Форум врачей-аспирантов

Здравствуйте, гость ( Вход | Регистрация )

> fitting model для нейросети
kont
сообщение 10.01.2018 - 16:40
Сообщение #1


Дух форума
*

Группа: Пользователи
Сообщений: 148
Регистрация: 11.02.2014
Пользователь №: 26005



Подскажите, теоретический вопрос.
Допустим я построил нейросетевую модель. Переменная отклика -бинарная (1,0)
Но модель плохого качества
плохой AUC
переобучение на лицо. и прочее плохие бяки:)

Что мне нужно сделать, чтобы понять почему всё так плохо
и какие попытки нужно предпринять , чтобы улучшить качество модели
Потому что одним изменением параметров таких как порог и кол-во скрытых слоев и нейронов в них явно не отделаешься.

Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
 
Открыть тему
Ответов
p2004r
сообщение 11.01.2018 - 23:41
Сообщение #2


Дух форума
*

Группа: Пользователи
Сообщений: 1036
Регистрация: 26.08.2010
Пользователь №: 22699



Цитата(kont @ 10.01.2018 - 16:40) *
Подскажите, теоретический вопрос.
Допустим я построил нейросетевую модель. Переменная отклика -бинарная (1,0)
Но модель плохого качества
плохой AUC
переобучение на лицо. и прочее плохие бяки:)

Что мне нужно сделать, чтобы понять почему всё так плохо
и какие попытки нужно предпринять , чтобы улучшить качество модели
Потому что одним изменением параметров таких как порог и кол-во скрытых слоев и нейронов в них явно не отделаешься.


1. Задача просто может не иметь решения -- "иногда сны это просто сны" (С)

2. Если точно известно, что задача решается (например это данные по которым некий агент различает исходы), то надо думать

а) над представлением этих данных на входе

б) над аугументацией этих данных (если их явно маловато)

в) над выбранной архитектурой сети

г) над использованием более продвинутого алгоритма поиска решения, где нейросеть только один из элементов алгоритма решающего задачу разделения смеси


Signature
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 

Сообщений в этой теме


Добавить ответ в эту темуОткрыть тему