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Interspecific association analysis from
presence/absence data is an unresolved
topic in ecology and biogeography (e.g.,
Connor and Simberloff, 1979, 1983, 1984,
1986; Simberloff and Connor, 1981; Gilpin
and Diamond, 1982,1984; Ryti and Gilpin,
1987; Jackson et al., 1992). Several tech-
niques have been proposed to test associ-
ation between species. Connor and Sim-
berloff (1979) put forward a null model
based on the Monte Carlo randomization
procedure. Gilpin and Diamond (1982)
took a different approach, based on a log-
linear model with binary data. Jackson et
al. (1992) proposed a hybrid model com-
bining the two previous methods. How-
ever, all of these null models use an ob-
served data matrix to generate a null
distribution, and so observed and null dis-
tributions lack statistical independence
(Grant and Abbott, 1980). In a fourth ap-
proach, now called the coefficient model
(see Jackson et al., 1992), the observed dis-
tribution of a similarity index is tested
against a distribution of expected values
for that index.

In this context, similarity indices are fre-
quently used to study the coexistence of
species or the similarity of sampling sites.
A matrix of similarity coefficients, between
either species or locations, may be ana-
lyzed in two ways: by ordination, i.e., by
attempting to arrange the locations or spe-
cies within a theoretically continuous se-
quence, or by classification, the aim of
which is to place the locations or species
in discontinuous groups (McCoy et al.,
1986), which may overlap in nonhierarch-
ical classification approaches. The main
aim of this type of analysis is to discover
distribution patterns common to different
species and groups of areas with similar
biota (Birks, 1987). However, Simberloff
and Connor (1979) stated that most indices
of similarity are not associated with prob-
ability values because their underlying dis-
tributions are unknown, thus preventing
high and low levels of association between
species from being recognized objectively
with regard to what may be expected at
random. Only the distributions of the sim-
ple matching coefficient (Goodall, 1967),
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the Baroni-Urbani and Buser coefficient
(Baroni-Urbani and Buser, 1976), the Jac-
card coefficient (Baroni-Urbani, 1980), and
the phi coefficient (Jackson et al., 1992)
have been discussed in the literature.

Jaccard's index (Jaccard, 1908) stands out
as one of the most useful and widely used
indices of the 60 or so similarity indices for
binary data (Birks, 1987). Moreover, it can
be used in species conservation because it
may be applied to the power function of
the relationship between species and areas
to determine a measure for the optimum
size for natural protection reserves (Higgs
and Usher, 1980). Jaccard's index does not
take into account negative matches. In this
way the similarity between two operation-
al taxonomic units (OTUs) is not influ-
enced by other OTUs included in the anal-
ysis, and the value of Jaccard's index is
independent of the number of OTUs stud-
ied. However, those indices taking nega-
tive matches into account change their val-
ues when additional OTUs, with species
absent from the two OTUs analyzed, are
included in the analysis (Buser and Baroni-
Urbani, 1982).

As Rice and Belland (1982) pointed out,
it would not be correct to infer close bio-
logical similarity directly from high values
of Jaccard's index nor to infer biological
dissimilarity from low values, because
these could be random. In turn, the ran-
dom values expected to occur will depend
on the number of attributes present in the
sets formed by each pair of OTUs. There-
fore, it is necessary to determine whether
the values of Jaccard's index in each pair
of OTUs compared differ from what
would be expected at random in order to
infer their biological significance.

In this paper, we reexamine the proba-
bility table associated with Jaccard's simi-
larity index as provided by Baroni-Urbani
(1980) and analyze the probabilities asso-
ciated with this index according to (1) the
total number of attributes in both OTUs
and (2) the number of attributes in each
OTU. We also explore the implications for
the use of this index in biogeographical
studies.

PROBABILITY BASIS OF JACCARD'S INDEX

Jaccard's index may be expressed in sev-
eral ways. A common approach is the fol-
lowing:

C
7 = A + B - C (1)

in which A is the number of attributes
present in OTU a, B is the number of at-
tributes present in OTU b, and C is the
number of attributes present in both OTUs
a and b.

Jaccard's index can also be expressed
thus:

J = A + B + C
(2)

where A is the number of attributes pres-
ent in OTU a and absent in OTU b, B is
the number of attributes present in OTU b
and absent in OTU a, and C is the same as
in Equation 1.

A third way of expressing Jaccard's in-
dex is as follows:

(3)

in which C is the same as in Equations 1
and 2 and N is the total number of attri-
butes found in both OTUs together.

Jaccard's index demands that A, B, and
C take values from the set of natural num-
bers, which leads to a distribution in / that
is not continuous. Therefore, to calculate
values higher and lower than those ex-
pected at random, it is necessary to use
probability calculus instead of analyzing a
continuous statistical distribution of the in-
dex.

Unlike other indices, Jaccard's was stud-
ied by Baroni-Urbani (1980) from a statis-
tical point of view, and he obtained a sta-
tistical table of associated probabilities.
Baroni-Urbani (1980) calculated the statis-
tical table for Jaccard's index starting from
the probabilities associated with a specific
combination {A, B, C, D) in the Baroni-Ur-
bani and Buser index:

B =
'C*D + A + B + C

(4)
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where A, B, and C are the same as in Jac-
card's index (Eq. 2) and D represents
double absences.

In effect, the likelihood that a specific
combination (A, B, C, D) appears on the
Baroni-Urbani and Buser index is

P{A, B, C, D) =
N!

A\B\C\D\
X 2" (5)

(see Baroni-Urbani and Buser, 1976). The
first factor in this formula corresponds to
cases in which the A, B, C, D combination
is favored and is derived from the per-
mutations with repetition of N elements,
within which A, B, C, and D elements are
equal, resulting in the following:

PA,B,C,D — N!
AIBICID

(6)

The second factor corresponds to all
possible cases that result from the varia-
tions with repetitions of the four elements
(A, B, C, D) taken in groups of N elements:

VR4, N = 4N = 2W, (7)

which is why the likelihood of finding an
A, B, C, D combination in the Baroni-Ur-
bani and Buser index is

P(A, B, C, D) =
VR4,N

N\
A\B\C\D\

22N

N!
A\B\O.D\

X 2" (8)

From this point on, Baroni-Urbani
(1980) considered that the probabilities as-
sociated with Jaccard's index are similar to
these, but with D = 0. However, he only
took this difference into account when he
calculated N = A + B + C + D in the
following way:

P{A, B, C, D) =
(A + B + C + D)!

A\B\C\D\
X 4 + B + C + D ) / ( 9 )

which is why, on making D = 0, he as-
sumed that

P{A, B,C,D = 0)
_ (A + B + C + 0)!

A\B\C\l
2~2(A+B+C+0)

(A + B + Q!
AIBIO.

X

N!
X 2- (10)

However, by making D = 0, the number
of elements to combine is also reduced,
from four in the Baroni-Urbani and Buser
index to three in Jaccard's index (A, B, C).
This is why the factor that calculates the
number of possible cases

2-2N = 4 -N

in the previous equations, where the num-
ber 4 represents the four elements to be
combined in the Baroni-Urbani and Buser
index, must change to

3"N. (12)

Here the number 3 refers to the three ele-
ments (A, B, C) combined in Jaccard's in-
dex. For this reason, the probability asso-
ciated with an A, B, C combination in
Jaccard's index is the result of dividing the
number of cases in which this combination
is favored

PAB.C = N\
AIBIO.

by the number of possible cases

VR3, N = 3N

so that the corrected formula is

N!

(13)

(14)

P(A, B, C) =
A\B\C\

X 3-N, (15)

which must then substitute for Equation
10.

Departing from this point, when the ac-
cumulated probabilities are calculated, the
probability of finding a random value for
/ that is less than or equal to a given /, as
expressed in Equation 2, is as follows:

p =

VR2, N-x
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and the probability of finding a random
value for / equal to or greater than a given
/ i s

P = 1 -

2 ( N ) v R 2 , N - x

VR3,N
(17)

Calculations of these formulas can be
tabulated for different values of N if fre-
quent use of the probabilities is required.

When these probabilities are calculated
in this way, the possibility of finding
equally each attribute only in OTU a, only
in OTU b, or in both OTUs is taken into
account. Thus, in extreme cases all the at-
tributes may be found either exclusively in
OTU a or exclusively in OTU b. In other
words, the attributes can change indis-
criminately from absence to presence or
from presence to absence. This is the usual
approach in the coefficient model, where
marginal totals, in this case the number of
attributes in OTU a and OTU b, are not
maintained. In this way, the probability P
for each species being present in a region
is 1/2; C has a binomial distribution, and
/, as expressed in Equation 3, has the dis-
tribution of a binomial random variable di-
vided by the number of trials, in this case
N, when the probability of a species being
present in both OTUs is 1/3. Without any
other additional knowledge, one could as-
sume that species not shared by the OTUs
should have equal probability of occurring
in either OTU, rather than restricting them
to a particular OTU, and then, if the test is
based on random association between spe-
cies across the OTUs, one would expect
equal probabilities for site occupancy.
Thus, with these assumptions, Equations
16 and 17 would be equivalent to one-
tailed binomial tests, which is useful be-
cause a one-tailed test is considered appro-
priate for testing ecological and
biogeographical hypotheses (see Grant
and Abbot, 1980).

However, in certain biogeographical
analyses it may not make sense to assume
that species not shared by the two OTUs
can be equally found in one OTU or the

other but rather that they are more likely
to be found in the OTU that actually sup-
ports more species. Therefore, it would not
be reasonable to take this possibility into
account in the calculation of probabilities.
Jackson et al. (1992), for instance, consid-
ered the coefficient model to be less con-
servative than other models because mar-
ginal totals are not maintained. To
maintain marginal totals, it may be as-
sumed that a species present in OTU a
could enter OTU b and therefore be pres-
ent in both OTUs but will not disappear
from OTU a. In this case, the attribute
would change from absent to present, but
not vice versa. The problem is analogous
to that of the different interpretations giv-
en of shared species in cladistic biogeog-
raphy (see Page, 1988). Thus, the probabil-
ity formulas developed so far would take
into account a situation analogous to that
considered in the Wagner parsimony cri-
terion (Kluge and Farris, 1969; Farris,
1970), which deals with binary conditions
and allows free reversibility. However, the
biogeographer may consider the species
distribution between OTUs similar to that
considered in the Camin-Sokal parsimony
criterion (Camin and Sokal, 1965), which
does not allow reversals from a derived
state, such as presence, to a more ancestral
state, such as absence.

On the assumption that the conditions
are irreversible, it would be more appro-
priate to calculate the probabilities associ-
ated with Jaccard's index by fixing the total
number of elements, A and B, in each OTU.
Strauss (1982) considered fixing the num-
ber of species in each location a realistic
approach applicable to any similarity in-
dex (see also Connor and Simberloff, 1979,
1984; Diamond and Gilpin, 1982; Gilpin
and Diamond, 1982). This approach is even
more pertinent in the case of Jaccard's in-
dex because it is influenced by the size of
the sample and tends to group together the
OTUs that have similar elements and a
similar number of species (Sepkoski and
Rex, 1974; Connor and Simberloff, 1978).

If presences are considered irreversible,
the number of possible cases would be the
sum of the groups of common elements

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/45/3/380/1616317 by guest on 15 M

ay 2019



384 SYSTEMATIC BIOLOGY VOL. 45

that could be formed while preserving the
number of elements A and B of each OTU,
with / expressed as in Equation 1:

Min(A,B) / A . r,

Y IA + B - x
x=0 \ X

(18)

Thus, the common elements may range
from 0 to the minimum value A and B. The
cases in which a certain A, B, C combina-
tion is favored would result from the com-
binations of C elements that can be formed
from the total of the A + B - C elements:

A + B - C
C (19)

When the accumulated probabilites are
calculated, the likelihood of finding a ran-
dom value of /, as expressed in Equation 1,
greater than or equal to a given / value is
as follows:

P = 1 -

A + B - x

Min(A,B)
A + B - x

x

• (20)

The likelihood of randomly finding a / val-
ue less than or equal to a given / value is
as follows:

P =

A + B - x

A + B - x
x

(21)

These equations can be used to calculate
the significance of Jaccard's similarity co-
efficients while maintaining a fixed total
number of attributes, A and B, in each of
the OTUs being compared. The result of
this operation can be tabulated, although
for a given total number of attributes, N,
the probabilities vary according to the
number of attributes of the OTU with the
fewest attributes.

Hence, either Equations 16 and 17 or
Equations 20 and 21 can be used to cal-
culate the probabilities associated with a

value in Jaccard's index. If the probability
is calculated by fixing a set number of total
attributes in each OTU (irreversible con-
ditions), Equations 20 and 21 should be
used. Alternatively, if any possible distri-
bution for the N elements in both OTUs is
considered (reversible conditions), Equa-
tions 16 and 17 should be used.
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In a recent paper (Colless, 1995), I pre-
sented evidence that cladograms con-
structed by the Wagner method (Farris,
1970) are inherently less symmetrical than
phenograms constructed using a space-
conserving algorithm (e.g., WPGMA or
UPGMA; Colless, 1995). I there used an in-
dex of symmetry, ISYM, and fully described
that index and the notion of space distor-
tion. One especially intriguing feature of
those results was that the difference be-
tween cladograms and phenograms holds
even for random data, where there could
be no explanation in "real" underlying
taxonomic patterns. It is becoming clear
that for the cladistic case at least this dif-
ference is maintained because the algo-
rithm concerned is mimicking a particular

model of random evolution (Heard and
Mooers, 1996). Here, I comment further on
this fact and present additional empirical
results.

Other authors (e.g., Slowinski, 1990;
Rogers, 1994) have advanced two different
models that might be used to calculate the-
oretically the average JsyM for random trees
with various numbers of OTUs: (1) the
equal-rates Markov (ERM) model, based
on a hypothesis of random speciation with
rates uniform across lineages, and (2) the
equal probability (EP) model, which as-
sumes that all possible labeled trees are
equally probable. The EP model clearly ap-
plies to trees constructed by parsimony us-
ing random data (Slowinsky, 1990; Mooers
et al., 1995; Heard and Mooers, 1996). Like-
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