternative estimation approach for SEM based on
model-implied instrumental variables in combination with two-stage least squares
(MIIV-2SLS). In this approach, the model is translated to a set of (regression)
equations. Next, each latent variable in these equations is replaced with its marker
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indicator (usually the first indicator, where the factor loading is fixed to unity and
the intercept is fixed to zero) minus its residual error term. The resulting equations
no longer contain any latent variables but have a more complex error structure.
Importantly, ordinary least squares estimation is no longer suitable for solving
these equations because some predictors are now correlated with the error term in
the equation. This is where the instrumental variables (also called instruments)
come into play. For each equation, a set of instrumental variables must be found.
An instrumental variable must be uncorrelated with the error term of the equation
but strongly correlated with the problematic predictor. Usually, instrumental vari-
ables are sought outside the model, but in Bollen’s approach, the instrumental
variables are selected from the observed variables that are part of the model. Sev-
eral (automated) procedures to find these instrumental variables within the model
have been developed. Once the instruments are selected, an estimation procedure
is needed to estimate all the coefficients of the equations. Econometricians devel-
oped a popular method to accomplish this called two-stage least squares (2SLS).
A major motivation for MIIV-2SLS is that it is robust: It does not rely on nor-

mality and is less likely to spread bias (which may arise from structural misspecifi-
cations) in one part of the model to other parts of the model (Bollen, 2018).
Another attractive feature of MIIV-2SLS is that it is noniterative. Meaning, there
cannot be any convergence issues, and MIIV-2SLS may provide a reasonable solu-
tion for models where the maximum likelihood estimator fails to converge.
An important aspect of the model-implied instrumental variables approach is

the (optimal) selection of instruments when there are a large number of instru-
ments to choose from. Bollen, Kirby, Curran, Paxton, and Chen (2007) found
that with small sample sizes (e.g., n < 100) it was best not to use a large number
of instruments because it led to greater bias. More research is needed to evaluate
the performance of this estimator in settings where the sample size is (very)
small. The MIIV-2SLS approach is available in the R package MIIVsem
(Fisher, Bollen, Gates, & Rönkkö, 2017).

Two-step estimation

In the two-step estimation approach, a strict distinction is made between the
measurement part and the structural (regression) part of the model, and estima-
tion proceeds in two steps. In the first step, all the measurement models are
fitted one by one. In the second step, the full model is fitted, including the
structural part, but the parameters of the measurement models are kept fixed to
the values found in the first step. The main motivation for the two-step
approach is to separate the measurement model(s) from the structural part during
estimation so that they cannot influence each other. In the traditional maximum
likelihood framework, all parameters are fitted simultaneously. As a result, mis-
specifications in the structural model may affect the estimated factor loadings of
one or more measurement models, and this may lead to interpretation problems
for the latent variables (Burt, 1976; see also Anderson & Gerbing, 1988).
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The two-step approach received renewed attention in the latent class litera-
ture (Bakk & Kuha, 2018; Bakk, Oberski, & Vermunt, 2014) and was recently
implemented within the R package lavaan (Rosseel, 2012); see also Chapter
17 (Smid & Rosseel). For very large models with many latent variables, it may
be expected that fewer convergence problems arise because the model is esti-
mated in parts. Encountering convergence issues in the first step allows the
researcher to identify the problematic measurement model(s). If convergence
issues only occur in the second step, it becomes clear that the problem lies in
the structural part of the model.

Factor score regression

The simple but powerful idea of factor score regression is to replace all latent
variables with factor scores. Similar to the two-step method, each measurement
model is fitted one at a time. Next, factor scores are computed for all the latent
variables in the usual way. Once the latent variables have been replaced by their
factor scores, all variables are observed. In a final step, the structural part of the
model is estimated. This estimation often consists of a regression analysis or
a path analysis (as in Figure 16.1). The name “factor score regression” refers to
both scenarios.
If used naïvely, factor score regression will likely lead to substantial bias in the

estimated parameters of the structural part, even when the sample size is very
large (Skrondal & Laake, 2001), because the factor scores have been treated as if
they were observed without measurement error. Fortunately, there are various
ways to correct for this bias. For example, Croon (2002) devised a correction
that removes the bias, and several studies have shown that this method works
remarkably well (Devlieger, Mayer, & Rosseel, 2016; Devlieger & Rosseel,
2017). Croon’s method works as follows: First, the variance–covariance matrix
of the factor scores is computed. Based on the information from the measure-
ment models, the elements of the variance–covariance matrix are corrected in
order to approximate the model-implied variances and covariances of the latent
variables. This corrected variance–covariance matrix then forms the input of
a regular regression or path analysis.
Similar to the two-step method, factor score regression (combined with Croon’s

correction) may be a useful alternative for fairly large models (with many measure-
ment models) in combination with a relatively small sample size. In addition, it is
possible to fit the measurement models using a noniterative estimator (for an
example based on instrumental variables, see Hägglund, 1982). For the structural
model, depending on whether it is recursive, a single-stage or a two-stage least
squares estimator can be used. In short, this method can be made fully noniterative,
which would avoid any convergence issues (Takane & Hwang, 2018). Still,
Croon’s correction may produce a variance–covariance matrix (for the variables
belonging to the structural part) that is not positive definite—particularly if the
measurement error is substantial. Therefore, Croon’s correction is not entirely free

Small sample solutions for SEM 231



from estimation problems. In this case, the only solution may be to create a sum
score for each latent variable and to estimate a model where each latent variable has
a single indicator (the sum score) with its reliability fixed to a realistic value that is
provided by the user (Savalei, 2018).

Discussion

All the methods I have described in this section have advantages and disadvan-
tages. The penalized likelihood approach is perhaps the only method that was
specifically designed to handle (very) small sample sizes. The other three
methods use a divide-and-conquer approach; they break down the full model
into smaller parts and estimate the parameters of each part in turn. Apart from
reducing the complexity and being less vulnerable to convergence issues, the
latter three methods have the advantage of being good at localizing the prob-
lematic parts within a large model.
At the time of writing, it is not clear which method is universally superior

when the sample size is (very) small. Instead of picking one method, I would rec-
ommend that applied users try all of them. Each method may provide additional
insights. If the final results agree across multiple methods, then your confidence in
your findings will increase. However, if the results diverge, this may indicate that
the sample size is simply too small, given the complexity of the model.

Small sample inference for SEM

In this section, I will assume that a point estimation using maximum likelihood
estimation, for example, was successful and resulted in an admissible solution. The
next step is to note the inference part of the model: the chi-square test statistic
(for overall goodness of fit), the standard errors of the individual model param-
eters, and the corresponding confidence intervals and/or hypothesis tests. Many
authors have documented that when the sample size is small, the chi-square test
leads to inflated Type I errors even under ideal circumstances (i.e., correctly speci-
fied model, normal data; see Nevitt & Hancock, 2004 and references therein).
Similarly, standard errors are often attenuated (too small), and confidence intervals
are not wide enough. In the next two subsections, I will briefly discuss a few
attempts to tackle these small sample inference issues in SEM.

Improving the chi-square test statistic

Several corrections have been suggested to improve the performance of the chi-
square test statistic, such as the Bartlett correction (Bartlett, 1937, 1954). Vari-
ations of this correction exist, but the one most studied (Nevitt & Hancock,
2004; see also Fouladi, 2000; Savalei, 2010) is a simplified correction proposed
by Bartlett (1950) in the context of exploratory factor analysis. A more general
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correction is called the Swain correction (Swain, 1975), and even more correc-
tions were described by Yuan, Tian, and Yanagihara (2015).
Herzog, Boomsma, and Reinecke (2007) and Herzog and Boomsma (2009)

compared these corrections and concluded that the Swain correction worked
best; however, they only looked at complete and normal data. Shi, Lee, and
Terry (2018) also compared the various corrections in more realistic settings and
concluded that the so-called “empirically” corrected test statistic proposed by
Yuan et al. (2015) generally yielded the best performance—particularly when fit-
ting large structural equation models with many observed variables. Still, they
warn that when the number of variables (P) in a model increases, the sample
size (n) also needs to increase in order to control Type I error. They suggest
that, roughly speaking, n should be larger than P2 (Shi et al., 2018, p. 39).
Finally, Jiang and Yuan (2017) proposed four new corrected test statistics aiming
to improve model evaluation in nonnormally distributed data with small sample
sizes. The results were promising, but they conclude:

To our knowledge, there does not exist a test statistic that performs well
universally. As indicated by our results, the overall model evaluation with
small n is rather challenging in SEM. Although the new statistics allow
more reliable model evaluation than existing ones under conditions of
nonnormally distributed data at small n, their performances are still far
from universally optimum.

(Jiang & Yuan, 2017, p. 493)

To evaluate models when the sample size is small, perhaps the chi-square test
should be abandoned altogether and alternatives approaches should be explored.
One approach is to consider confidence intervals and tests of close fit based on
the standardized root mean square residual (SRMR; Maydeu-Olivares, 2017;
Maydeu-Olivares, Shi, & Rosseel, 2018). Although these tests were not con-
structed with small sample sizes in mind, they seem to work well even when n
= 100 (the smallest sample size considered in Maydeu-Olivares et al., 2018) and
the model is not too large. These tests have been implemented as part of the
lavResiduals() function of the lavaan package.
Yet another approach is to consider local fit measures. This can be based on

evaluating just a subpart of the model. For example, one measurement model at
a time, as in the two-step and factor score regression approaches, or one equation at
a time, as is done using the Sargan test in Bollen’s model-implied instrumental vari-
ables approach. A different set of local fit measures is based on graphical criteria
such as d-separation or trek-separation (Thoemmes, Rosseel, & Textor, 2018).

Better standard errors and confidence intervals

Literature on the performance of standard errors in SEM is limited (Yuan & Bentler,
1997; Yuan & Hayashi, 2006) and is mostly concerned with the effect of
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nonnormality or model misspecifications on the quality of the standard errors. Small
sample sizes, indeed, were not the focus of these studies. But in general, it is well
known that if large sample theory is used to construct analytic expressions in order to
compute standard errors, they may perform poorly in small samples.
When assumptions underlying analytic standard errors are not met, it is often

suggested to use a resampling approach instead. One popular method is the
bootstrap (Efron & Tibshirani, 1993): A bootstrap sample is generated (either by
randomly sampling rows from the original data set with replacement or by simu-
lating a new data set under the model), and a new set of parameters is estimated
for this bootstrap sample. This is repeated a large number of times (say, 1,000),
and the standard deviation of a parameter across all replicated bootstrap samples
is used as an estimate of the standard error for that parameter. Unfortunately,
despite many other advantages (Chernick, 2007), the bootstrap does not appear
to be a reliable solution when the sample size is (very) small (Yung & Bentler,
1996). Hence, it may be worthwhile to explore better analytical solutions after
all. Small sample corrections for (robust) standard errors have been developed in
econometrics (MacKinnon & White, 1985) and have recently been adapted to
the SEM context (Dudgeon, Barendse, & Rosseel, 2018). The preliminary
results are encouraging, but this is still a work in progress. At the time of writ-
ing, this technology is not yet available in SEM software.

Conclusion

In this chapter, we discussed several problems in the context of SEM when
the sample size is small and standard (maximum likelihood) estimation
methods are used, such as nonconvergence, non-admissible solutions, bias,
poorly performing test statistics, and inaccurate standard errors and confidence
intervals. As potential solutions to attain better point estimates (or a solution
at all), we briefly discussed four alternative estimation approaches: penalized
likelihood estimation, model-implied instrumental variables, two-step estima-
tion, and factor score regression. Only the first method was specifically
designed to handle small samples. The latter approaches were developed with
other concerns in mind, but they may be viable alternatives for estimation
when the sample size is small.
For the inference part, I discussed various attempts to improve the perform-

ance of the chi-square test statistic for evaluating global fit in the presence of
small samples. For the standard errors, I underlined that bootstrapping may not
be the solution we are looking for. Unfortunately, to attain better standard
errors (and confidence intervals) in the small sample setting, we may need to
wait until new technology is available. Admittedly, my selection of topics in this
chapter is somewhat biased. I certainly did not present all the solutions that have
been proposed in the literature, but interested readers may consult Deng, Yang,
and Marcoulides (2018) for an alternative perspective.
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In this chapter, I focused on frequentist solutions, but a Bayesian approach is
presented in Chapter 17 of this book. A major advantage of the Bayesian
approach is that it does not rely on large sample asymptotics. This implies, for
example, that getting correct standard errors and credible (confidence) intervals
is not an issue in the Bayesian framework. On the other hand, model evaluation
in a Bayesian framework requires a new set of skills; this may be intimidating
for those who are unfamiliar with the Bayesian framework. The same is true for
specifying priors. Choosing adequate priors is an essential ingredient of Bayesian
estimation, and you should be prepared to critically reflect on this before you
proceed. If you are unwilling to specify any priors, and you rely on software
defaults, then you should probably avoid Bayesian SEM altogether (McNeish,
2016). If, on the other hand, you fully endorse the Bayesian approach, and you
have a priori knowledge that can be encoded in informative priors, the Bayesian
approach is an excellent choice.
A last closing comment: If the sample size is (very) small, it may be that the

data simply do not contain enough information to answer the research questions.
In that case, one should not expect miracles from statistical technology. Small
samples sizes have limitations, and we should accept them.
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Introduction

Bayesian estimation is regularly suggested as a beneficial method when sample
sizes are small, as pointed out by systematic literature reviews in many fields, such
as: organizational science (Kruschke, 2010), psychometrics (Rupp, Dey &
Zumbo, 2004), health technology (Spiegelhalter, Myles, Jones & Abrams, 2000),
epidemiology (Rietbergen, Debray, Klugkist, Janssen & Moons, 2017), education
(König & Van de Schoot, 2017), medicine (Ashby, 2006) and psychology (Van de
Schoot, Winter, Ryan, Zondervan-Zwijnenburg & Depaoli, 2017). Similarly,
many simulation studies have shown the advantages of applying Bayesian estima-
tion to address small sample size issues for structural equation models (SEMs),
instead of using frequentist methods (see, for example, Depaoli, 2013;
B. O. Muthén & Asparouhov, 2012; Stegmueller, 2013; Van de Schoot, Broere,
Perryck, Zondervan-Zwijnenburg & Van Loey, 2015; Van Erp, Mulder &
Oberski, 2018). However, as discussed in McNeish (2016) and echoed in the sys-
tematic literature review of Smid, McNeish, Miočević and Van de Schoot (2019),
the use of Bayesian estimation with only diffuse default priors can cause extremely
biased estimates when samples are small. The specification of informative priors is
therefore required when Bayesian estimation is used with small samples.
Besides using Bayesian estimation with informative priors, there are also options

for analyzing SEMs with small samples within the frequentist framework. Many
studies have shown that the use of maximum likelihood (ML) estimation with small



samples can result in convergence problems, inadmissible parameter solutions and
biased estimates (see, for example, Boomsma, 1985; Nevitt & Hancock, 2004).
Two newly introduced and promising frequentist methods to analyze SEMs with
small samples are two-step modeling (two-step) and factor score regression (FSR).
A recent development is the implementation of two-step and FSR in the accessible
software lavaan (Rosseel, 2012), as discussed in Chapter 16 (Rosseel). In two-
step, the measurement models for the latent variables are estimated separately as
a first step. As a second step, the remaining parameters are estimated while the
parameters of the measurement models are kept fixed to their estimated values.
Two-step originates from work of Burt (1976) and Anderson and Gerbing (1988),
and more recent work can be found in the latent class literature (e.g., Bakk,
Oberski, & Vermunt, 2014). In FSR, each latent variable in the model is replaced
by factor scores and subsequently path analysis or regression analysis is run using
those factor scores. Recent developments in FSR can be found in studies of Croon
(2002); Devlieger, Mayer and Rosseel (2016); Devlieger and Rosseel (2017), Hos-
hino and Bentler (2013), and Takane and Hwang (2018).
No simulation studies were found in which two-step and FSR are compared

to Bayesian estimation. Therefore, the goal of this chapter is to examine the per-
formance of the following estimation methods under varying sample sizes: two-
step, FSR, ML estimation and Bayesian estimation with three variations in the
specification of prior distributions. The remainder of the chapter is organized as
follows: next, the statistical model will be discussed, as well as software details,
the simulation conditions, and evaluation criteria. Then, results of the simulation
study will be described. We end the chapter with a summary of the results, and
recommendations on when to use which estimation method in practice.

Simulation design

Statistical model

The model of interest in this simulation study is an SEM in which latent variable
X is predicting latent variable Y ; see Figure 17.1. Both latent variables are meas-
ured by three continuous indicators. The model and population values are simi-
lar to the model discussed in Rosseel and Devlieger (2018). The parameter of
interest in the current chapter is the regression coefficient β. The standardized
regression coefficient, βZ ; is 0.243, which can be considered a small effect
according to Cohen (1988).

Software details

Data sets were generated and analyzed in R version 3.4.4. (R Core Team, 2013),
using packages lavaan version 0.6–1 (Rosseel, 2012) for the analyses of two-step,
FSR and ML; and blavaan version 0.3–2 (Merkle & Rosseel, 2018) for the ana-
lyses of the Bayesian conditions. Example code of the analyses using the six

240 Sanne C. Smid and Yves Rosseel



estimation methods can be found in supplemental file S1. All simulation code and
supplemental files are available online (osf.io/bam2v/).
Six levels of sample size were examined, and for each sample size 1,000 data

sets were generated according to the model and population values shown in
Figure 17.1. Each generated data set was analyzed using six estimation methods.
Accordingly, a total of 6 (sample size) * 6 (estimation methods) = 36 cells were
investigated in the simulation design.

Simulation conditions

Six levels of sample size are studied: 10, 20, 50, 100, 250 and 500 to investigate
how sample size influences the performance of the varying estimation methods.
For the current model, sample sizes of 10 and 20 are extremely small. A sample
size of 50 is considered small, and sample sizes of 100 and 250 are considered
medium. The sample size of 500 is considered large and included as a benchmark.
Six estimation methods are considered in the current study: three frequentist esti-

mation methods – two-step, FSR and ML – and Bayesian estimation with three types
of prior specifications. For the three frequentist methods, all default settings of the
lavaan package were used. For the default settings, see the help page for lavOp-
tions() in the lavaan package. For the Bayesian methods, we used four chains
instead of the two default chains. In terms of convergence, we used the Potential

x1 x2 x3

Y
= 0.25

y1 y2 y3

1*
0.8

0.6

X

1*
0.8

0.6

1 1 1 1 1 1

ε1 ε2 ε3 ε6ε5ε4

εy

1

1

FIGURE 17.1 The model and unstandardized population values used in the simulation
study. For scaling, the first factor loading for each factor is fixed to 1 (denoted by 1* in the
figure), and the means of the latent variables are fixed to zero (not shown in the figure)
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Scale Reduction (PSR) factor, set it to a stricter criterion of 1.01, and used the follow-
ing minimum number of iterations: a fixed burn-in period of 10,000 iterations (speci-
fied in blavaan by adapt = 2,000, burnin = 8,000), and for the sampling
period 20,000 iterations (specified in blavaan by sample = 20.000)1. As an
additional check, we visually assess convergence for two randomly selected data sets
for each of the sample sizes and the Bayesian conditions (2 data sets * 6 sample sizes *
3 Bayesian conditions = 36 cases), by inspecting the traceplots for all parameters.
Three variants of prior specifications were examined, and all priors were specified

for unstandardized parameters: BayesDefault, BayesInfoI, and BayesInfoII; see Table
17.1. The BayesDefault condition refers to a naïve use of Bayesian estimation, where
only blavaan default priors are used. The BayesInfoI and BayesInfoII conditions
refer to research situations where weakly prior information is available. In BayesInfoI,
weakly informative priors are specified for the factor loadings, and blavaan default
priors are specified for the remaining parameters. In BayesInfoII, weakly informative
priors are used for both the factor loadings and regression coefficient β, in combin-
ation with blavaan default priors for the remaining parameters. Weakly informative
priors were specified as follows: we set the mean hyperparameter of the normal distri-
bution equal to the population value, and the precision hyperparameter equal to 1.

Evaluation criteria

For each of the estimation methods and sample sizes, the occurrence of conver-
gence problems and warnings will be assessed. For the parameter of interest,
regression coefficient β, the following evaluation criteria will be used to evaluate
the performance under the varying estimation methods and sample sizes: relative
mean bias, relative median bias, mean squared error (MSE), coverage and
power. All evaluation criteria will be computed across completed replications2.
Relative mean bias shows the difference between the average estimate across

completed replications and the population value, relative to the population
value. Relative median bias shows the relative difference between the median

TABLE 17.1 Specified prior distributions for the three Bayesian conditions

Parameter BayesDefault BayesInfoI BayesInfoII

Factor loadings N (0, 0.01) N (pop, 1) N (pop, 1)
Regression coefficient β N (0, 0.01) N (0, 0.01) N (pop, 1)
Variances latent variables* G(1, 0.5) Gð1, 0.5) G(1, 0.5)
Intercepts observed variables N (0, 0.01) N (0, 0.01) N (0, 0.01)
Residual variances observed variables* G(1, 0.5) G(1, 0.5) G(1, 0.5)

Note. The column BayesDefault shows the blavaan default priors (Merkle & Rosseel, 2018).
* Note that in blavaan the default priors are placed on precisions, which is the inverse of the variances.
Abbreviations: N = Normal distribution with mean μ and precision τ; G = Gamma distribution
with shape α and rate β parameters on the precision (which equals an Inverse Gamma prior with
shape α and rate β parameters on the variance); pop = population value used in data generation.
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across completed replications and the population value. The relative mean and
median bias are computed by:

Relative mean bias ¼ �θ � θ
� �

=θ
	 
� 100;

Relative median bias ¼ ~θ � θ
� �

=θ
	 
� 100;

where �θ denotes the mean across completed replications, θ is the population
value used for data generation, and ~θ denotes the median across completed repli-
cations. Values of relative mean and median bias below -10% or above +10%
represent problematic levels of bias (Hoogland & Boomsma, 1998).
MSE is a combination of variability and bias across completed replications, where

lower values indicate more stable and less biased estimates across replications. The
MSE is computed by: MSE ¼ σð Þ2 þ �θ � θ

� �2
; where σ is the standard deviation

across completed replications, �θ denotes the average estimate across completed rep-
lications and θ is the population value (Casella & Berger, 2002). A narrower distri-
bution of estimates across replications (i.e., less-variable estimates) leads to a smaller
standard deviation across completed replications. Besides, the closer the estimated
values are to the population value across completed replications, the smaller the
amount of bias. MSE will be lower (and thus preferable) when the standard devi-
ation and amount of bias across completed replications are small.
Coverage shows the proportion of completed replications for which the sym-

metric 95% confidence (for frequentist methods) or credibility (for Bayesian
methods) interval contains the specified population value. Coverage values can
range between 0 and 100, and values within the [92.5; 97.5] interval are con-
sidered to represent good parameter coverage (Bradley, 1978).
Finally, statistical power is expressed as the proportion of estimates for which the

95% confidence (for frequentist methods) or credibility (for Bayesian methods)
interval did not contain zero, across completed replications. Power values can range
from 0 to 100, where values above 80 are preferred (Casella & Berger, 2002).

Results

Convergence

With small samples, we encountered severe convergence problems when frequen-
tist methods were used; see Table 17.2. Differences between the three frequentist
methods were especially visible when n5 100. With n5 100, two-step resulted
in most non-converged cases, followed by ML, and finally followed by FSR.
The three Bayesian conditions produced results in all 1,000 requested replications

under all sample sizes3. However, when visually examining trace plots (for 2 ran-
domly selected data sets � 6 sample sizes � 3 Bayesian conditions = 36 cases), severe
convergence problems were detected for the smaller sample sizes, such as mode-
switching; see Figure 17.2A. Mode-switching is defined as a chain that moves back
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and forth between different modes (Erosheva & Curtis, 2011; Loken, 2005), such as
the chains in Figure 17.2A which move back and forth between values 5 and -5.
To further examine the extent of Bayesian convergence problems, we assessed

trace plots for another 25 randomly selected data sets (resulting in 25 data sets *
6 sample sizes * 3 Bayesian conditions = 450 cases). In the assessment of these
25 selected data sets, mode-switching only occurred when BayesDefault was
used when n ¼ 10 or 20. Mode-switching disappeared when weakly informative
priors were specified; see Figures 17.2B and 17.2C. Besides mode-switching,
mild spikes were also detected when n5 100; see Figure 17.2D. Spikes are
extreme values that are sampled during Markov Chain Monte Carlo iterations,
and could be seen as severe outliers. The appearance of spikes was reduced by
the specification of weakly informative priors; see Figures 17.2E and 17.2F.
From n ¼ 100 onward, no convergence problems were detected when default
priors were used. For more details on the convergence checks and more
examples of trace plots, see supplemental file S2 (osf.io/bam2v/).

Warnings

For all small sample sizes, the three frequentist methods lead to a high percentage of
warnings within the number of completed replications; see Table 17.2. All warnings
were about negative variance parameters4. Differences between the three methods
were especially present when n5 100. For these sample sizes, ML led to the highest
percentage of warnings, followed by FSR, and followed by two-step. As can be seen
in Table 17.2, the number of warnings decreased when sample size increased. The
number of completed replications without warnings about negative variance estimates
is higher for two-step and FSR compared to ML, especially when n5 100.
For BayesDefault, three warnings about a small effective sample size occurred

for n ¼ 10, and two for n ¼ 205. No warnings occurred in the BayesInfoI and
BayesInfoII conditions.

Results for regression coefficient β

In Figure 17.3, the relative mean bias (top) and relative median bias (bottom)
are presented for the varying sample sizes and estimation methods. Because of
the large discrepancy between the mean relative bias and median relative bias for
sample sizes below 100, we plotted the complete distribution of parameter esti-
mates for β across replications; see Figure 17.4. For all estimation methods, an
increase in sample size led to: a decrease in the number of outliers; a narrower
distribution of estimates (i.e., estimates are more stable across replications); and
estimates closer to the population value. With samples as small as 10 and 20, the
distributions of estimates are wider and a lot of outliers are present, which are
signs of unstable estimates across replications. ML produced the most extreme
outliers (up to 37.57 when n ¼ 10). FSR and two-step show the narrowest dis-
tribution of estimates, indicating relatively stable behavior across replications.
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FIGURE 17.3 Relative Mean Bias (top) and Relative Median Bias (bottom) for param-
eter β, under varying sample sizes and estimation methods. The static black horizontal
lines represent the desired ±10% interval



Overall, BayesInfoII offers the best compromise between bias and stability:
a narrow distribution of estimates, a mean and median close to the population
value, and the smallest number of outliers. When n ¼ 100, the differences
between estimation methods become smaller; and the estimates become more
stable across replications. For sample sizes of 250 and 500, differences between
estimation methods are negligible and all estimation methods led to unbiased
relative means and medians.
MSE for the regression coefficient β can be found in Figure 17.5A. Results

are comparable to those shown in Figures 17.3 and 17.4. Differences between
methods are especially visible when sample sizes are below 100. From n ¼ 100
onward, MSE values are all close to zero. ML shows the highest MSE values
forn ¼ 10 and 20. BayesInfoI shows higher MSE than BayesDefault for n ¼ 10,
which was also visible in Figure 17.4 from the wider distribution of BayesInfoI
relative to the distribution of BayesDefault for n ¼ 10. The lowest MSE values
are reported for BayesInfoII, followed by FSR, two-step, BayesDefault and
BayesInfoI at n ¼ 10. MSE values for FSR, two-step, BayesDefault and BayesIn-
foI are similar at n ¼ 20, while BayesInfoII keeps the lowest MSE value. When

FIGURE 17.4 Distribution of the estimates for parameter β across completed replica-
tions, per estimation method and sample size. The static black horizontal line denotes
the true population value of 0.25 for β. Outliers are displayed as black circles, and out-
liers outside the interval [-6; 6] are denoted as follows: a denotes 11.39, 11.46, 14.87,
37.57 for ML when n ¼ 10; b denotes 6.49, 8.89, 9.12 for ML when n ¼ 20; c denotes
6.86, 6.89 for two-step when n ¼ 20; d denotes 6.86, 6.89 for FSR when n ¼ 20; and
e denotes -17.76 for ML when n ¼ 20
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n ¼ 50 MSE values are comparable between methods, and from n ¼ 100
onward the differences in MSE between methods are negligible.
Coverage results for regression coefficient β can be found in Figure 17.5B. All

estimation methods show adequate coverage levels from n ¼ 100 onward. For
n5100, the three Bayesian conditions show excessive coverage (> 97.50),
although this slightly improved under BayesInfoI and BayesInfoII. Within the
three frequentist methods, two-step and FSR resulted in higher coverage levels
than ML. When n5 100, ML shows undercoverage (< 92.50), while FSR only
shows slight undercoverage when n ¼ 10, and two-step when n ¼ 10 and 20.

FIGURE 17.5 Mean Squared Error (A), Coverage (B), and Power (C) for parameter β,
under varying sample sizes and estimation methods. The static black horizontal lines in
subfigure B represent the [92.5; 97.5] coverage interval, and the black horizontal line
in subfigure C represents the desired 80% power level
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Results in terms of power can be found in Figure 17.5C. For all estimation
methods, power is extremely low when the sample size is small, and only
reached the desirable power level when n ¼ 500. Across all sample sizes, the
highest power levels are found for ML, followed by BayesInfoII, BayesInfoI,
and two-step. The lowest power levels are found for FSR and BayesDefault.

Results for remaining parameters

Besides regression coefficient β, 12 remaining parameters are estimated in the
model: two variances for latent variables, four factor loadings and six residual
variances6. In supplemental file S3 (osf.io/bam2v/), the distributions of param-
eter estimates across replications are displayed for the remaining parameters.
Estimates for these 12 parameters seem similar across estimation methods and have

good statistical properties when n ¼ 250 and 500. However, with sample sizes of
100 and below, frequentist methods show many (extreme) outliers and wide distri-
butions, indicating unstable results across replications. Bayesian methods show not-
ably fewer outliers and in general narrower distributions than the frequentist
methods, especially under BayesInfoI and BayesInfoII conditions, although the
medians of the distributions still deviate from the population values when n5100.

Conclusion

In this chapter, we assessed – under varying sample sizes – the performance of three
frequentist methods: two-step, FSR and ML estimation; and Bayesian estimation
with three variations in prior specification. With sample sizes of 250 and 500, differ-
ences between estimation methods are negligible, and all methods led to stable and
unbiased estimates. Consistent with existing simulation literature (e.g., Depaoli &
Clifton, 2015; Hox & Maas, 2001; Van de Schoot et al., 2015) we found that ML
led to severe convergence problems and a large amount of negative variance param-
eters when sample sizes are small. Compared to ML, both two-step and FSR led to
better convergence rates without negative variances. Also, with small samples, two-
step and FSR resulted in more stable results across replications and less extreme par-
ameter estimates than ML. When Bayesian estimation was used with default priors,
problematic mode-switching behavior of the chains did occur under small samples
(n ¼ 10; 20), even though the PSR values indicated that the overall model had
converged. The presence of mode-switching can be a sign that the model is too
complex for the data (Erosheva & Curtis, 2011).
Power is low for all estimation methods and only with a sample size of 500 was

the desired level of 80 reached. The use of weakly informative priors (i.e., BayesInfoI
and BayesInfoII conditions), as well as the specification of blavaan default priors
for the remaining parameters, could explain why ML led to slightly higher power
levels than Bayesian estimation in the current chapter (as opposed to previous stud-
ies; for example, Miočević, MacKinnon & Levy, 2017; Van de Schoot et al., 2015).
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Also, the differences in power between default and informative prior condi-
tions were smaller in the current chapter than expected. In previous studies
(e.g., Van de Schoot et al., 2015; Zondervan-Zwijnenburg, Depaoli, Peeters
& Van de Schoot, 2019), priors with varying precision hyperparameters (e.g.,
10 and 1) were compared to Mplus default priors with a precision hyper-
parameter of 10–10 (L. K. Muthén & Muthén, 1998–2017). In the current
chapter, the difference in precision hyperparameters between the informative
(precision = 1) and default (precision = 0.01) conditions is noticeably smaller.
This could explain why the increase in power with informative priors is
lower in the current chapter than expected based on previous studies. Note
that the level of informativeness of a prior distribution can only be interpreted
relative to the observed data characteristics, and is therefore not generalizable
to other studies (i.e., a weakly informative prior in one study can act as
a highly informative prior in another study that uses different measurement
instruments).
In summary, with extremely small sample sizes, all frequentist estimation

methods showed signs of breaking down (in terms of non-convergence, negative
variances, and extreme parameter estimates), as well as the Bayesian condition
with default priors (in terms of mode-switching behavior). When increasing the
sample size is not an option, we recommend using Bayesian estimation with
informative priors. However, note that the influence of the prior on the poster-
ior is extremely large with relatively small samples. Even with thoughtful choices
of prior distributions, results should be interpreted with caution (see also Chap-
ter 4 by Veen and Egberts) and a sensitivity analysis should be performed; see
Depaoli and Van de Schoot (2017) and Van Erp et al. (2018) on how to per-
form a sensitivity analysis. When no prior information is available or researchers
prefer not to use Bayesian methods, two-step and FSR are a safer choice
than ML, although they can still result in non-convergence, negative variances,
and biased estimates.
However, note that by adjusting the implementation of two-step and FSR,

non-convergence problems could be circumvented by using an alternative non-
iterative estimation method (instead of ML) to estimate the measurement and
structural models (see Takane & Hwang, 2018); and as discussed in Chapter 16.
In addition, negative variances could be avoided by restricting the parameter
space to only allow positive values for variance parameters. Therefore, the pre-
ferred approach to implement two-step and FSR in small sample contexts
should be further examined. We hope the current chapter is a starting point for
future research in those directions.
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Notes

1 When the PSR criterion is not reached after the specified minimum number of iter-
ations, the number of iterations is automatically increased until the PSR criterion is
met. We adjusted the blavaan default for the maximum time that the software uses to
increase the amount of iterations to “24 hours” instead of the default “5 minutes”.

2 We defined completed replications as replications for which (1) the model did con-
verge according to the optimizer and (2) for which for all parameters standard errors
could be computed. If the model did not converge or standard errors were not com-
puted for one or more parameters, we defined the replication as incomplete and
excluded the replication from the aggregation of the results. All simulation code can
be found in supplemental file S4 (osf.io/bam2v/).

3 Note that the number of iterations in the Bayesian analyses was automatically increased
until the PSR criterion of 1.01 was reached.

4 The warning message that occurred for two-step, FSR and ML was: “some estimated
ov [observed variables] variances are negative”. For two-step and ML, a second mes-
sage also occurred: “some estimated lv [latent variables] variances are negative”.

5 The warning message for BayesDefault: “Small effective sample sizes (< 100) for some
parameters”. The effective sample size expresses the amount of information in a chain
while taking autocorrelation into account; see Chapter 4.

6 Note that when FSR is used, only three parameters are estimated: regression coeffi-
cient β, the variance of latent variable X and the variance of latent variable Y .
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IMPORTANT YET UNHEEDED
Some small sample issues that are
often overlooked

Joop Hox
DEPARTMENT OF METHODOLOGY AND STATISTICS, UTRECHT UNIVERSITY, UTRECHT, THE NETHERLANDS

Introduction

When dealing with small samples, the customary approach is to worry which
analysis method will work best with our data. With ‘best’ I mean providing
good control of Type I error, and providing the most power, aptly called by
Elstrodt and Mellenbergh (1978) ‘One minus the forgotten fault’. However,
there are other issues associated with small samples. This chapter considers five
such issues not discussed in the previous chapters of the book: the accuracy of
Ordinary Least Squares estimation, and the importance of assumptions, estima-
tion methods, data characteristics, and research design with small samples.

The missing estimator: Ordinary Least Squares

The requirements for minimal sample sizes in this book are often discussed in
the context of Maximum Likelihood (ML; Chapters 6, 7, 11, 13, 14, 16) or
Bayesian estimation methods (Chapters 1–5, 8–10, 12) or both (Chapters 15 and
17). This overlooks the existence of Ordinary Least Squares estimation (OLS).
OLS is an estimation method for unknown parameters in a model that minim-
izes the sum of squares of the residuals. OLS includes well-known analysis tech-
niques such as correlation, multiple regression, t-tests, (M)ANOVA, and the
like, but it is also available in most structural equation modeling (SEM) packages
as the Unweighted Least Squares method (Bollen, 1989). Inference methods for
OLS estimates have been developed to work with small samples, commonly
defined as samples smaller than 30. OLS estimates are unbiased and efficient
given some general assumptions (discussed below). There is no assumption of
a minimal sample size; inference is based on well-known sampling distributions
where the sample size is reflected in the number of degrees of freedom.



An example of OLS estimation is inference about an unknown population
mean, when the population variance is also unknown. This points to Student’s
t-test, introduced in 1908 by Gosset, writing under the pseudonym ‘Student’
(Student, 1908). In the remainder of the chapter I will use a small example,
omitting the complications of multivariate data for a moment. Table 18.1 pre-
sents test scores of 12 students on algebra and statistics tests; the example is taken
from Good (1999, p. 89); see also the Open Science Framework page for code
to reproduce the results (osf.io/am7pr/).
In this small data set, the OLS estimate for the correlation is the Pearson correl-

ation between algebra and statistics r ¼ :677, with a two-sided p-value of .016.
We conclude that algebra and statistics are related skills. If we want to estimate
a 95% confidence interval for this correlation, we face a serious problem. First, it
is known that the sampling distribution of correlations is not normal; large correl-
ations (such as .677) have a markedly skewed distribution (Hedges & Olkin, 1985,
p. 225). The usual solution is to use a Fisher-Z transformation. Second, the stand-
ard error for Z, which is given by 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 3

p
, is a large sample estimate. Our

sample size is too small to use this approach. If we use this approach anyway, we
apply the Fisher-Z transformation, use the standard normal distribution to estab-
lish the 95% confidence interval for Z, and transform the endpoints back to
correlations.1 The result is a 95% confidence interval for the correlation r, which
runs from .151 to .897. Zero is excluded, and the confidence interval informs us
that the null hypothesis should be rejected. We can compare the correlation of
.677, its p-value, and the 95% OLS-based confidence interval to the results of
alternative approaches.
In general, we want our estimates to be unbiased, efficient, and consistent.

OLS estimation is unbiased if the covariance between the estimates and the
error terms are zero, and the mean of the error terms is zero. OLS estimation is
efficient and consistent if the observations are independent (an assumption
always violated in multilevel modeling) and error terms are homoscedastic.
Finally, for statistical inference we must assume (multivariate) normality.
The statement that OLS methods work well with small samples means in fact

that, provided these assumptions are met, both estimates and standard errors are
unbiased, and as a result the Type I error is under control. In the long run, if
we calculate a 95% confidence interval for a parameter estimate, that interval
will contain the true population value in 95% of our samples. Of course, as
Bayesians like to point out, we will never know if a particular sample at hand is
one of these 95% or not.

TABLE 18.1 Algebra and statistics scores of 12 students

Algebra 80 71 67 72 58 65 63 65 68 60 60 59
Statistics 81 81 81 73 70 68 68 63 56 54 45 44
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What is definitively problematic with OLS and small samples is the power of
the statistical tests. This was pointed out in the social sciences by Cohen (1962)
and elaborated in his handbook on statistical power analysis (Cohen, 1977).
Cohen showed that at sample sizes common in social psychology and related
fields, the probability to reject a false null hypothesis is small. Translated in
terms of ‘One minus the forgotten fault’, the probability to detect a specific
effect (the power of the test) in a small sample reaches an acceptable value only
for very large effects. This is also true for most other estimation methods, such
as ML. For example, in a bidirectional (two-sided) test of a correlation in
a sample of 30 cases, an α (nominal Type I error rate) of .05 and a desired
power of .80, the population correlation must be at least .49 to meet these
requirements. With a more modest population correlation of .30, and a sample
size of 30 cases, the power to reject the null hypothesis at α ¼ .05 is only .37,
i.e., notably lower than 50%.
In the context of OLS estimation there is little that can be done about the lack of

power. One option is to switch to a directional test. In our example, this would
reduce the required population correlation to .44, and in the second example
power would increase to .50. These are certainly improvements, but they are not
impressive. Another option is to increase the reliability of measurement, which is
taken up in the section on design. Finally, an option rarely considered is to increase
the criterion for the alpha level. Especially in explorative research, employing an
alpha level of .10 is a defensible position (also for other estimation methods).

The importance of assumptions of OLS and how to avoid making
these assumptions

Common assumptions in OLS-based multivariate data analysis are (multivariate)
normality, which includes absence of outliers, linearity, and homoscedasticity.
For ordinal data, proportional odds (parallel regression lines) are assumed, and
for dichotomous data linearity in the logit. Most techniques also assume inde-
pendent observations; notable exceptions are multilevel analysis and the
MANOVA approach for repeated measures.
These assumptions can be assessed using statistical or graphical techniques. In

small samples, most statistical techniques will suffer from the lack of power men-
tioned in the previous section. Deviations from assumptions have to be very
large to be detected. In small samples, graphical methods, such as P–P normal
plots for normality, and boxplots for detection of outliers may be superior to
formal tests. Assessing bivariate linearity is generally done by scatterplots.
It is important to understand that the assumptions are about characteristics of

the data in the population, while they are assessed in the sample. In small sam-
ples, large deviations in a sample from the population are to be expected. So,
while formal statistical tests suffer from low power, inspecting graphs may lead
to overinterpretation of violations of assumptions. Analysts may read too much
into deviations that are totally expected in a small sample.
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Some violations of assumptions can be overcome by transforming variables or
removing outliers. In general, it is often assumed that with large samples the inference
techniques are robust to mild violations of assumptions. Even for large samples this
may be problematic (Bradley, 1982), but robustness certainly cannot be claimed for
small samples based on the argument that it seems to work well for large samples. It
should be noted that incomplete data analysis also relies more heavily on the required
assumptions, so missing data analysis with small samples, although certainly possible
(Graham & Schafer, 1999), should examine the data characteristics very carefully.
On the bright side: small samples are well suited for permutation tests. Permuta-

tion tests (also called randomization tests; for a review of the subtle differences
between the two see Onghena, 2018) perform null-hypothesis tests by permuting
the data. For example, to test the equality of the mean in two groups, the t-test has
to make assumptions to justify using a Student distribution as the sampling distribu-
tion. A permutation test would calculate the difference of the means for all possible
permutations that distribute the total sample into two groups of the given size. If
the difference that is observed in the original sample is in the 5% extreme percentile
of the permutation differences, it is considered extreme and significant, and the null
hypothesis of no difference is rejected. In general, permutation tests have power
close to or often exceeding that of their parametric counterparts, while making far
fewer assumptions (Bradley, 1968; Edgington & Onghena, 2007). Even with large
samples, a permutation test may be advisable if the distribution is not normal. In
large samples it may not be possible to enumerate all possible permutations, in
which case a large sample of all possible permutations is generated and analyzed.
For our example data involving 12 cases, a permutation test would keep the

X constant, and pair these with permuted Y values. There are 12! possible per-
mutations, approximately 480 million, so we sample 5,000 of these. The per-
muted p-value is .004. Figure 18.1 shows the observed correlation of .68 and its
place in the permutation-based null distribution.
When small samples are analyzed, several issues typically arise. This chapter

discusses four problem areas and potential solutions. First, multivariate analysis
using OLS estimation does not assume large samples, and therefore works well
with small samples, although these still lead to tests with low power. Second,
analysis of small samples is more vulnerable to violations of assumptions, and
data characteristics and analysis choices in estimation become more important.
As a result, data cleaning and examination of potential violations of assumptions
are crucial. Finally, problems with small samples are ameliorated by using
research designs that yield more information.
The example of a permutation test described above tests the null hypothesis

of exchangeability (see also Chapter 2 by Miočević, Levy, and Savord), which
states that the correlation between the two variables can be fully explained by
the random sampling (or random assignment) process that generates the data.
Exchangeability can be violated, for example, if the data contain clusters, as in
multilevel data (more about these later). Permutation tests are typically used to
test a null hypothesis. They can be used to establish a confidence interval, but
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this is more convoluted and computationally intensive. See Garthwaite (1996)
for more details on permutation tests.
Permutation tests are similar to bootstrap tests. Bootstrapping estimates the

sampling variability by drawing a large number of ‘bootstrap’ samples from the
observed sample. In our example with two groups, bootstrapping would resam-
ple with replacement from the 12 cases, keeping the pair of X-Y values
together, and calculate the correlation for each bootstrap sample. The distribu-
tion of the bootstrapped differences is taken as an estimate of the sampling distri-
bution. From the bootstrapped sampling distribution, it is simple to establish
a confidence interval. If the observed data are non-normal, it is assumed that
this is reflected in the bootstrapped distribution, and therefore non-normality is
accounted for. However, since bootstrapping often does not work well with
samples smaller than 50 (Good, 2005), it is not really a small sample method.
For our example data, the bootstrapped 95% confidence interval is .080-.934,
which is much wider than the asymptotic confidence interval of .151-.897. The
asymptotic confidence interval clearly underestimates the variability.
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FIGURE 18.1 Permutation-based null distribution and observed r
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The importance of estimation methods and techniques

The parameters of a specific model, say a multilevel logistic regression model,
could be estimated using a number of estimation methods. For each estimation
method, there are several techniques available to obtain these parameter esti-
mates. For example, in ML estimation we may employ the E–M algorithm or
the Newton–Raphson algorithm to maximize the Likelihood. In Bayesian esti-
mation we have not only a choice for different priors (see Chapter 2, and Chap-
ter 3 by Van de Schoot, Veen, Smeets, Winter, and Depaoli), but also a choice
of different Markov Chain Monte Carlo (MCMC) generators (see Chapter 3 for
a comparison of the Gibbs sampler and the Hamiltonian Monte Carlo sampler).
And finally, the same estimation technique may be programmed in different
ways, including different defaults to decide when convergence has been reached.
For example, popular multilevel analysis software such as HLM (Raudenbush,
Bryk, & Congdon, 2011), MLwiN (Rasbash, Steele, Browne, & Goldstein,
2017) and Mplus (Muthén & Muthén, 1998–2017) all include ML as one of the
available estimation methods, but all use different techniques to find the max-
imum of the Likelihood. HLM (version 7.0) uses E–M estimation and decides
that the algorithm has converged when the difference between two successive
iterations becomes small. MLwiN uses Iterative Least Squares, and Mplus
chooses different default estimation methods depending on the model and the
data. All this may result in small differences between programs in estimated
values. For example, in a review of the three SEM programs AMOS, EQS, and
LISREL, Hox (1995) reports almost identical parameter estimates, but some
noticeable differences in the chi-square and other goodness-of-fit indices. To
facilitate the study of the impact of differences in estimation technique or pro-
gramming details, Rosseel (2012) developed the R package lavaan that allows
the user to mimic the technique used in different SEM programs.
With large data sets, continuous outcomes, and reasonably simple models, these

analysis differences generally do not matter much. With small samples and non-
linear models, they do matter (Smid, McNeish, Miočević, & Van de Schoot,
2019). For example, multilevel logistic regression can be estimated using lineariza-
tion (SPSS, HLM, MlwiN) or using numerical approximation (HLM, Mplus, R).
With ‘nice’ sample sizes – for example, 30 groups of average size 30 – numerical
estimation is more accurate. However, with small samples, especially a small sample
of groups, convergence of the numerical integration algorithm is problematic, and
linearization using Restricted Maximum Likelihood estimation is generally more
accurate (see also Chapter 15 by Hox and McNeish).
One general issue with ML estimation is that with small samples it typically needs

more iterations to converge. It may also converge to a local solution, which means
that it converges to a large value for the Likelihood, but not on the largest. One way
to approach the problem of local solutions is to repeat the analysis with different start-
ing values, and examine whether the estimated values replicate. In some software this
can be done by choosing an option for repeated random starting values.
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Bayesian estimation in combination with small samples has two chief advantages.
First, unlike ML estimation, it does not assume large samples. Second, the prior
distributions for the parameters are generally chosen so that impossible values do
not occur (see the explanation of the plausible parameter space in Chapter 3). For
instance, an often-used prior for a variance is the Inverse Gamma distribution. This
distribution includes only positive values, so a negative variance estimate cannot
happen. However, with small samples the data carry little information, and as
a result the influence of the prior becomes relatively larger. Also, in most software
a larger number of MCMC iterations is needed (see Chapter 3 for an explanation).
For our example, the default settings for Bayesian analysis in Mplus (Mplus version
8.0) do not converge. When the setup is changed to specify a large number of iter-
ations, the correlation estimate stabilizes to three decimal places at 1,000,000
MCMC iterations; the correlation is estimated as .68 with a 95% credibility interval
0.160–0.960, which is somewhat wider than the asymptotic confidence interval of
.151–.897. Clearly, with this small sample, reliance on the default Bayesian estima-
tion settings is not good enough. For a discussion of sensitivity analyses and choice
or priors for small samples, see Van de Schoot, Broere, Perryck, Zondervan-
Zwijnenburg, and Van Loey (2015).

The importance of having ‘nice’ data

Example data in statistical handbooks are generally chosen to be ‘nice’, meaning
that the sample size is sufficient, variables are normally distributed, and there are
no outliers or missing data. As discussed in the section on assumptions, with
small samples the estimation is less robust, and the impact of problematic data
on the estimated values and their standard errors is larger. There are other issues
to consider. For instance, when the variables in a multivariate model have
widely different scales, estimation becomes more difficult. Thus, if a model con-
tains the variable gender, coded 0–1, with a variance of .25, and an attitude vari-
able that varies from 10 to 100 with a variance of 840, many estimation
algorithms will have convergence problems. The simple solution is to divide the
attitude scores by 10, or by the number of items in the scale, so they become
more in line with the range of the other variables.
Transformation of variables can be helpful to make the data nicer. Skewed vari-

ables are commonly made less skewed by a square root or logarithmic transform-
ation. For a general discussion on data cleaning see Tabachnick and Fidell (2013).
However, transformations of dependent variables can also be used to simplify the
model. For example, a multilevel logistic regression model is complicated, because
it involves a nonlinear relation between the observed outcome and the linear pre-
dictor of that outcome. If the dependent variable is a proportion, the empirical logit
transformation will linearize the outcome, and a multilevel linear model may be
used. Similarly, if the dependent variable is a count, instead of using a Poisson
model, a logarithmic transformation of the count variable will linearize the relations.
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Using a proper nonlinear model is no doubt statistically more elegant, but with
small samples it simply may not work.
Much of, if not most, real-world data are incomplete. Missing data are always

a problem, not only because they make the analysis more complicated, but also
because the missingness may not be random. Simple procedures available in
standard software, such as deleting incomplete cases, do not work well with
small samples, because they make the sample even smaller. Analysis methods that
preserve all available information by incorporating incomplete cases in the ana-
lysis are necessary. An often-overlooked advantage of using more sophisticated
estimation methods for incomplete cases is that these methods generally make
weaker assumptions about the missingness mechanism. Deletion methods must
assume that the remaining cases stem from the same population as the deleted
cases, which assumes that the deleted cases are Missing Completely at Random.
More principled methods to deal with incomplete cases generally assume data
are Missing at Random, which is a weaker assumption. For a general discussion
of incomplete data and how to deal with them, see Enders (2010). The three
main methods to deal with incomplete data are Full Information Maximum
Likelihood (FIML), Multiple Imputation (MI), and Bayesian estimation. All
three methods have issues with small samples. FIML is a more complicated tech-
nique than standard estimation techniques for complete data, and as a result the
problems mentioned earlier (convergence problems, local solutions) become
worse. MI and Bayesian estimation tend to work better. MI fills the holes in the
data set by imputing a plausible value and adding a random prediction error,
producing multiple data files that include different errors. With small samples,
two problems may arise. Imputations may be model-based or data-based. In
model-based imputation, a general model, for example a multivariate normal
model, is used to generate imputations. With small samples, there is little infor-
mation about the model parameters, which makes generating good imputations
difficult. Data-based imputation methods replace the missing values for a specific
case by matching it to a similar case and filling in the missing values by observed
values from the donor. With small samples, there may not be enough donors to
produce a good match, and it may be necessary to use donors several times. To
some extent, these problems can be addressed by using a large number of
imputed data sets, such as 50–100.
In addition, whichever method is used, with a small and incomplete data set

it becomes vital to perform sensitivity analyses to evaluate the effect of reason-
able changes in the imputation technique or model specification on the resulting
estimates, and to address the potential impact on the conclusions in the
discussion.

The importance of design

As this volume shows, there are many clever ways to deal statistically with the
problem of small samples. There is, however, one problem that no amount of
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analytical cleverness can eliminate; small samples contain little information.
Information can be added by adding cases, but information can also be added in
other ways: adding variables adds information, and increasing the reliability of
measurement adds information.
Assume that we have a small randomized experiment with an experimental

group and a control group. In principle a simple t-test will do. The t-test relies
on least squares estimation of means and variances, so it has good Type I error
rates in small groups. However, with small groups, the power to detect a real
difference is small. One way to increase power is to use a one-sided test. How-
ever, one-sided tests have their problems, which have been discussed at length
by Cohen (1965), referring to earlier publications by Burke (1953, 1954). One
issue is that analysists using a one-sided test should be genuinely unconcerned
when they find a hugely ‘significant’ effect in the unexpected direction. Most
analysists would report this effect despite being in the unexpected direction,
thereby increasing the actual alpha level to 7.5%. A second issue is that one-
sided tests tend to be less robust than two-sided tests against violations of
assumptions (Cohen, 1965). I do not recommend totally abandoning one-sided
tests, but I do recommend contemplating the scientific wisdom of potentially
having to ignore a huge difference in the unexpected direction.
Adding variables will make the data from our experimental design more

informative, thereby increasing the power of the statistical test. The simplest and
most powerful way to add information is to add a pretest and use this as
a covariate. If the pretest is identical to the post-test, the correlation between the
two is typically high. Since randomization is used, adding the pretest in an analysis
of covariance does not change the expected difference between the groups, but it
is likely to greatly reduce the residual error variance. Since the residual error vari-
ance determines the variance component in the denominator of the F-ratio, the
F-ratio will be larger at the expense of one degree of freedom. Adding more cov-
ariates will continue to increase power until the point is reached that the increase
in F-ratio is too small to offset the loss of one degree of freedom. Adding more
post-tests also increases power, but generally less than adding a pretest does.
Adding multiple outcome variables that are weakly correlated increases power; see
Tabachnick and Fidell (2013) for a discussion of the question when a Multivariate
Analysis of Variance increases power compared to a univariate Analysis of Vari-
ance. An extension of the design is to use a pretest, a post-test, and a later follow-
up post-test. This still increases power, but the design is mostly used to answer the
question whether the experimental effect, if any, persists over time. For
a discussion of the various ways in which changes in the design of a study can
impact the power of the statistical test, see Venter and Maxwell (1999).
Finally, measurement reliability affects the power of a test by attenuating the

statistic being tested. In our algebra-statistics example, the correlation between
the two is .677. Assume that the reliability of both tests is .705, which is not
bad for an educational test. If we had been able to use the true scores, without
error added by unreliability of measurement, the correlation between the two
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scores would be much higher. How much higher is indicated by the correction
for attenuation, which is given by rTx; Ty ¼ rx;y=

ffiffiffiffiffiffiffiffiffiffirxxryy
p , where Tx denotes the

true score for x, and rxx is the reliability of measure x, and Ty denotes the true
score for y, and ryy is the reliability of measure y. Plugging in the assumed values
for our algebra and statistics tests, the correlation between the true scores is esti-
mated to be .90. There is obvious room for improvement. If we manage to
increase the reliability of the tests to .90, the observed correlation is expected to
be .812, which can be detected more easily by the significance test. Increasing
reliability of measurement increases the available information and thus increases
the power of the significance test.

Conclusion

A general recommendation for small n studies is to increase the information in
the data by using reliable measures and a smart research design. This is useful
with all estimation methods. In the context of frequentist statistics, careful exam-
ination of potential violations of assumptions is essential. In addition, it is worth-
while to consider methods that rely less heavily on assumptions and large sample
methods, such as permutation techniques.

Note

1 z ¼ arctanh rð Þ ¼ 0:5 � ln 1þr
1�r and the inverse is r ¼ tanh zð Þ ¼ e2z�1

e2zþ1.
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