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Abstract

In state-space system identification theory, the Hankel matrix often appears prior

to model realization.  Traditionally, one identifies from input-output data the Markov

parameters from which the Hankel matrix is built.  This paper examines the strategy

where the Hankel matrix itself is identified from input-output data.  Various options are

examined along this direction where the identification of the Hankel matrix can be

carried out directly or indirectly.  Advantages and drawbacks associated with each option

are examined and discussed.  Extensive evaluation both with simulated and experimental

data indicates that the new approach is effective in detecting the “true” or effective order

of the system, hence it is capable of producing relatively low-dimensional state-space

model.  The interactive matrix formulation plays a key role in the development of the

proposed identification technique.
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1. Introduction

The problem of state-space system identification has received considerable

attention in recent years.  Within the aerospace community, the Eigensystem Realization

Algorithm (ERA),1 an extension of the work of Ho and Kalman,2  has become an

accepted and widely used method.  In this or other state-space realization methods 
3 the

Hankel matrix plays a critical role because a state-space model can be obtained from a

factorization of the Hankel matrix via its singular value decomposition (SVD) for

example.  The Hankel matrix comprises of the Markov parameters arranged in a specific

Toeplitz pattern.  Much efforts have been placed on the problem of obtaining the Markov

parameters from input-output data by time or frequency domain approaches.4,5  Once the

Markov parameters are determined, they become entries in the Hankel matrix for state-

space identification.

It is well known that the rank of the Hankel matrix is the order of the system.

With perfect noise-free data, the minimum order realization can be easily obtained by

keeping only the non-zero Hankel singular values.  With real or noise-contaminated data,

however, the Hankel matrix tends to be full rank, thus making the problem of

determining a minimum-order state-space model non-trivial.  In this case, one would

hope for a significant drop in the singular values that signals the “true” order of the

system, but while this can happen with low-noise simulated data, it rarely happens with

real data.  A reduced-order model obtained by retaining only “significant” singular values

tends to be poor in accuracy.  Indeed, this issue remains one of the most unsatisfactory
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discrepancy between what is expected in theory and what is actually observed in practice.

One may argue that real systems are both non-linear and infinite dimensional.  While this

is certainly true in many cases it is not to blame in all cases.  A common procedure is to

keep all Hankel singular values at the expense of a high-dimensional state-space model

and use a separate post-identification procedure such as model reduction is to reduce the

dimension of the identified model.  However, any time model reduction is invoked, some

accuracy is lost.  It is preferable to have an identification method that produces a “true”

or effective order model directly in the first place.

While detailed analysis that explains the above phenomenon is difficult because

the relationship between the Hankel matrix and the final state-space realization is quite

non-linear, some heuristic arguments may provide insights into the problem.  In the

presence of noise, the identified Markov parameters that are the building blocks of the

Hankel matrix are invariably in error.  Since the Hankel matrix has a very specific

Toeplitz pattern, this error pattern is built in the Hankel matrix and subsequent non-linear

decomposition during the realization step does nothing to undo it.  Furthermore, the

Markov parameters themselves are usually not directly identified from input-output data,

but computed indirectly via an identified auto-regressive or transfer function model.  This

leads to the idea of identifying the Markov parameters directly from input-output data as

done in Refs. 6, 7 through the use of ARMarkov models.  In this paper, we go one step

further in trying to identify the Hankel matrix itself directly from input-output data.   The

motivation here is that by skipping intermediate steps, an identified Hankel matrix does

not suffer from having the error pattern that is associated with a Hankel matrix that is
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built from the Markov parameters which are directly or indirectly identified.  Since the

Hankel matrix consists of the Markov parameters, an identified Hankel matrix essentially

has the Markov parameters themselves directly identified from input-output data as well.

In this paper we will first provide a generalization of the ARMarkov model

development through the use of interaction matrix.  Next, we will develop equations that

allow the Hankel matrix to be identified from input-output data.  Several options will be

examined where the Hankel matrix identification is carried out directly, or indirectly, or

both.  Following the theoretical development, extensive results using both simulated and

real data will be used to examine the utility of the identified Hankel approach in

comparison with other methods.

2. Auto-Regressive Model with Markov Parameter Coefficients (ARMarkov)

In the following we will derive the ARMarkov models via the use of an

interaction matrix.  This development is a generalization of the ARMarkov model first

derived in Ref. 6 for adaptive neural control, and later in Ref. 7 for system identification,

and Ref. 8 for predictive control.  Consider an n-th order, r-input, m-output discrete-time

model of a system in state-space format

x k Ax k Bu k

y k Cx k Du k

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1
                                                  (1)

By repeated substitution, we have for some p ≥ 0 ,
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x k p A x k u k

y k x k u k

p
p p

p p

( ) ( ) ( )

( ) ( ) ( )

+ = +

= +

C

O T
                                                (2)

where u kp( )  and y kp( ) are defined as column vectors of input and output data going p

steps into the future starting with u k( )  and y k( ), respectively,

  

u k

u k

u k

u k p

y k

y k
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p p( )
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( )
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1
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M M
                                  (3)

For a sufficiently large p,   Cp  in Eq. (2) is an n × pr  controllability matrix,   O a pm n×

observability matrix,   T  a pm pr×  Toeplitz matrix of the system Markov parameters,

    

C  O  Tp
p

p
p

A B AB B

C

CA

CA

D

CB D

CAB CB D

CA B CAB CB D

= [ ] =





















=























−

−
−

1

1
2

0 0 0

0

0

,   , ,  ,  ,   L
M

L

O O M

O

M O O O

K

       (4)

As long as pm n≥ , it is guaranteed for an observable system that an interaction matrix M

exists such that   A Mp + =O 0 .  The existence of M ensures that for k ≥ 0  there exists an

expression for x k p( )+  where the state variable is completely eliminated from Eq. (2),
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x k p M u k My kp p p( ) ( ) ( )+ = +( ) −C T                                    (5)

From the point of view of system identification, Eq. (5) is significant for two reasons.  It

is independent of the unknown initial conditions x( )0 , and it is independent of the system

stability.  Although we invoke the interaction matrix in this derivation, it needs not be

known nor identified during the course of system identification.  To derive the

ARMarkov model, first note that

  x k q A x k u kq
q q( ) ( ) ( )+ = +C                                           (6)

By shifting the time indices in Eq. (5) back by p time steps, and then substituting it into

Eq. (6) we have for k ≥ p an expression for the state x k q( )+ ,

  
x k q A M u k p A My k p u kq

p p
q

p q q( ) ( ) ( ) ( )+ = +( ) − − − +C T C                    (7)

Substituting Eq. (7) into y k q Cx k q Du k q( ) ( ) ( )+ = + + + , we arrive at an ARMarkov

model representation,

  
y k q CA M u k p CA My k p C D u kq

p p
q

p q q( ) ( ) ( ) ,  ( )+ = +( ) − − − +[ ] +C T C 1           (8)

We observe that the expression for y(k + q) involves past p input values from u(k −1)  to

u(k − p) , past p output values from y(k −1)  to y(k − p) , the present input u(k), and q
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future input values from u(k +1)  up to u k q( )+ .  Moreover, the expression for y(k + q)

assumes the general form

y k q y k i u k i u k ii
i

p

i
i

p

i
i

q

( ) ( ) ( ) ( )+ = − + − + +
= = =
∑ ∑ ∑α β γ

1 1 0

                        (9)

whose coefficients are related to the original space-space model A, B, C, D by

    

α α α

β β β

γ γ γ γ

p
q

p
q

p

q q q

CA M

CA M

C D

,  ,  ,  

,  ,  ,  

,  ,  ...,  ,  ,  

K

K

2 1

2 1

0 1 1

[ ] = −

[ ] = +( )
[ ] = [ ]−

C T

C

                                (10)

The coefficients γi  in Eq. (10) are precisely the first q system Markov parameters,

CA Bk , k q= −0 1 1, ,..., , and D,

    
C D CA B CAB CB Dq

qC ,  ,   , , ,[ ] = [ ]−1 L                                (11)

For this reason, these auto-regressive models are referred to as ARMarkov models.

Having justified the structure of the ARMarkov model, the Markov parameters can be

identified directly from a set of input-output data along with   P1 = −CA Mq  and

    
P2 = +( )CA Mq

pC T  as follows,

    
P P1 2 1 1C D YVqC ,  [ ][ ] = +                                        (12)
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where V1
+  denotes the pseudo-inverse of V1 which can be computed via its singular value

decomposition where zero or insignificant singular values are truncated, and

  
Y y p q y p q y p qp1 1= + + + + +[ ]( ) ( ) ( )L l                          (13)

  

V

u u u

y y y

u p u p u p

p p p

p p p

q q q

1

1 1 1

0 1

0 1

1

=
+ +

















+ + +

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

L l

L l

L l

                              (14)

To identify the Markov parameters uniquely, the data set must be sufficiently long and

rich so that the rows of V1 associated with input data are linearly independent.  These

identified Markov parameters can then be used to build the Hankel matrices

    

H( )0

1

2 1 2

=














+

CB CA B

CA B CA B

n

n n n

L

M M M

L

,       

    

H( )1

1

2 1 2

1

1 1

=
















+

+ + +

CAB CA B

CA B CA B

n

n n n

L

M M M

L

           (15)

The procedure to obtain a state-space model is straightforward from this point on.  An s-

th order state-space model is   A U Vs s
T

s s= − −Σ Σ1 2 1 21/ /( )H , B  is the first r columns of Σs s
TV1 2/ ,

C  is the first m rows of Us sΣ1 2/ , and s r n m n≤ + +( )min ( ), ( )1 21 1 .   The matrix Us  and Vs

are made up of s left and right singular vectors of   H( )0 , respectively.  The diagonal

matrix Σs  is made up of s corresponding singular values of   H( )0 .  With perfect data

  H( )0  has exactly n positive singular values (all remaining singular values are identically

zero), where n is the true minimum order of the system, s n= .  Otherwise, the user can
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specify the order of the state-space model by s, the number of Hankel singular values that

he or she wishes to retain.  The readers are referred to Ref. 1 for further details.

The ARMarkov model is a generalization of the standard Auto-Regressive model

with eXogenous input (ARX) because it results in an ARX model when q is set to zero in

Eq. (10).  The coefficients of the ARX model are related to those of the original state-

space model by the same interaction matrix M.  In the ARX model, the Markov

parameters don’t appear explicitly as coefficients but they can be recovered from the

ARX model coefficients.4,5  With ARMarkov models the Markov parameters are

identified directly from input-output data.  This is accomplished at the expense of having

to identify additional (extraneous) coefficients α βi i,  , i p= 1 2, ,..., .  Thus it would be

beneficial to minimize the number of these extraneous terms.  The interaction matrix

formulation allows us to do just that because it separates p, pm n≥ , from q which is

number of Markov parameters that one desires to identify.

To put the ARMarkov model in perspective, it is known that the pulse response

model also relates input-output data through the Markov parameters,

  y k CA x Du k CBu k CABu k CA Buk k( ) ( ) ( ) ( ) ( ) ( )= + + − + − + + −0 1 2 01L           (16)

This model, however, suffers from many difficulties from the point of view of system

identification: (1) The initial condition x( )0  is typically unknown.  (2) The number of

Markov parameters in the model increases with k.  (3) Even with stable systems so that
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the initial condition response can be neglected when steady-state data is used, one must

keep all “non-zero” Markov parameter coefficients in the model and this number can be

quite high for a lightly damped system.  With the ARMarkov model, one can solve for

any desired number of Markov parameters without having to wait for steady-state data

and without concern for the initial condition effect.

3. Hankel-Toeplitz Model

Instead of building the Hankel matrix from the Markov parameters which can be

identified directly via an ARMarkov model, or indirectly via an ARX model, one may

look for a way to identify the Hankel matrix itself directly from input-output data.  To

accomplish this task, an input-output model that involves the Hankel matrix must be

derived.   We obtain this equation by combining Eq. (7) with Eq. (2),

  

y k q x k q u k q

A M u k p A My k p u k u k q

p p

q
p p

q
p q p

( ) ( ) ( )

( ) ( ) ( ) ( )

+ = + + +

= +( ) − − − + + +

O T

O C T O H T
      (17)

where   H  has the following structure
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1 2
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                          (18)
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Normally, the Hankel matrix is arranged with Markov parameters of increasing order

going from left to right as shown in Eq. (15).  All it takes to put   H  in the standard form is

a simple rearrangement of its elements.  Also, for a sufficiently large size   H , one can

extract   H( )0  and   H( )1  for state-space identification.  The matrix   T is often referred to as

a Toeplitz matrix, hence we call Eq. (17) a Hankel-Toeplitz model.

4. Identification and Construction of Hankel Matrix

In the following we describe three methods by which the Hankel matrix can be

obtained directly or indirectly from a set of input-output data.  We then discuss the

advantages or drawbacks associated with each approach

Direct Method

The simplest method is to identify the Hankel matrix directly from input-output

data using Eq. (17).  Define 
    
A1 = +( )O C TA Mq

p ,     A2 = −OA Mq , Eq. (17) becomes

    

y k q

u k p

y k p

u k

u k q

p

p

p

q

p

( )

( )

( )

( )

( )

+ =[ ]

−
−

+



















A A1 2 H T                                 (19)

Given a set of sufficiently rich input-output data,   H  can be computed from

    A A1 2 2 2H T[ ] = +Y V                                            (20)
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where

  
Y y p q y p q y p qp p p2 1= + + + + +[ ]( ) ( ) ( )L l                          (21)

  

V

u u u

y y y

u p u p u p

u p q u p q u p q

p p p

p p p

q q q

p p p

2

0 1

0 1
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1

= + +
+ + + + +
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




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



( ) ( )            ( )

( ) ( )            ( )

( ) ( )      ( )

( ) ( ) ( )

L l

L l

L l

L l

                         (22)

One obvious drawback of this direct Hankel matrix identification method is that the high

number of extraneous terms that must be solved for while solving for   H .  Unlike the

ARMarkov models, we cannot use p to minimize the number of extraneous terms because

p itself (together with q) governs the size of the Hankel matrix to be identified.  We thus

see that although it is possible to identify the Hankel matrix directly from input-output

data, this simplest strategy is not efficient.  In fact, there is Hankel-related information

hidden in the extraneous terms, but for the sake of simplicity, this issue will be revisited

in a later section.

Indirect Method

Next we look for a method where no identified information is left out in

recovering the Hankel matrix. Consider the case where q = 0  in Eq. (17).  Define

    
B1 = +( )O C Tp M ,     B2 = −OM , it becomes

    

y k

u k p

y k p

u k
p

p

p

p

( )

( )

( )

( )

= [ ]
−
−

















B B1 2 T                                        (23)
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The interaction matrix reveals the internal structures of   B1 and   B2 .  This information is

used to extract the “square” Hankel matrix   H OC0 = p  without having to know M,

    H T0 1 2= +B B                                                    (24)

The matrices   B1,   B2 , and   T  themselves can be identified from input-output data as

    B B1 2 3 3T[ ] = +Y V                                                  (25)

where

  
Y y p y p y pp p p3 1= + +[ ]( ) ( ) ( )L l                                   (26)

  

V

u u u

y y y

u p u p u p

p p p

p p p

p p p

3

0 1

0 1

1

=
+ +


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











( ) ( )      ( )

( ) ( )      ( )

( ) ( ) ( )

L l

L l

L l

                                  (27)

The indirect method makes use of all identified information to extract   H0 .  The needed

extra step is quite simple since it involves only matrix multiplication and addition.  In this

sense, it is the most efficient approach.

Once   H0  is (indirectly) identified, an “adjacent”   H O C1 = Ap
p  can be easily

computed by recognizing that   A Mp = − O ,

    H O C O O C O OC H1 2 0= = − = −( ) =( )A M Mp
p p p B                           (28)
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In fact, any other adjacent   Hi  can be computed in a similar manner,

      H O C O O O C O O OC Hi
p i

p p p

i
A M M M M= ( ) = −( ) −( ) = −( ) −( ) = ( )L L B2 0        (29)

Using   H0 ,   H1, … as building blocks, a Hankel matrix of any size can be constructed.

Combined Direct and Indirect Method

In this scheme, the Hankel matrix   H0  is identified directly, and all other Hankel

matrices   H1,   H2 , … are identified indirectly.  For convenience we set q p= , and re-visit

the direct method to determine if useful information can be recovered from the

“extraneous” terms.  Define 
    
C1 = +( )O C TA Mp

p ,     C2 = −OA Mp , Eq. (17) becomes

    

y k p

u k p

y k p

u k

u k p

p

p

p

p

p

( )   

( )

( )

( )

( )

+ =[ ]

−
−

+



















C C1 2 0  H   T                                  (30)

It is obvious that the Hankel matrix   H0  can be directly identified along with   C1,   C2 , and

  T  from a set of input-output data as

    C C1 2 0 4 4    H   T[ ] = +Y V                                           (31)

where
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Y y p y p y pp p p4 2 2 1 2= + +[ ]( ) ( ) ( )L l                              (32)

  

V

u u u

y y y

u p u p u p

u p u p u p

p p p

p p p

p p p

p p p

4

0 1

0 1

1

2 2 1 2

= + +
+ +



















( ) ( )            ( )

( ) ( )            ( )

( ) ( )      ( )

( ) ( )    ( )

L l

L l

L l

L l

                             (33)

Making use of the internal structure of the identified parameters as revealed by the

interaction matrix,   H O C1 = Ap
p  can be computed indirectly from   C1,   C2 , and   T as

    H T1 1 2= +C C                                                       (34)

To compute all other “adjacent” Hankel matrices, we next show that the “even”   H2 ,   H4 ,

… can be computed from   H0  and   C2 , and the “odd”   H3,   H5, … can be computed from

  H1 and   C2 .  For example,

    

H O C O O O C O O OC

O H H

2

2

2
0 2 0

= ( ) = −( ) −( ) = −( ) −( )

= −( ) =

A M M M M

M

p
p p p

C
                (35)

The last equality holds because     C2
2= − = − −( ) = −( )O O O OA M M M Mp .  Similarly,

    

H O C O O O C O O O C

O H H

3

3

2
1 2 1

= ( ) = −( ) −( ) = −( ) −( )
= −( ) =

A M M A M M A

M

p
p

p
p

p
p

C
             (36)
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By induction,     H H/
i

i= ( )C2

2

0  for even i = 2 4, , ... and     H H/
i

i= ( ) −( )
C2

1 2

1 for odd

i = 3 5, , ... . Again using   H0 ,   H1, … as building blocks, a Hankel matrix of any size can

be constructed.  Thus we see that it is possible to make use of the “extraneous” terms to

recover additional Hankel matrices indirectly.  However, high dimensionality in the

identification places this method at a disadvantage when compared with the indirect

method.

5. Illustrations with Simulated and Experimental Data

In this section, we examine the quality of identification results obtained from an

identified Hankel matrix with those from a Hankel matrix that is built from the Markov

parameters.  The Markov parameters themselves can be identified indirectly through

auto-regressive or transfer function models by a method such as OKID,4,9,10 or directly

through the use of ARMarkov models.  The Observer/Kalman filter Identification

(OKID) algorithm also identifies from input-output data an observer or Kalman filter gain

for observer-based controller design, but this information is not needed in our present

application.

The outcome of each identification method (labeled as Hankel, OKID, or

ARMarkov in the illustrations) is a complete state-space model of the system.  With

perfect noise-free data , all methods identify the system exactly, so that difference among

these methods can only be seen with noise-contaminated or real data.  It is not uncommon

to have an identification method that works well with simulated data under ideal
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conditions, but fails to perform with real data which may be affected by non-linearities,

aliasing, poor resolution, among other factors.  For this reason, extensive numerical

simulation is used to establish the relative performance pattern among these different

methods, and then real data is used to develop a sense of how well this expected pattern

holds up in practice.

To present a very large amount of results compactly, the combination of model

order and prediction error is used to represent the quality of an identified model.  In this

sense, the “best” method is the one that produces the smallest order state-space model

while reproducing the data most accurately.  The prediction error is defined as the

difference between the actual output and the reconstructed output of the identified model

when driven by the same input.  The norm of this prediction error over the entire data

record is used to indicate the accuracy of the model, and this value is plotted as a function

of model order.   For example, if the order increment is 2 then a plot of the norm of the

prediction error versus model order going from 2 to 100 succinctly represents the results

of 50 individual state-space models.  Furthermore, to compare different methods, we

have one such plot for each method tested.

Numerical Example

We first examine the performance of each method with simulated data on a 3

degree-of-freedom system,
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where m Kg1 0 5= . , m m Kg2 3 1= = , k k k N m1 2 3 10= = = , c c c N m1 2 3 0 35= = = . sec .

The sampling interval is 0.1 sec.  The outputs are the positions of the last two masses,

y x ii i= =, ,2 3 .  The data is corrupted by moderate plant and measurement noise

( 3 18− %  standard deviation).  Extensive simulation was carried out, and representative

results are shown in Figs. 1 and 2, one for each output.  The computation of, say V1
+ , is

computed as V V VT T
1 1 1( )+

 where the SVD is used to compute V V T
1 1( )+

 with zero or

insignificant singular values truncated. Note that these singular values are associated with

least squares parameter estimation, they are not Hankel singular values associated with

model order selection.  Let us first examine OKID result identified with p = 30 .  As

expected, the smallest prediction error is associated with the maximum order state-space

model where all Hankel singular values are kept, Ref. 9.  When a smaller order is chosen

by truncating Hankel singular values, significant accuracy is lost.  This problem is

described earlier in the introduction.  Let us now examine the identified Hankel result

where a 2 pm pr× Hankel matrix   H  is formed from identified   H0  and   H1 , each of

dimensions pm pr×  where p = 30 , m = 2 , r = 1 .  For state-space model realization,

  H( )0  and   H( )1 , each of dimensions ( )2 1p m pr− × , are extracted from   H .  Observe

that the prediction error drops sharply to the minimum when 6 is selected as the order of

the state-space model, which is exactly the true order of the system.  Furthermore, this

error remains at the same level if a larger order is selected.  Result obtained with the
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ARMarkov approach where q = 61 Markov parameters are identified with p = 30

follows the same pattern.  For a fair comparison, in this and all other test cases, the

number of identified Markov parameters q is chosen so that a Hankel matrix of the same

dimension as an identified Hankel matrix can be formed.  At higher model orders the

ARMarkov result is sporadic due to numerical ill-conditioning associated with including

the “smaller” Hankel singular values in Σs
−1 2/ that should have been discarded.  This is not

necessarily a problem because it may simply indicate that the maximum order has been

reached.  Thus we see that both the identified Hankel matrix and the ARMarkov

approaches produce the correct minimum order state-space model directly by Hankel

singular value truncation.  The prediction quality of these models is comparable to the

full (high-dimensional) OKID model where all Hankel singular values are kept.

Identification of HST

We now examine if the pattern observed in the simulation holds up with real data

through a series of tests.  The first test involves a three-input three-output data from the

Hubble Space Telescope (HST) in orbit, Fig. 3.  The system is operating in closed-loop,

hence it is highly damped.  For this reason the problem of order determination may be

difficult.  The HST has six gyros located on the optical telescope assembly which are

used mainly to measure the motion of the primary mirror.  The outputs are expressed in

terms of the three angular rates in the vehicle coordinates.  The input commands excite

the telescope mirror and structure and they are given in terms of angular acceleration in

the three rotational vehicle axes.   The data record is 620 seconds long, and sampled at a

relatively low rate of 10 Hz.   The identification results are shown in Figs. 4-6, one for
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each output.  The identified Hankel matrix approach produces a 3-mode model that

reproduces the data quite accurately.  This result is in agreement with that obtained with a

more substantial set of data sampled at a higher resolution.9  The ARMarkov result

obtained with q = 61 identified Markov parameters arrives at the same conclusion,

although the result is somewhat more sporadic for higher order models.  Indeed, the

highest order that the ARMarkov method can produce with this data is 18, beyond which

the incorporation of additional singular values gives rise to inaccurate results due to the

reason explained earlier.  The prediction quality of these low-dimensional models is

similar to the full OKID model for the first two outputs, but a bit worse for the third

output.  We thus see that the general pattern observed with simulation data is reproduced

here with this set of experimental data.

Identification of SPINE

The second set of single-input single-output data is obtained from a compact yet

very lightly damped and flexible apparatus (SPINE) at Princeton, Figs. 7, 8.  SPINE

consists of a series of parallel steel rods mounted on a thin center wire.  In its 10-rod

configuration, an actuator controls the vertical position of the tip of the first rod.  A laser-

based optical sensing system detects the torsional motion of the third rod, and the tenth

rod is clamped to a rigid support.  Since the tip of the first rod is a controlled input and

the last rod is fixed, the “effective” order of the system should be around 16 (for 8

flexible modes).  With this set of data we have an opportunity to see how well each

method produces a state-space model of this expected order.  The system is excited by a

random input for 80 seconds and the resultant output is recorded at a sampling rate of 200
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Hz.  The identification results are reported in Fig. 9.  As expected, the prediction error

drops sharply and then flattens out at the chosen order of 16 for the identified Hankel

method  The ARMarkov result (with q = 201 identified Markov parameters) also detects

this model order but the prediction error is slightly worse.  The prediction error of the

identified Hankel approach is virtually identical to that of the full OKID model.  Again

the expected pattern is observed for this set of data, with the identified Hankel matrix

approach holding a slight edge over the ARMarkov approach.

Identification of a Truss

The third set of data is obtained from a two-input two-output truss developed for

vibration control of flexible space structures at NASA Langley Research Center, Fig. 10.

The inverted L-shape structure consists of nine bays on its vertical section, and one bay

on its horizontal section, extending 90 inches and 20 inches respectively.  The shorter

section is clamped to a steel plate which is rigidly attached to the wall.  At the tip of the

truss are two cold air jet thrusters, and two accelerometers.  For identification, the

structure is excited using random inputs to both thrusters.  The data record is 8 seconds

long and is sampled at 250Hz.  This data record is relatively short and the system is more

difficult to be identified because besides a small number of dominant modes it also has a

large number of less dominant but still significant modes.  The identification results are

shown in Figs. 11 and 12.  Among the three methods, the identified Hankel method

produces the smallest order model that is comparable in accuracy to a much higher order

OKID model.  The ARMarkov method with 76 identified Markov parameters fails to

produce comparable results although it suggests an order of around 30 with a sharp drop
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in the prediction error.  One possible source of difficulty of the ARMarkov method is that

one does not know in advance the number of Markov parameters q that should be solved

for.  Since the Markov parameters are the system pulse response samples, they will

eventually converge to zero for a damped system.  If q is too small then damping estimate

may be in error.  If q is too large then it is possible that many higher order Markov

parameters are essentially zero which need not be identified.  While it is not necessary to

solve for all non-zero Markov parameters, the total number depends on the system

stability.  This is in contrast to the other two methods where the specification of the order

of the auto-regressive model or the size of the Hankel matrix is essentially a specification

of an upper bound on the order of the system, and this specification is independent of the

system stability.  Another distinction between the identified Hankel matrix approach and

the ARMarkov approach is that the former is based on the Hankel-Toeplitz model which

can be thought of as a family of ARMarkov models.  Hence for a given set of data, the

Markov parameters in the identified Hankel matrix are required to satisfy a much larger

number of constraints than those in a single ARMarkov model.

In view of the above results and others not reported here due to space limitation, a

number of general observations can be made.  OKID is consistent in producing a high

order model with low prediction error.  However, model reduction by Hankel singular

value truncation tends to be poor in prediction quality.  For this reason, the best strategy

for OKID is to keep the full order model and use a separate procedure for model

reduction.  In contrast, the identified Hankel matrix approach is quite consistent in

detecting a true or effective order of the system through Hankel singular value truncation.
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Thus we can combine these two methods by using OKID to establish the minimum

prediction error level at the expense of high dimensionality, and then use the identified

Hankel matrix method to find a lower dimensional model with the same level of

prediction accuracy as the full OKID model.  As a possible third source of confirmation,

the ARMarkov method can be used to corroborate the identified Hankel result in terms of

order confirmation, but this method may not be as consistent as the other two methods.

6. Conclusions

In this paper we examine in details the strategy of using an identified Hankel

matrix for state-space system identification.  The standard method is to identify from

input-output data the Markov parameters which are the building blocks of the Hankel

matrix instead of going directly after the Hankel matrix itself.  Several options are

examined including schemes where the Hankel matrix is identified directly and indirectly

from input-output data.  Advantages and drawbacks associated with each option are

explained.  Both simulated and real data are used to perform an extensive evaluation of

this approach.  Our results indicate that this approach of identifying the Hankel matrix is

effective in terms of its ability to detect the true or effective order of the system, and to

produce relatively low-dimensional state-space model by Hankel singular value

truncation.

This paper has also shown the utility of the interaction matrix approach in

providing a transparent connection between the state-space model and various input-
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output models.  The interaction matrix serves two primary purposes in this work.  First, it

justifies the existence of certain input-output maps that are relevant for the task at hand

(Hankel matrix identification).  Second, it reveals the relationship among the identified

coefficients or matrices from which the Hankel matrix can be computed.  Interestingly,

this task can accomplished without having to compute explicitly the system-dependent

interaction matrix itself.
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Fig. 1.  Hankel, OKID, and ARMarkov identification of a 6-th order system (Output 1)
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Fig. 2.  Hankel, OKID, and ARMarkov identification of a 6-th order system (Output 2)
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Fig. 3.  Hubble Space Telescope
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Fig. 4.  Hankel, OKID, ARMarkov identification of HST (Output 1)
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Fig. 5.  Hankel, OKID, ARMarkov identification of HST (Output 2)
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Fig. 6.  Hankel, OKID, ARMarkov identification of HST (Output 3)
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Figs. 7,8.  SPINE and a 10-rod configuration
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Fig. 9.  Hankel, OKID, ARMarkov identification of SPINE
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Fig. 10.  A truss structure
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Fig. 11.  Hankel, OKID, ARMarkov identification of truss (Output 1)



36

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80

Hankel
OKID
ARMarkov

Pr
ed

ic
tio

n 
er

ro
r 

#2

Selected state space model order

Fig. 12.  Hankel, OKID, ARMarkov identification of truss (Output 2)


