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Abstract

Random forests are widely used in many research fields for prediction and interpretation purposes. Their
popularity is rooted in several appealing characteristics, such as their ability to deal with high dimensional
data, complex interactions and correlations between variables. Another important feature is that random
forests provide variable importance measures that can be used to identify the most important predictor
variables. Though there are alternatives like complete case analysis and imputation, existing methods for
the computation of such measures cannot be applied straightforward when the data contains missing values.
This paper presents a solution to this pitfall by introducing a new variable importance measure that is
applicable to any kind of data – whether it does or does not contain missing values. An extensive simulation
study shows that the new measure meets sensible requirements and shows good variable ranking properties.
An application to two real data sets also indicates that the new approach may provide a more sensible
variable ranking than the widespread complete case analysis. It takes the occurrence of missing values into
account which makes results also differ from those obtained under multiple imputation.

Keywords: variable importance measures, permutation importance, random forests, missing values, missing
data
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1 Introduction

Recursive partitioning methods – in particular classification and regression trees, bagging and random forests
– are popular approaches in statistical data analysis. They are applied in many research fields such as social,
econometric and clinical science. Among others, there are approaches like the famous CART algorithm in-
troduced by Breiman et al. (1984), the C4.5 algorithm by Quinlan (1993) and conditional inference trees by
Hothorn et al. (2006). A detailed listing of further application areas and methodological issues, along with
discussions about the historical development and state-of-art, can be found in Strobl et al. (2009). The pop-
ularity of trees is rooted in their easy applicability and interpretability. Advantages over common approaches
like logistic and linear regression are their ability to implicitly deal with missing values, collinearity and high
dimensional data sets. Moreover, recursive partitioning is able to detect even complex interaction effects, as
pointed out by, e.g., Lunetta et al. (2004), Cutler et al. (2007) and Tang et al. (2009).

Likewise, random forests (cf. Breiman, 2001) – besides achieving an improved prediction accuracy – can be
used to identify relevant variables. Therefore variable importance measures, which are in main focus of this
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paper, provide an assessment of the predictive power of a variable in a forest. In addition they are often used
for variable selection, too. The work of Tang et al. (2009), Yang and Gu (2009), Rodenburg et al. (2008), Sandri
and Zuccolotto (2006) and Dı́az-Uriarte and Alvarez de Andrés (2006) shows that different approaches that are
meant to improve prediction accuracy and select the most relevant variables have been developed. Yang and
Gu (2009) show that a forest may benefit from previous variable selection by means of an example from the field
of genome-wide association studies. Altmann et al. (2010), on the other hand, discuss that variable selection
may equally harm and improve analysis. A summary of several selection methods and related publications can
be found in Archer and Kimes (2008).

Despite the widespread usage of random forest variable importance measures, to our knowledge there is no
straightforward suggestion on how to compute such measures in the presence of missing values. Therefore, in
the following we will propose a new approach for dealing with this problem: We will show how our method can
deal with missing values in an intuitive and straightforward way, yet retaining the widely appreciated qualities
of existing random forest variable importance measures. The properties of the new method are investigated
in an extensive simulation study. The results show that a list of sensible demands we had pre-specified are
completely fulfilled. An application to two real data sets shows the practicability of the new method in real life
situations and a potential superiority to complete case analysis. Results also differ from those obtained under
multiple imputation as the new method reflects the data situation at hand, taking the occurrence of missing
values into account.

2 Missing Data

In an early work Rubin (1976) specifies the issue of correct statistical inference from data containing missing
values. A key instrument is the declaration of the process that causes the missingnes. Based on this consid-
erations many model strategies for inference and elaborate definitions of the subject have been developed. An
extensive summary can be found in Schafer and Graham (2002). In general, three types of missingness are
distinguished:

• Missing completely at random (MCAR): P (R|Xcomp) = P (R)

• Missing at random (MAR): P (R|Xcomp) = P (R|Xobs)

• Missing not at random (MNAR): P (R|Xcomp) = P (R|Xobs, Xmis)

The status of missingnes (yes = 1/no = 0) is indicated by R and its probability P (R). The letter R, that was
adopted from the original notation, may emerge from the fact that Rubin (1987) originally was dealing with
’R’esponse rates in surveys. The complete variable set Xcomp consists of the observed values Xobs and the
missing ones Xmis. Xcomp = {Xobs, Xmis}. Therefore MCAR indicates that the probability of a missing value
is independent of the observed and unobserved data. By contrast for MAR this probability is dependent on
the observed data. Finally, in MNAR it depends on the missing values themselves – for example because those
subjects with high response values systematically drop out of a study.

The findings of Little and Rubin (2002) showed that usual sample estimates – for example in linear regression
– stay unaffected by the MCAR scheme. However, Strobl et al. (2007) outlined that in classification and
regression trees even MCAR may induce a systematic bias, that may be carried forward to random forests
based on biased split selections. Therefore, in our following simulation study, one MCAR, four MAR and one
MNAR process to generate missing values are investigated to shed light on the sensitivity of the proposed
method to these schemes.

3 Methods

3.1 Recursive Partitioning

The main idea of recursive partitioning can be best described by the example of the CART algorithm. The
construction of trees is based on sequential splits of the data into binary subsets. These are conducted in single
variables due to different criteria depending on the response type. A popular choice for binary responses is to
use the Gini Index (cf. Breiman et al., 1984, for details). The growth of the tree is stopped when a certain
criterion, such as a limiting number of observations in the final subsets, is reached. After a tree has been
grown to its maximal size it can be “pruned” back: For pruning the performance of the tree is evaluated via
cross-validation at different growth stages. A popular choice of the final size is given by the smallest tree that
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still produces an error within a range of one standard error to the best performing tree (cf. Breiman et al.,
1984; Hastie et al., 2009, for a more detailed description of the entire approach).

Unfortunately, the CART algorithm – and consequently all random forest algorithms based on the same
construction principles – favour splits in continuous variables and variables with many categories. Likewise,
predictors with many missing values may be preferred if the Gini Index is employed (Strobl et al., 2007).
To overcome this problem, several unbiased tree algorithms have been suggested (see, e.g., White and Liu,
1994; Kim and Loh, 2001; Dobra and Gehrke, 2001; Hothorn et al., 2006; Strobl et al., 2007). From these
unbiased approaches, our following work will be based on the algorithm suggested by Hothorn et al. (2006), who
introduced conditional inference trees. Basically, these trees are grown by node splitting which is performed
in two steps. 1) The association of predictors to the response is assessed in a permutation test framework.
Predictors that reach statistical significance are found to be eligible for splitting. 2) Among those, the node
split is conducted in the predictor that showed the strongest relation to the response. This approach guarantees
unbiased variable selection and shows several other good statistical properties.

3.2 Ensemble Methods

Breiman (1996) enhanced the tree methodology by means of “bagging” (bootstrap aggregation). He was able
to show that the performance benefits from using ensembles of trees instead of single trees as the variance
of predictions is reduced. In bagging, several trees are fit to bootstrap or subsamples of the data. Averaged
values or majority votes of the response values predicted by each single tree are used as predictions. As an
advancement of bagging, random forests (Breiman, 2001; Breiman and Cutler, 2008) extend this approach: In
random forests, splits are performed only in a random selection of variables, which enables a more diverse set
of variables to contribute to the joint prediction. There is no general advice on how many trees should be used
in a forest. Breiman (2001) proves that random forests don’t overfit with a rising number of trees (while the
results of Lin and Jeon, 2006, indicate that they do overfit when trees are grown too large). Further research
of Biau et al. (2008) lead to theorems about the consistency of Random Forest approaches and other averaging
rules. Likewise, Genuer (2010) was able to show the superiority of a variant of Random Forests to single trees
and therefore proved the attendant question of variance reduction in this special case.

From the recursive partitioning approach of Hothorn et al. (2006), random forests can be constructed
following the same rationale as Breiman’s original approach. The advantage of this method is again that it
guarantees unbiased variable selection and variable importance measures when combined with subsampling (as
opposed to bootstrap sampling) (Strobl et al., 2007). This framework for constructing random forests is used
in the following. Note, however, that the new importance measure can generally be applied in all other random
forest algorithms without any restriction.

3.3 Surrogate Splits

There are several possibilities to handle missing values. One of them is to stop the throughput of an observation
at the node at which the information for the primary split rule is missing (the prediction is then based on the
conditional distribution of the responses that are element of this node). Another approach makes the missing
values simply follow the majority of all observations with observed values (Breiman et al., 1984). However,
the by far most popular way of handling missing observations is to use surrogate decisions based on additional
variables (Breiman et al., 1984; Hothorn et al., 2006). These splits try to mimic the primary split by archiving
the same partitioning of the observed values. When several surrogate splits are computed they can be ranked
according to their ability of resembling the original split. When an observation contains further missing values
in surrogate variables they are processed in order of similarity to the primary split until a decision for a missing
value is found. The number of possible surrogate splits is usually determined by the user.

3.4 Variable importance measures

The work of Sandri and Zuccolotto (2006), Altmann et al. (2010), Wang et al. (2010) and Zhou et al. (2010)
shows that the development of new importance measures is still an ongoing process. In the following we present
the most common and popular ones.

3.4.1 Gini importance

The Gini importance, that is available in many random forest implementations, accumulates the Gini gain over
all splits and trees to evaluate the discriminatory power of a variable (Hastie et al., 2009). One advantage of
this measure is that – in principle – it is applicable to missing data. However, all classification tree and random
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forest algorithms based on the Gini splitting criterion are prone to biased variable selection (Strobl et al., 2007;
Hothorn et al., 2006). Recent results also indicate that it has undesirable variable ranking properties, especially
when dealing with unbalanced category frequencies (Nicodemus, 2011). Therefore the Gini importance is not
considered here.

3.4.2 Permutation importance

The most popular and most advanced variable importance measure for random forests is the permutation accu-
racy importance. One of its advantages is its broad applicability and unbiasedness (when used in combination
with subsampling as shown by Strobl et al., 2007). The permutation importance is assessed by comparing the
prediction accuracy of a tree before and after random permutation of the predictor variable of interest. If it is of
relevance the accuracy should decrease as the original association to the response is destroyed by permutation.
The average of differences over all trees provides the final importance score. Large values of the permutation
importance indicate a strong association between the predictor variable and the response. Values around zero
(or even small negative values, cf. Strobl et al., 2009) indicate that a predictor is of no value for predicting the
response.

In the computation of the permutation importance, the assessment of the prediction accuracy – in terms of
correct classification or mean squared error – is usually based on observations that were not part of the sample
used for constructing the respective tree (the so called “out of bag” (OOB) observations; cf. Breiman (2001)).
This way the OOB accuracy provides a more realistic estimate of the prediction accuracy that can be expected
for new data (cf., e.g., Boulesteix et al., 2008; Strobl et al., 2009).

In summary, the computation of the permutation importance consists of the following steps:

1. Compute the OOB accuracy of a tree.

2. Permute the predictor variable of interest in the OOB observations.

3. Recompute the OOB accuracy of the tree.

4. Compute the difference between the original and recomputed OOB accuracy.

5. Repeat step 1 to 4 for each tree and use the average difference over all trees as the overall importance
score.

Besides the original version of the permutation importance, a conditional version (that more closely resembles
the behavior of partial correlation or regression coefficients) was introduced by Strobl et al. (2008). The dis-
cussions in Nicodemus et al. (2010) and Altmann et al. (2010) show that both kinds of measures, conditional
and unconditional, can be of specific value depending on the research question. However, the variety of recent
publications, like that of Yu et al. (2011), indicate that the original permutation importance is still extremely
popular in many research fields. Therefore, we will concentrate on the construction of an unconditional im-
portance measure in the following, but will address an extension for conditional variable importance in further
research.

The main problem of the approach for computing the permutation importance as described above is that
there is no straightforward way to compute this measure in the presence of missing values. In particular, it
is not clear how conclusions about the importance of variables can be drawn from the permutation approach
when surrogate splits are used for the computation of the OOB accuracy but are not part of the permutation
scheme.

4 New proposal

A new approach is suggested here in order to provide a straightforward and intuitive way of dealing with
missing values in the computation of a random forest variable importance measure. The construction of the
new measure closely sticks to the existing methodology and the reader will find that it deviates from the original
permutation importance only in one – yet one substantial – step.

The main idea of the new proposal is the following: Instead of permuting the values of a variable (that may
be missing), the observations are randomly allocated to one of the child nodes if the split of their parent node is
conducted in the variable of interest. This procedure detaches any decision from the raw values of the variable,
and therefore circumvents any problems associated with the occurrence of missing values and the application
of surrogate splits for the computation of the OOB accuracy.
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The rest of the computation procedure, however, is not affected by this “trick”: In the first step of the
computation one proceeds as normal by recording the prediction accuracy of a tree (including all surrogate
splits, which can be considered as an implicit imputation of the missing values). In a second step, the prediction
accuracy is again recomputed by randomly assigning observations that were originally split in the variable of
interest to the corresponding child nodes.

Formally introducing a binary random variable D, that indicates the decision for one of the child nodes,
the probability of being send to the left (D = 0) or to the right (D = 1) child node, respectively, is given by
Pk(D = 0) and Pk(D = 1) = 1−Pk(D = 0) for a node k. The random allocation of the observations – just like
the random permutation of the values of a predictor variable Xj itself in the original permutation importance
– mimics the null hypothesis that the assignment of observations to nodes does not depend on this particular
predictor variable any more: Under the null hypothesis, the probability to end up in a specific child node of
node k is Pk(D|Xj) = Pk(D). Therefore it also does not matter whether a value of Xj is missing or not, as it
is not used for the decision of how to further process an observation.

For the practical computation of the prediction accuracy, the probability Pk(D = 0) is replaced by its
empirical estimator, the relative frequency:

p̂k(D = 0) = nk,left/nk

where nk,left and nk are the number of observations that were originally send to the left child node and were
present in the parent node k, respectively. In contrast to the original permutation importance measure presented
in section 3.4.2, the computation of the new measure consists of the following steps, highlighting the essential
difference in step 2 and 3:

1. Compute the OOB accuracy of a tree.

2. Randomly assign each observation with p̂k(D = 0) to the child nodes of a node k that uses

Xj for its primary split.

3. Recompute the OOB accuracy of the tree following step 2.

4. Compute the difference between the original and recomputed OOB accuracy.

5. Repeat step 1 to 4 for each tree and use the average difference over all trees as the overall importance
score.

5 Simulation studies and analysis settings

5.1 Simulation

5.1.1 Rationale

An extensive simulation study was designed to shed light on the characteristics of the proposed importance
measure. Some properties are supposed to be close to those of the original permutation importance measure
like the fact that correlated variables obtain higher importances than uncorrelated ones in an unconditional
assessment. Others are still to be investigated like the effect of different correlation structures (that determine
the quality of surrogate splits), schemes of missingness, the amount of missing values and so forth.

In order to assess the performance of the newly suggested approach, before running the simulation exper-
iments we formulated a list of requirements that should be met by a sensible variable importance measure
designed for dealing with missing values:

• (R1) When there are no missing values, the measure should provide the same variable importance ranking
as the original permutation importance measure.

• (R2) The importance of a variable is not supposed to artificially increase, but to decrease with an increasing
amount of missing values (because the variable loses information, cf. Strobl et al., 2007).

• (R3) Like the original permutation importance (that is a marginal importance in the sense of Strobl
et al., 2008), the importances of a variable is supposed to increase with an increasing correlation to other
influential predictor variables.
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• (R4) The importance ranking of variables not containing missing values is supposed to stay unaffected by
the amount of missing values in other variables. This is only required within groups of equally correlated
variables as differences in correlation directly affect variable importances and therefore may well change
the ranking.

• (R5) The importance of influential variables is supposed to be higher than the importance of non-influential
variables. This should hold for equally correlated variables with equal amounts of missing values –
considering that both facts influence the importance of a variable. For example a non-influential variable
which does not contain missing values and is correlated with an influential variable can achieve a higher
importance than an influential variable containing missing values (cf. Strobl et al., 2008). In any way,
the lowest importance should always be assigned to non-influential variables that are uncorrelated to any
other influential variables.

In order to investigate these requirements and further characteristics of the newly suggested approach, an
extensive simulation study was set up, as described in the following sections.

5.1.2 Settings

There are several factors that need to be varied in the simulation setting, in particular the amount of missing
values, correlation strength, the number of correlated variables (termed block size in the following), variable
influence and different missing value mechanisms. A detailed explanation of the setup is given in the following.

• Influence of predictor variables

The proposed importance measure is supposed to be applicable in both classification and regression
problems. Thus, the simulated data contained a categorical (binary) and a continuous response. In both
cases the coefficients β, that were used to produce 20 variables in the data generating model described
below, are:

β = (4, 4, 3, 4, 3, 4, 3, 4, 3, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0)⊤

The idea of this setup was that repeatedly choosing the same values for β enables a direct comparison of
importances belonging to variables which are, by construction, equally influential. The different β values
are crossed with the other experimental factors to allow an evaluation of differences and provide reference
values for each setting. In addition, the non-influential variables with β = 0 help to investigate possible
undesired effects and again serve as a baseline.

• Data generating models

A continuous response was modeled by means of a linear model:

y = x⊤β + ǫ with ǫ ∼ N(0, .5).

The binary response was modeled by means of a logistic model:

P (Y = 1|X = x) =
ex

⊤β

1 + ex⊤β
.

The variable space X itself contains 100 observations drawn from a multivariate normal distribution with
mean vector ~µ = 0 and covariance matrix Σ:

• Correlation

Σ =




























1 r r 0 0 0 0 0 0 0 0 0 · · · 0
r 1 r 0 0 0 0 0 0 0 0 0 · · · 0
r r 1 0 0 0 0 0 0 0 0 0 · · · 0
0 0 0 1 r 0 0 0 0 0 0 0 · · · 0
0 0 0 r 1 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 1 r 0 0 0 0 0 · · · 0
0 0 0 0 0 r 1 0 0 0 0 0 · · · 0
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As the variances of each variable are chosen to be 1, the covariance equals the correlation in this special
case. The strength of correlation was varied by setting r to 0, .3, .6 and .9. The structure of the 20× 20
dimensional covariance matrix Σ reveals that there are four blocks of different size, each of them consisting
of 3, 2, 2 and 4 variables. Thus it was possible to investigate the effect that the strength and extent of
the correlation had on the importance measure.

• Missing values

In analogy to the simulation setting of Rieger et al. (2010), who investigate the performance of random
forests on missing data, several MCAR and MAR schemes of creating missing values were implemented.
In addition, a further MNAR setting was investigated, too. In each scheme, a given fraction m of observed
values is replaced by missing values. As the amount of missing values is of major concern in our simulation
experiments, m takes the values 0%, 10%, 20% and 30%.

In a MAR setting, the probability for missing values in a variable depends on the values of another
variable. In the MNAR scheme this probability is determined by a variables own values. Accordingly,
each variable containing missing values has to be linked to at least one other variable or itself. Table 1
lists the corresponding relations.

Table 1: List of the variables containing missing values and variables determining the probability of missing
values.

contains missing values determines missing values
(MCAR, MAR & MNAR) (MAR) (MNAR)
X2 X3 X2

X4 X5 X4

X8 X9 X8

X10 X11 X10

X12 X13 X12

X14 X15 X14

The schemes for producing missing values are:

– MCAR: Values are randomly replaced by missing values.

– MAR(rank): The probability of a value to be replaced by a missing value rises with the rank the
same observation has in the determining variable.

– MAR(median): The probability of a value to be replaced by a missing value is 9 times higher for
observations whose value in the determining variable is located above the corresponding median.

– MAR(upper): Those observations with the highest values of the determining variable are replaced
by missing values.

– MAR(margins): Those observations with the highest and lowest values of the determining variable
are replaced by missing values.

– MNAR(upper): The highest values of a variable are set missing.

A schematic illustration of β summarizes all factors varied in the simulation design below. Correlated blocks
of variables are enumerated by roman figures and separated by ’|’. Bold figures indicate variables that contain
missing values:

β = (4,4, 3
︸ ︷︷ ︸

I

| 4, 3
︸︷︷︸

II

| 4, 3
︸︷︷︸

III

|4, 3,0, 0
︸ ︷︷ ︸

IV

| 2
︸︷︷︸

V

| 2
︸︷︷︸

VI

| 0
︸︷︷︸

VII

| 0
︸︷︷︸

VIII

| 0
︸︷︷︸

IX

| 0
︸︷︷︸

X

| 0
︸︷︷︸

XI

| 0
︸︷︷︸

XII

| 0
︸︷︷︸

XIII

)⊤

In summary, there are 2 response types, 6 missing value schemes, 4 fractions of missing values and 4 correlation
strengths, summing up to as much as 192 different simulation settings. Variable importances were recorded by
repeating each setting 1000 times. Corresponding R-Code is given in appendix B.

5.2 Real Data

In addition to the extensive simulation study, two well known data sets were used to show the applicability of
the new approach in real life situations. Both were chosen to provide a varying number of missing values in
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several variables. The total number of variables equals 8 and 9 to allow for an easy and clear comparison of
importance measures.

In addition, the widely used complete case analysis – where observations that contain missing values are
entirely omitted from the data – and multiple imputation by chained equations (MICE; cf. Van Buuren et al.,
2006; White et al., 2011) – which permits the imputation of data with missing values in several variables –
were used to enable the application of the original permutation importance measure despite the occurrence of
missing values. Finally the ranking of variable importances within each approach were compared and discussed.

The considered data sets are the following:

• The Pima Indians Diabetes Data Set was obtained from the open source UCI Machine Learning
Repository (Frank and Asuncion, 2010). It contains information about the diabetes disease of 768 pima
indian women, which are at least 21 years old. In addition to age, the number of pregnancies, plasma
glucose concentration, diastolic blood pressure, triceps skin fold thickness, 2-Hour serum insulin, BMI and
diabetes pedigree function were recorded. This makes 8 independent variables used for the classification
problem to determine whether a women showed signs of diabetes according to the WHO definition.

At a first glance this data set does not seem to contain any missing data. However, the missing values are
actually “hidden” behind by many zero values that are biologically implausible or impossible. Pearson
(2006) calls this situation “disguised missing data” and gives a profound discussion about its occurrence
in the Pima Indians Diabetes Data Set. According to his description, there are 5 variables that contain
missing data. The total numbers of missing values in these variables are 5, 35, 227, 374 and 11, which
equals fractions of 0.7%, 4.6%, 29.6%, 48.7% and 1.4%. Overall 376 (49.0%) of all observations contain
at least one missing value. Therefore the complete case analysis can only employ 392 of the 768 available
observations.

• The Mammal Sleep Data comprises features of 62 species ranging from mice over opposums and ele-
phants to man. It can be obtained from the R package VIM and was originally used by Allison and Cicchetti
(1976) to examine relations between sleep, ecological influences and constitutional characteristics. The
observed sleep features include information about duration and depth of sleep phases as well as occurrence
of dreams. Constitution is given by measures like body weight and brain weight. The safety of sleep is
assessed by scaling for overall danger, danger for being hunted, sleep exposure as well as gestation time
etc. One of the main findings in the original paper was a negative correlation between slow-wave sleep
and body size. In alignment with these investigations the data containing 9 independent variables was
used in a regression analysis for the prediction of body weight. There are 20 (32.3%) observations which
are not completely observed for all variables which leaves 42 observations for the complete case analysis.
It is interesting to note that Allison and Cicchetti (1976) had originaly chosen a complete case analysis
as they found the incomplete data to be “... not suitable for the multivariate analyses ...”. There are five
variables containing 4 (3 times), 12 and 14 (6.5% (3 times), 19.4% and 22.6%) missing values.

5.3 Implementation

All computations were performed with the R system for statistical computing (R Development Core Team,
2010). An implementation of unbiased random forests based on a conditional inference framework is provided
by the function cforest() which is part of the package party (Hothorn et al., 2008). The original permutation
importance measure and the new approach were computed by the function varimp() which is also included
in this package. The settings for the simulation studies were chosen to result in a computation of ntree = 50
trees and maxsurrogate = 3 surrogate splits in each node. The number of randomly selected variables serving
as candidates for splits was set to be mtry = 8. Sticking to the default setting mincriterion = 0 there were
no restrictions concerning the significance of a split. Trees were grown until terminal nodes contained less than
minsplit = 20 observations while not allowing for splits that lead to less than minbucket = 7 observations in
a child node. As the number of complete observations becomes extremely low in the additional complete case
analysis of the simulation study these parameters were set to minsplit = 2 and minbucket = 1 in this case.
The examination of the two real data sets was based on random forests that consisted of ntree = 5000 trees
in order to produce stable variable importance rankings. The number of variables chosen for splits was set
to mtry = 3 considering that the data contained only 8 and 9 variables. The number of surrogate splits and
observations that needed to be included in terminal nodes and parent nodes was the same as in the simulation
studies. The function mice() of the package mice (van Buuren and Groothuis-Oudshoorn, 2010, version 2.11)
was used to produce five imputed datasets. Normal, logistic and polytomous regression models were applied
to impute continuous, binary and polytomous variables, respectively; therefore the corresponding setting of
mice() was chosen to be defaultMethod = c(”norm”, ”logreg”, ”polyreg”).
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Figure 1: Comparison of the new approach and the original permutation importance. Left: Median importance
measures across 1000 simulation runs for all variables and correlations when there is no missing data (m =
0%). Right: Distribution of values observed in 1000 simulation runs for the example of variable 5 (r = 0.6).

Genuer et al. (2008) have conducted elaborate studies to investigate the effect of the number of observations,
ntree and mtry on the computation of importance measures. They found that the stability of estimation
improved with a rising amount of observations and trees (mtry). However, the rankings of importance measures
– which are in main focus of this work – remained almost untouched. This instance is also supported by the fact
that simulation studies are repeated 1000 times; aiming at an averaged assessment of rankings. It is a common
choice to make mtry equal the square root of the number of predictors (cf. Dı́az-Uriarte and Alvarez de Andrés,
2006; Chen et al., 2011). Again, Genuer et al. (2008) found this value and even higher values for mtry to be
convenient for the identification of relevant variables by means of importance measures. Therefore, all of the
parameter settings of the simulation studies are in accordance with these considerations.

6 Results

6.1 Simulation

The following investigations are based on the regression analysis in the MAR(rank) scheme. Due to the study
design each requirement can be explored by the presentation of results for specific sets of variables. However,
it has to be pointed out that non-influential variables are only partly presented as they all gave the same
results and did not show any unexpected effects. Thus, variables 16 to 20 are omitted from presentation. A
discussion about the reproducibility of findings in the investigated classification problem and further missing
data generating processes is given at the end of this section.

Requirement (R1) is satisfied for all of the investigated variables and correlation strength (cf. Figure 1). The
newly suggested approach and the original permutation importance measure even approximately equal each
other when there are no missing values (m = 0%). Deviations of single assessments are due to the computation
inherent variability of importance measures. Therefore, results are also presented as median importance across
1000 simulation runs to stress the average equality.

Requirement (R2) is met as the importance of variables decreases the more missing values they contain (cf.
Figure 2). This holds for all variables and correlation strength (cf. Figure 9 in appendix A).

Requirement (R3) holds as correlations with influential variables induce higher importances (cf. Figure 3).
This is true for all variables and fractions of missing values (cf. Figure 10 in appendix A; A comparison of
Blocks I and II shows that block size is another factor that affects variable importance. However, non-influential
variables – given in Block IV – do not contribute to this effect.).

The effects of correlation and missing values appear to be interacting (cf. Block I in Figure 4): Although
all variable importances rise with a rising strength of correlation, the importance of variable 2 drops in relation
to the variables of the same block when the amount of missing values increases. An investigation of selection
frequencies – i.e. the number of times a variable is chosen for splits in a Forest (displayed as horizontal lines) –
reveals that it is replaced by other variables in the tree building process. This effect follows a simple rule: the
more similar the information of variables becomes due to an increased correlation and the more information a
variable is lacking because of missing values the more often it will be replaced by others.
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Figure 2: Variable importance of variables 8 and 10 with correlation r = .6 and m = 0%, 10%, 20%, 30% missing
values. Boxplots of variables with missing values are colored grey. Outliers are omitted from illustration for
clarity.
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0
20
40
60
80

100
120

m = 0%

r 
=

 .0

0

20

39

58

78

m = 30%

4 4 3 4 3 4 3Coef.

1 2 3 4 5 6 7Var.

I I I II II III IIIBlock

0
20
40
60
80

100
120

r 
=

 .9

4 4 3 4 3 4 3
1 2 3 4 5 6 7
I I I II II III III

0

20

39

58

78

Figure 4: Variable importances (left axis) of variables 1-7 (Block I, II, III) and correlations r = 0, .9 for fractions
of missing values m = 0%, 30%. Boxplots of variables that contain missing values are colored grey. Horizontal
lines indicate selection frequencies (right axis). Vertical dashed lines indicate correspondance to the same block.
Outliers are omitted from illustration for clarity.
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of missing values m = 0%, 10%, 20%, 30%. Boxplots of variables that contain missing values are colored grey.
Horizontal lines indicate selection frequencies (right axis). Vertical dashed lines indicate correspondance to the
same block. Outliers are omitted from illustration for clarity.

Requirement (R4) is satisfied as the ranking of fully observed variables from the same block stays unaffected
by the amount of missing values in other variables (cf. Figure 4). Note that between blocks the variable rankings
may change (cf. variables 5 and 7). The importance of variable 5 increases as it is able to replace variable 4
that contains missing values. It rises above variable 7 with the same (and for strong correlations and many
missing values even above variable 6 with a higher) influence on the response. Another question emerging from
the fact that variables may replace others in a tree is if this also holds for isolated blocks that are not correlated
with any variables that contain missing values. Figure 5 shows that this is almost not the case as selection
frequencies and variable importances stay on a certain level (cf. Block II and III). This finding even partly
extends (R4) which demands stable rankings for fully observed variables only within blocks, not across blocks.

Requirement (R5) is met as the importance of influential variables is higher than for non-influential variables
(cf. Figure 6). This holds for variables with and without missing values – but not necessarily for comparisons
between the two cases. Importances of influential variables may drop below those of non-influential ones if
the former contain missing values and the latter are part of a correlated block with influential variables. An
example is given by Block IV: Variable 8 shows a higher importance than variable 10 (both containing missing
values) and variable 9 shows a higher importance than variable 11 (both without missing values). However,
the importance of the influential variable 8 drops below that of the non-influential variable 11, as the former
contains missing values and the latter is correlated to variable 9. The importance of variable 11 even rises
above that of influential variables contained in other blocks (e.g. variable 13). However, the lowest importance
should always be assigned to non-influential variables that are uncorrelated to any other influential variables.
This claim is approved by the examples of variable 14 and 15.

In conclusion, factors like the occurrence of missing values, the number and influence of correlated variables
as well as the correlation strength, can positively affect the importance of variables. However, these are
properties to be expected from a marginal variable importance measure when dealing with variables that lose
information due to missing values, yet are correlated to other variables that can “take over for them”.

Results for the entire simulation setting show the same properties as for the specific cases investigated
above (cf. Figure 11 in appendix A for a broad overview). An additional examination of all missing data
generating processes (MCAR, MAR(rank), MAR(median), MAR(upper), MAR(margins) and MNAR(upper))
demonstrates that all findings of the previous analyses can be retraced in each scheme (cf. Figure 12 in appendix
A). Therefore, the proposed approach appears to be applicable to a wide range of MCAR, MAR and MNAR
settings. In addition, results for the classification problem show the same properties and are not displayed or
discussed to omit redundancy.
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Figure 6: Variable importances of Block IV-VIII and correlations r = .6, .9 for fraction of missing values m =
20%, 30%. Boxplots of variables that contain missing values are colored grey. Vertical dashed lines indicate
correspondance to the same block. Outliers are omitted from illustration for clarity.

6.2 Real Data Application

Figure 7 shows importance measures computed by the new approach for the two real data sets. As an alternative,
the original permutation importance measure was computed for multiple imputed data and in a complete case
analysis.

In the Pima Indians Diabetes Data the ranking of predictor variables shows obvious differences between
methods. These become evident by the example of the variables BMI, number of pregnancies, diabetes pedi-
gree function, age and 2-Hour serum insulin. The strongest and weakest variables, however, plasma glucose
concentration, diastolic blood pressure and triceps skin fold thickness are ranked equally. Similar findings can
be observed for the Mammal Sleep Data. The variables slow wave sleep (‘NonD’ = ‘nondreaming’), dreaming
sleep, maximum life span and the overall danger index are ranked differently. Even if the ranking of some
variables is the same between methods, like for the sleep exposure index (‘Exp’), there may still be substantial
differences in the magnitude of importances assigned to them. The results also show that differences do not
directly (or solely) depend on whether or not a variable contains missing values. In addition, there is some
diversity in the ranking of variables between each of the methods.

A plausible reason for these differences is that complete case analysis can induce a bias when observations
are not MCAR. This is well-known – yet complete case analysis is still frequently applied in practice. It can
modify the entire importance ranking just because information is omitted when observations are excluded from
the analysis. By contrast, multiple imputation tries to restore the information that would be provided by the
complete dataset and therefore affects the computation of importance measures, too. A much more detailed
investigation of this issue has been published by Hapfelmeier et al. (2012).

The random allocation of observations, instead of a random permutation of a variables values, is the key
element in the computation of the new importance measure. Despite the comprehensible character of this
approach one might fear an increased computational complexity. For this reason we examined the computational
costs by means of CPU time used in the application studies. For a fair comparison the original permutation
importance measure and the new approach have been applied to data of equal size which is given by the imputed
data and the original datasets. Computations have been performed on a Pentium(R) Dual-Core CPU E5200
processor with 2.50 GHz, 3 GB RAM and a Microsoft windows XP 32 bit system. The results given by Table
2 indicate that the new approach was computed even faster than the original one (both importance measures
are implemented by the R-function varimp() which is part of the package party).
To illustrate one possible scenario that can lead to a change in the variable ranking when complete case analysis
or multiple imputation are applied to data that is not MCAR, another small simulation was conducted. Given
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the new approach. Figures above bars indicate ranks within methods. The importance of variables decreases
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Table 2: Time elapsed for the computation of the new importance measure and the original permutation
importance measure in the data application studies.

Data new approach orig. approach
Pima Indians 134.3± 0.9 144.5± 0.6
Mammal sleep 1.58± 0.02 6.95± 0.05
Mean ± SD in sec.
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Figure 8: Variable importances of X and Z computed by the original permutation importance measure and
the new approach. Case (a) bases on the entire data without any missing values. In case (b) 30% of variable Z
are set missing. A complete case analysis and multiple imputation is used to compute the original permutation
importance measure.

a pair of binary variables (X,Z) the response Y follows the distribution:

Y ∼







N(2, 1) if (x, z) = (1, 0)

N(0, 1) if (x, z) = (0, 0) or (x, z) = (1, 1)

N(−2, 1) if (x, z) = (0, 1)

The relative frequencies of class 0 and class 1 in X and Z are 80% and 20%, respectively. They are not
correlated. Missing values are induced into Z dependent on the highest values of Y which resembles the
MAR(upper) scheme. To produce stable results the simulation bases on 5,000 observations and random forests
growing 5,000 trees. According to our expectation Figure 8a displays the same importance for both variables
when there are no missing values in the data. In Figure 8b a fraction of 30% of Z is set missing. The
application of multiple imputation makes the importances stay on an even level. The new approach assigns
a reduced importance to Z while X remains of high relevance. This finding also meets our expectations for
data that contains variables of reduced information. At this point it has to be emphasized that neither of the
results obtained for the new approach and the original one used with multiple imputation are more accurate or
correct. They simply differ in the research goal they are best suited for: the new approach takes the occurrence
of missing values into account and therefore reflects the actual information of the data. By contrast, multiple
imputation seems to be a convenient means to assess the importance of variables that could be observed if the
data was complete. In a complete case analysis however, X suffers the loss of its explanatory power although
it does not contain any missing values at all. It is not even correlated to Z. The explanation of this effect is
quite simple: the highest values of Y which cause the missing values in Z are most frequently related to x = 1.
Deleting these observations in a complete case analysis makes X mainly consist of class 0. As a consequence it
loses its discriminatory power. This example demonstrates how a complete case analysis can distort the ranking
of variable importances when the missingnes scheme is not MCAR.

7 Discussion and conclusion

In summary, our simulation results have shown that all requirements that were previously formulated were
fulfilled by the newly suggested importance measure for different types of MCAR, MAR and MNAR missing
data. Most importantly: In the absence of missing values, both the original permutation importance measure
and the newly suggested approach produce similar results. The importance of variables containing missing
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values does not artificially increase but decreases with the number of missing values and the respective decrease
of information. Moreover, in the presence of correlation the measure shows all properties that are to be expected
from a marginal variable importance measure.

A particularly interesting effect is that, with regard to the variable selection frequencies, variables with
increasing numbers of missing values are increasingly replaced by fully observed variables that are correlated
with them: the complete variables “take over” for those with missing values within a group of correlated ones.
In this sense, the effects of correlation and missing values are interacting. This is an intuitive property, since
both affect the amount of information a variable retains. What is important to note here is that, besides effects
of the correlation on the permutation importance, that were already pointed out by Strobl et al. (2008), in the
presence of missing values the correlation is also linked to the quality of surrogate variables.

The exact role that surrogate variables play for the variable importance is still ambiguous: On one hand
they help to reconstitute missing information, but on the other hand they also compete for the selection in
the tree. However, the selection frequencies displayed in our results indicate that the latter effect is of more
relevance.

Besides the findings for the simulation analysis the new approach also appeared well suited to deal with
missing values in real data: There were some profound differences between the variable ranking suggested by
the new approach and a complete case analysis. As the latter is known to produce biased results in many
situations (cf., e.g., Janssen et al., 2009, 2010) this strongly indicates that the omission of observations with
missing values has induced artifacts because the values were not missing at random. It also has to be pointed
out that the rationale of our approach is not to undo the influence missing values have on the information
carried by a variable – as it is for multiple imputation – but to reflect the remaining information that the
variable has with the respective values missing. Results of corresponding simulation studies support this claim.

The advantage of the new approach proposed in this work is that it incorporates the full information provided
by the data set. Moreover, it utilizes one of the most appreciated properties of recursive partitioning methods,
namely their ability to deal with missing values by means of surrogate variables. Accordingly, the resulting
importance rankings depend not only on the amount of missing values but also on the quality and availability
of surrogate variables.
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Outliers are omitted from illustration for clarity.
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Figure 11: Variable importances (left axis) of Block I-VIII and correlations r = 0, .3, .6, .9 for fraction of missing
values m = 0%, 10%, 20%, 30% in the MAR(rank) setting and regression problem. Boxplots of variables that
contain missing values are colored grey. Horizontal lines indicate selection frequencies (right axis). Vertical
dashed lines indicate correspondance to the same block. Outliers are omitted from illustration for clarity.
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Figure 12: Variable importances (left axis) of variables 1-15 for a correlation of r = .6 and a fraction of missing
values m = 20% in the regression analysis. Boxplots of variables that contain missing values are colored grey.
Horizontal lines indicate selection frequencies (right axis). Vertical dashed lines indicate correspondance to the
same block. Outliers are omitted from illustration for clarity.
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B R-Code

1 # load required packages

2 library("party"); attach(asNamespace("party")) # version 1.0-0

3 library(mvtnorm) # version 0.9 -9992

4 library(mice) # version 2.11

5

6 # Function to count selection frequencies of variables in Random Forests

7 count <- function(forest , inames = NULL) {

8 # forest: object of class "RandomForest" created by the function cforest ()

9 # inames: names of variables to be assessed (defaults to NULL , using all

10 # variables in a forest)

11 if (is.null(inames) && extends(class(forest), "RandomForest"))

12 inames <- names(forest@data@get("input"))

13 resultvec <- rep(0, length(inames))

14

15 myfunc <- function(x, inames , resultvec) {

16 names(x) <- c("nodeID", "weights", "criterion", "terminal",

17 "psplit", "ssplits", "prediction", "left", "right")

18 names(x$criterion) <- c("statistic", "criterion", "maxcriterion")

19 if (!x$terminal) {

20 resultvec[x$psplit [[1]]] <- resultvec[x$psplit [[1]]] + 1

21 resultvec <- myfunc(x$left , inames = inames , resultvec = resultvec)

22 resultvec <- myfunc(x$right , inames = inames , resultvec = resultvec)

23 }

24 return(resultvec)

25 }

26 for (k in 1: length(forest@ensemble)) {

27 resultvec <- myfunc(forest@ensemble [[k]], inames , resultvec)

28 }

29 names(resultvec) <- inames

30 return(resultvec)

31 }

32 environment(count) <- environment(varimp)

33

34

35 # create a list of covariance matrices for each correlation strength

36 sig <- lapply (1:4, function(x) {r <- c(0 ,.3 ,.6 ,.9)[x]; y <- diag (20);

37 y[1:3, 1:3] <- r; y[4:5, 4:5] <- r; y[6:7, 6:7] <- r;

38 y[8:11 , 8:11] <- r; diag(y) <- 1; return(y)})

39

40 # create lists that contain arrays used to collect the results of 20 variables

41 # for 4 fractions of missing values , 4 correlation strength and

42 # 6 missing data generating processes in 1000 simulation runs

43 # The common importance measure (‘old ’), the new approach (‘new ’) and

44 # selection frequencies (‘count ’) are recorded for the regression (‘reg ’) and

45 # classification (‘clas ’) problem.

46 reg.old <- clas.old <- reg.new <- clas.new <- reg.count <- clas.count <-

47 lapply (1:6, function(y) lapply (1:4, function(x) array(dim = c(1000 , 20, 4))))

48

49 set.seed (1234) # set a random seed for reproducibility of results

50

51 # 1000 simulation runs start here

52 for (i in 1:1000) {

53 for (r in 1:4) { # there are 4 correlation strength

54 dat <- as.data.frame(rmvnorm (100, sigma = sig[[r]])) # create the data

55 x.beta <- 4 * dat$V1 + 4 * dat$V2 + 3 * dat$V3 + 4 * dat$V4 + 3 * dat$V5 +

56 4 * dat$V6 + 3 * dat$V7 + 4 * dat$V8 + 3 * dat$V9 + 2 * dat$V12 +

57 2 * dat$V13

58 dat$y.reg <- x.beta + rnorm (100, 0, .5)

59 dat$y.clas <- rbinom (100, 1, exp(x.beta) / (1 + exp(x.beta)))

60

61 for (m in 1:4) { # there are 4 fractions of missing values
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62 # the data is replicated for each of 6 missing data generating process

63 dat.mis <- lapply (1:6, function(x) dat)

64 if (m != 1) {

65 for (k in c("V2", "V4", "V8", "V10", "V12", "V14")) {

66 ind <- switch(k, "V2" = "V3", "V4" = "V5", "V8" = "V9",

67 "V10" = "V11", "V12" = "V13", "V14" = "V15")

68 # induce missing values MCAR

69 is.na(dat.mis [[1]][ ,k])[sample (1:100 , (m - 1) * .1 * 100)] <- TRUE

70 # induce missing values MAR(rank)

71 is.na(dat.mis [[2]][ ,k])[sample (1:100 , (m - 1) * .1 * 100,

72 prob = rank(dat.mis [[2]][ , ind]) / 5050)] <- TRUE

73 # induce missing values MAR(median)

74 is.na(dat.mis [[3]][ ,k])[sample (1:100 , (m - 1) * .1 * 100,

75 prob = ifelse(dat.mis [[3]][ , ind] >=

76 median(dat.mis [[3]][ , ind]), .9, .1))] <- TRUE

77 # induce missing values MAR(upper)

78 is.na(dat.mis [[4]][ ,k])[dat.mis [[4]][ , ind] >=

79 sort(dat.mis [[4]][ , ind], T)[(m - 1) * .1 * 100]] <- TRUE

80 # induce missing values MAR(margins)

81 is.na(dat.mis [[5]][ ,k])[dat.mis [[5]][ , ind] >=

82 sort(dat.mis [[5]][ , ind], T)[(m - 1) * .1 * 100 / 2] |

83 dat.mis [[5]][ , ind] <=

84 sort(dat.mis [[5]][ , ind])[(m - 1) * .1 * 100 / 2]] <- TRUE

85 # induce missing values MNAR(upper)

86 is.na(dat.mis [[6]][ ,k])[dat.mis [[6]][ ,k] >=

87 sort(dat.mis [[6]][ ,k], T)[(m - 1) * .1 * 100]] <- TRUE

88 }}

89 for (j in 1:6) { # compute results for 6 missing data generating processes

90 # create random forests and compute importances and selection frequencies

91 forest.reg <- cforest(as.formula(paste("y.reg", paste("V", 1:20, sep = "",

92 collapse = " + "), sep = " ~ ")), data = dat.mis[[j]],

93 controls = cforest_unbiased(mtry = 8, ntree = 50,

94 maxsurrogate = 3))

95 forest.clas <- cforest(as.formula(paste("y.clas", paste("V", 1:20, sep = "",

96 collapse = " + "), sep = " ~ ")), data = dat.mis[[j]],

97 controls = cforest_unbiased(mtry = 8, ntree = 50,

98 maxsurrogate = 3))

99

100 reg.new[[j]][[r]][i, , m] <- varimp(forest.reg)

101 clas.new[[j]][[r]][i, , m] <- varimp(forest.clas)

102 reg.count [[j]][[r]][i, , m] <- count(forest.reg)

103 clas.count [[j]][[r]][i, , m] <- count(forest.clas)

104 if (m == 1) {

105 reg.old[[j]][[r]][i, , m] <- varimp(forest.reg , pre1.0_0 = TRUE)

106 clas.old[[j]][[r]][i, , m] <- varimp(forest.clas , pre1.0_0 = TRUE)

107 }

108 }

109 }

110 }

111 }
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