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Abstract

A geometrically inspired matrix algorithm is derived for the identification of
state space models for multivariable linear time-invariant systems using (possibly
noisy) input-output measurements only. As opposed to other –mostly stochastic–
identification schemes, no variance-covariance information whatever is involved,
and only a limited number of I/O-data are required for the determination of the sys-
tem matrices.

Hence, the algorithm can be best described and understood in the matrix for-
malism, and consists in the following two steps: First a state vector sequence is
realized as the intersection of the row spaces of two block Hankel matrices, con-
structed with I/O-data. Then the system matrices are obtained at once from the least
squares solution of a set of linear equations.

When dealing with noisy data, this algorithm draws its excellent performance
from repeated use of the numerically stable and accurate singular value decompo-
sition Also, the algorithm is easily applied to slowly time-varying systems using
windowing or exponential weighting. These results are illustrated by examples, in-
cluding the identification of an industrial plant.
Keywords : multivariable systems, system identification, singular value decompo-
sition.

1 Introduction

Identification aims at finding a mathematical model from the measurement record of
inputs and outputs of a system. A state space model is a most obvious choice for a
mathematical representation because of its widespread use in system theory and control.
Still, reliable general purpose state space identification schemes have not become stan-
dard tools so far, mostly due to the computational complexity involved (Ho and Kalman
1965, Kung 1978, Zeiger and Mc Ewen 1974).
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The theory of canonical correlation analysis, independentlydeveloped in the midthir-
ties by Hotelling (Hotelling 1936) and Obukhov (the idea of using SVD to compute the
principal angles and vectors being due to Bjorck and Golub (Golub and Van Loan 1983),
has been intensively applied to the stochastic identification problem, where as a major
departure canonical variate analysis is used to choose linear combinations of the past
of the random process to optimally predict the future of the process. The analysis of a
system in terms of past and future naturally leads to a state space description (Akaike
1974, Akaike 1975, Baram 1981, Ramos and Verriest 1984, Larimore 1984). Neverthe-
less, the intensive use of covariance information is a major drawback when it comes to
practice, since finite data records reveal only poor approximations for covariance ma-
trices.

In this paper, a novel approach is presented, that shows much resemblance to the
canonical variate methods, but no variance-covariance information whatsoever is in-
volved, and only a finite number of I/O-data are required for the determination of the
system matrices. The main step in the identification procedure consists in the singular
value decomposition of a block Hankel matrix, constructed with I/O-data. As it will turn
out that only the left singular basis is required, both the computational load and the noise
sensitivity are considerably reduced. Moreover, the identification scheme is easily con-
verted into an adaptive version. In section 2, useful properties of dynamic systems are
briefly described, which are used in section 3 to show how a sequence of state vectors
can be calculated. The system matrices are then identified by solving an overdetermined
set of linear equations (Section 4). The off-line algorithm is summarized in section 5,
and converted into an adaptive on-line algorithm for slowly time-varying systems in
section 6. Both strategies are illustrated by examples.

2 Dynamic systems

The most general linear discrete-time multivariable state space model can be written as

x
�
k � 1 ��� Ak � x

�
k ��� Bk � u

�
k ��� w

�
k �

y
�
k ��� Ck � x

�
k ��� Dk � u

�
k ��� v

�
k � (1)

where u
�
k �	� y � k � and x

�
k � denote the input (m-vector), output (l-vector) and state vector

at time k, the dimension of x
�
k � being the minimal system order n. Ak � Bk � Ck and Dk are

the unknown system matrices at time k to be identified, making use only of recorded
I/O-sequences u

�
k �	� u � k � 1 �	� �
�
� and y

�
k ��� y � k � 1 �	� �
��� As it is obvious that only the ob-

servable part of the system can be identified from observed I/O-data, it can be assumed
that the system is completely observable, thus omitting the unobservable part at the very
outset.
w
�
k � and v

�
k � are additional unknown noise-sequences, accounting for measurement noise,

process noise, model mismatch, etc. They will be identified as the residuals of the set
of equations that determine the system matrices (section 4), and can thus be omitted for
a while. Also, for the time being, we consider only time-invariant systems, so that the
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state space equations eventually reduce to

x
�
k � 1 � � A � x

�
k ��� B � u

�
k �

y
�
k ��� C � x

�
k ��� D � u

�
k � (2)

We now state two important theorems that will be used throughout the sequel.

Theorem 1 Sequences u � y � x that satisfy equations (2), also satisfy the following gen-
eral structured I/O-equation :

Yh � Γi � X � Ht �Uh (3)

Yh is a block Hankel matrix (i block rows, j columns) containing the consecutive outputs
:
(y
�
k � is a l × 1 vector, where l is the number of outputs)

Yh �

�����
�

y
�
k � y

�
k � 1 � �
��� ���
� ���
� y

�
k � j − 1 �

y
�
k � 1 � y

�
k � 2 � �
��� ���
� ���
� y

�
k � j �

y
�
k � 2 � y

�
k � 3 � �
��� ���
� ���
� y

�
k � j � 1 �

�
�
� �
�
� ���
� ���
� ���
� �
�
�
y
�
k � i − 1 � y

�
k � i � �
��� �
��� �
��� y

�
k � j � i − 2 �

������
�

Uh is a block Hankel matrix with the same block dimensions as Yh, containing the con-
secutive inputs. (u

�
k � is a m × 1 vector, where m is the number of inputs)

Uh �

�����
�

u
�
k � u

�
k � 1 � �
��� �
��� ���
� u

�
k � j − 1 �

u
�
k � 1 � u

�
k � 2 � �
��� �
��� ���
� u

�
k � j �

u
�
k � 2 � u

�
k � 3 � �
��� �
��� ���
� u

�
k � j � 1 �

�
��� �
��� ���
� ���
� �
�
� �
�
�
u
�
k � i − 1 � u

�
k � i � �
��� �
��� �
��� u

�
k � j � i − 2 �

������
�

X contains consecutive state vectors :

X � �
x
�
k � x

�
k � 1 � x � k � 2 � �
��� x

�
k � j − 1 � �

Γi is an extended observability matrix :

Γi �

�����
�

C
CA
CA2

�
�
�
CAi−1

� ����
�

Finally Ht is a lower triangular block Toeplitz matrix containing the Markov parame-
ters :

Ht �

�������
�

D 0 0 �
�
� 0
CB D 0 �
�
� 0
CAB CB D ���
� 0
CA2B CAB CB ���
� 0
�
��� ���
� �
�
� �
��� �
���
CAi−2B CAi−3B CAi−4B �
��� D

� ������
�
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Proof : straightforward by repeated substitution of equations (2). �
Instead of going into details, we loosely state that i and j should be chosen ”sufficiently
large” (so that Yh and Uh contain enough information on the system), and in particular
j � max � mi � li � (”very rectangular” block Hankel matrices), as this will reduce both the
computational load and the noise sensitivity (see below).

Theorem 2 Let Yh � Uh and X be defined as in the previous theorem, and let H denote
the concatenation of Yh and Uh :

H �
�

Yh

Uh �
then, under the conditions that
1. rank � X � � n , i.e. all modes are sufficiently excited (n being the minimal system or-
der), and
2. spanrow � X � ∩ spanrow � Uh � ��� ,
the following rank property holds :

rank � H � � rank � Uh � � n (4)

Also, when
3. rank � Uh � � mi � number of rows in Uh ,
this rank property reduces to

rank � H � � mi � n (5)

Proof
From equation (3) it follows that :

Yh �U⊥
h � Γi � X �U⊥

h

and then of course :
rank � Yh �U⊥

h � � rank � Γi � X �U⊥
h �

where the columns of U⊥
h span the kernel of Uh (not trivial since j � mi).

Since Γi has full column rank (cfr. observability) :

rank � Γi � X �U⊥
h � � rank � X �U⊥

h � − dim � spancol � X �U⊥
h � ∩ � spanrow � Γi ��� ⊥ �

� rank � X �U⊥
h � − dim � spancol � X �U⊥

h � ∩ �	�
� rank � X �U⊥

h �
By making use of condition 2 :

rank � X �U⊥
h � � rank � X � − dim � spanrow � X � ∩ � spancol � U⊥

h � ⊥ �
� rank � X � − dim � spanrow � X � ∩ spanrow � Uh ���
� rank � X �
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Finally, under condition 1 :
rank � X � � n

By combining all the above equations, one obtains

rank � Yh �U⊥
h � � n

and this, in fact, means that the row space of Yh adds n dimensions to the row space of
Uh, which proves equation (4). �

This theorem allows us to estimate the system order, prior to further identification
of the system matrices.

Note on condition 1 : rank � X � � n , in other words all modes should be sufficiently
excited (persistant excitation). When certain modes are not, i.e. unobservable in the
I/O-data currently under investigation, they cannot be identified either and application
of the above rank property will reveal too low a system order, this problem being inher-
ent in system identification.

Note on condition 2 : spanrow � X � ∩ spanrow � Uh � ��� .
When this condition is not satisfied, rank � X �U⊥

h � � rank � X � (rank cancellation), and
again application of the rank property will reveal an underestimation of the system or-
der. However it can be experimentally verified that rank cancellation is not generic, and
the probability that rank cancellation occurs, decreases for fixed i (number of rows in
Uh) with increasing j (number of columns in Uh and X ). (In a stochastic framework,
this matter would be passed off easily by saying E � x � k � � u � k � t � � 0 , E � x � k � � u � k � 1 � t � � 0
, �
��� , where E is the expectation operator.)

Note on condition 3 : rank � Uh � � mi � number of rows in Uh

Similar to the previous ones, this third condition will generically be satisfied when the
input is ”sufficiently exciting” (inherent in the identification problem).

In the sequel, it will allways be assumed that these three conditions are satisfied.

3 Determination of a state vector sequence

We now demonstrate how a sequence of state vectors can be calculated as the inter-
section of the row spaces of two block Hankel matrices, constructed from input-output
vectors. Let H1 and H2 be the concatenation of Yh1 � Uh1 and Yh2 � Uh2 respectively

H1 �
�

Yh1
Uh1 � � H2 �

�
Yh2
Uh2 � (6)

where

Yh1 �

�����
�

y
�
k � y

�
k � 1 � �
��� �
��� �
��� y

�
k � j − 1 �

y
�
k � 1 � y

�
k � 2 � �
��� �
��� �
��� y

�
k � j �

y
�
k � 2 � y

�
k � 3 � �
��� �
��� �
��� y

�
k � j � 1 �

���
� ���
� �
��� �
��� ���
� ���
�
y
�
k � i − 1 � y

�
k � i � �
�
� �
�
� �
��� y

�
k � j � i − 2 �

� ����
�
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Yh2 �

�����
�

y
�
k � i � y

�
k � i � 1 � �
��� �
��� ���
� y

�
k � i � j − 1 �

y
�
k � i � 1 � y

�
k � i � 2 � �
��� �
��� ���
� y

�
k � i � j �

y
�
k � i � 2 � y

�
k � i � 3 � �
��� �
��� ���
� y

�
k � i � j � 1 �

���
� �
�
� ���
� ���
� �
�
� �
�
�
y
�
k � 2i − 1 � y

�
k � 2i � �
��� �
��� �
��� y

�
k � 2i � j − 2 �

������
�

and Uh1 � Uh2 similarly constructed. Both matrix pairs satisfy the I/O-equation :

Yh1 � Γi � X1 � Ht �Uh1 (7)

Yh2 � Γi � X2 � Ht �Uh2 (8)

Theorem 3 If X2 is defined as

X2 �
�
x
�
k � i � x

�
k � i � 1 � �
��� x

�
k � i � j − 1 � �

then
spanrow � X2 � � spanrow � H1 � ∩ spanrow � H2 �

(see (6) for a definition of H1 and H2) so that any basis for this intersection constitutes
a valid state vector sequence X2 with the basis vectors as the consecutive row vectors.

Note that different choices for a basis differ in a transformation matrix T that trans-
forms a model A � B � C � D into an equivalent model T −1 � A � T � T−1 � B � C � T � D (Kailath 1980).
Proof

It is first proven that the dimension of the intersection equals n. Then, the (n-dimensional)
row space of X2 is shown to lie within both row spaces.

By making use of the rank property (5), one derives

dim � H1 � � dim � H2 � � mi � n

where dim � M � is a shorthand notation for the dimension of M’s row space. This rank
property holds equally well for the concatenation of H1 and H2 :

H �
�

H1

H2 �
dim � H1 � H2 � � dim � H � � 2mi � n

Applying Grassmann’s dimension theorem :

dim � H1 ∩ H2 � � dim � H1 � � dim � H2 � − dim � H1 � H2 �
� mi � n � mi � n − 2mi − n

� n

From equation (8), one derives

X2 � Γ
�

i �Yh2 − Γ
�

i �Ht �Uh2 �
�
Γ

�

i − Γ
�

i �Ht � �
�

Yh2
Uh2 �

6



where Γ
�

i is Γi’s pseudo-inverse (Γ
�

i � Γi � In×n since Γi has full column rank), which
shows that X2’s row space lies within H2’s row space. Equally well, X1’s row space lies
within H1’s row space. On the other hand, X1 and Uh1 completely determine X2 through

X2 � Ai � X1 �
�
Ai−1 � B ���
� A � B B � �Uh1

and since X1’s row space lies within H1’s row space, the same holds true for X2’s row
space. �

The above theorem allows us to calculate a state vector sequence, making use of
measured I/O-data only. Once this state vector sequence is known, the system matrices
are easily identified from a set of linear equations, as will be shown in the next section.

In practice, due to perturbations on the measured data (noise, non-linearity, etc.), it
occurs that both row spaces do not intersect. An approximate intersection can be cal-
culated though, using the n first principal vectors (canonical variate analysis), n being
determined through equation (5).
As it will turn out to be both computationally less demanding and less sensitive to noise

on the I/O-data, an alternative procedure is presented : Let the SVD of H �
�

H1

H2 � be

H �
�

U11 U12
U21 U22 � � S11 0

0 0 � V t

where the matrices have the following dimensions :

dim � U11 � � � mi � li � × � 2mi � n �
dim � U12 � � � mi � li � × � 2li − n �
dim � U21 � � � mi � li � × � 2mi � n �
dim � U22 � � � mi � li � × � 2li − n �
dim � S11 � � � 2mi � n � × � 2mi � n �

From �
Ut

12 Ut
22 � �

�
H1

H2 � � 0

or
Ut

12 �H1 � −Ut
22 �H2

it follows that the row space of U t
12 �H1 equals the required intersection of H1’s and H2’s

row spaces. Ut
12 �H1 contains 2li − n row vectors , only n of which are linearly inde-

pendent (dimension of the intersection). Thus, it remains to select n suitable combina-
tions of these row vectors. One straightforward way would consist in taking the SVD of
Ut

12 �H1 in order to compute a basis for its row space. The following theorem gives the
outline of a shortcut to this method, replacing the SVD of U t

12 �H1 (a � 2li−n � × j-matrix
where most of the time j is very large) by a smaller SVD.

7



Theorem 4 Let the SVD of H �
�

H1

H2 � be

H �
�

U11 U12

U21 U22 � � S11 0
0 0 � V t

then the state vector sequence X2 �
�
x
�
k � i � x � k � i � 1 � �
�
� x

�
k � i � j − 1 � � can be cal-

culated as :
X2 � Ut

q �Ut
12 �H1

where Uq (an n × � 2li − n � matrix accounting for the necessary reduction of 2li − n mu-
tually dependent row vectors of U t

12 �H1 to n independent vectors) is defined through the
SVD of Ut

12 �U11 � S11

Ut
12 �U11 � S11 �

�
Uq U⊥

q �
�

Sq 0
0 0 � � V t

q
V⊥t

q �
Proof
Since any basis for the row space of U t

12 �H1 is a realization of X2 (see above), we first
calculate its SVD :

Ut
12 �H1 � Ut

12 �
�
U11 U12 � �

�
S11 0
0 0 � �V t

� �
Ut

12 �U11 � S11 0 � �V t

� �
Uq � Sq �V t

q 0 � �V t

� Uq �
�
Sq 0 � � � V �Vq � t

Now, since Ut
q �Uq � In×n

Ut
q �Ut

12 �H1 �
�
Sq 0 � � � V �Vq � t

which is a valuable basis for the row space of U t
12 �H1 and thus a realization of X2. �

4 Identification of the system matrices

Once X2 is known, the system matrices can be identified by solving a set of linear equa-
tions in a straightforward way :�

x
�
k � i � 1 � ���
� x

�
k � i � j − 1 �

y
�
k � i � ���
� y

�
k � i � j − 2 � � � �

A B
C D � � � x

�
k � i � �
��� x

�
k � i � j − 2 �

u
�
k � i � �
��� u

�
k � i � j − 2 � �

As this (overdetermined) set of equations should be solved in a least squares sense, the
residuals correspond to the noise terms w

�
k � and v

�
k � introduced in section 2.

Once again, a computationally more efficient way of computing the system matrices
is conceivable, making use of the already calculated SVD of H (concatenation of H1 and
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H2).The above set of equations can be replaced by a reduced equivalent set, revealing
exactly the same least squares solution.

For compact notations, it is useful to first redefine matrices H1 and H2 (equation (6)
) in the following way :

H1 �

���������
�

u
�
k � u

�
k � 1 � �
��� �
��� ���
� u

�
k � j − 1 �

y
�
k � y

�
k � 1 � ���
� ���
� ���
� y

�
k � j − 1 �

u
�
k � 1 � u

�
k � 2 � �
��� �
��� ���
� u

�
k � j �

y
�
k � 1 � y

�
k � 2 � ���
� ���
� ���
� y

�
k � j �

�
��� �
��� ���
� ���
� �
�
� �
�
�
u
�
k � i − 1 � u

�
k � i � �
��� �
��� �
��� u

�
k � j � i − 2 �

y
�
k � i − 1 � y

�
k � i � �
��� �
��� ���
� y

�
k � j � i − 2 �

� ��������
�

(9)

H2 �

���������
�

u
�
k � i � u

�
k � i � 1 � ���
� ���
� ���
� u

�
k � i � j − 1 �

y
�
k � i � y

�
k � i � 1 � ���
� ���
� �
�
� y

�
k � i � j − 1 �

u
�
k � i � 1 � u

�
k � i � 2 � ���
� ���
� ���
� u

�
k � i � j �

y
�
k � i � 1 � y

�
k � i � 2 � ���
� ���
� �
�
� y

�
k � i � j �

�
��� �
��� �
��� �
��� �
��� �
���
u
�
k � 2i − 1 � u

�
k � 2i � �
��� �
��� ���
� u

�
k � 2i � j − 2 �

y
�
k � 2i − 1 � y

�
k � 2i � ���
� ���
� ���
� y

�
k � 2i � j − 2 �

����������
�

(10)

Notice that theorem 3 remains valid ! We also introduce the following notations :
M � p : q � r : s � is the submatrix of M at the intersection of rows p � p � 1 � �
�
� � q and columns
r� r � 1 � ���
� � s
M � : � r : s � is the submatrix of M containing columns r� r � 1 � ���
� � s
M � p : q � : � is the submatrix of M containing rows p � p � 1 � �
�
� � q
As an example :

H1 � H � 1 : mi � li � : �
Now let the SVD of H �

�
H1

H2 � be

H � U � S �V t

Theorem 5 The system matrices can be identified from the following set of linear equa-
tions �

Ut
q �Ut

12 �U � m � l � 1 : � i � 1 � � m � l � � : � � S
U � mi � li � m � 1 : � m � l � � i � 1 � � : � � S �
�

�
A B
C D � � � Ut

q �Ut
12 �U � 1 : mi � li � : � � S

U � mi � li � 1 : mi � li � m � : � � S �
(see section 3 for a definition of Uq and U12)

Proof
From section 3 it follows that

�
x
�
k � i � ���
� x

�
k � i � j − 1 � �

9



� Ut
q �Ut

12 �H1

� Ut
q �Ut

12 �H � 1 : mi � li � : �
� Ut

q �Ut
12 �U � 1 : mi � li � : � � S �V t (11)

Making use of the time-invariance and the block Hankel structure of matrix H, one can
easily prove that

�
x
�
k � i � 1 � ���
� x

�
k � i � j � �

� Ut
q �Ut

12 �H � m � l � 1 : � i � 1 � � m � l � � : �
� Ut

q �Ut
12 �U � m � l � 1 : � i � 1 � � m � l � � : � � S �V t (12)

Also, from the definition of H, it follows that
�
u
�
k � i � �
��� u

�
k � i � j − 1 � �

� H � mi � li � 1 : mi � li � m � : �
� U � mi � li � 1 : mi � li � m � : � � S �V t (13)

and
�
y
�
k � i � ���
� y

�
k � i � j − 1 � �

� H � mi � li � m � 1 : � m � l � � i � 1 � � : �
� U � mi � li � m � 1 : � m � l � � i � 1 � � : � � S �V t (14)

When equations (11),(12),(13) and (14) are substituted into the following (overdeter-
mined) set of linear equations :�

x
�
k � i � 1 � ���
� x

�
k � i � j �

y
�
k � i � ���
� y

�
k � i � j − 1 � � � �

A B
C D � � � x

�
k � i � �
�
� x

�
k � i � j − 1 �

u
�
k � i � �
�
� u

�
k � i � j − 1 � �

one obtains : �
Ut

q �Ut
12 �U � m � l � 1 : � i � 1 � � m � l � � : � � S �V t

U � mi � li � m � 1 : � m � l � � i � 1 � � : � � S �V t �
�

�
A B
C D � � � Ut

q �Ut
12 �U � 1 : mi � li � : � � S �V t

U � mi � li � 1 : mi � li � m � : � � S �V t �
The common (orthogonal) factorV t can be discarded, thus effectively reducing the num-
ber of equations (remember j � max � mi � li � ),without altering the least squares solution
: �

Ut
q �Ut

12 �U � m � l � 1 : � i � 1 � � m � l � � : � � S
U � mi � li � m � 1 : � m � l � � i � 1 � � : � � S �
�

�
A B
C D � � � Ut

q �Ut
12 �U � 1 : mi � li � : � � S

U � mi � li � 1 : mi � li � m � : � � S � �
Note : The common factor S imposes weights on the different equations. Discarding

it would alter the least squares solution.
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5 Off-line algorithm

The results of the previous sections are summarized into the following off-line algo-
rithm :

Algorithm
Let H be the concatenation of H1 � H2, defined by equations (9) and (10). The system
matrices are then obtained as follows :
1. calculate U and S in the SVD of H

H � U � S �V t �
�

U11 U12

U21 U22 � � � S11 0
0 0 � �V t

2. calculate the SVD of U t
12 �U11 � S11

Ut
12 �U11 � S11 �

�
Uq U⊥

q �
�

Sq 0
0 0 � � V t

q
V⊥t

q �
3. solve the following set of linear equations�

Ut
q �Ut

12 �U � m � l � 1 : � i � 1 � � m � l � � : � � S
U � mi � li � m � 1 : � m � l � � i � 1 � � : � � S �
�

�
A B
C D � � � Ut

q �Ut
12 �U � 1 : mi � li � : � � S

U � mi � li � 1 : mi � li � m � : � � S �
It is worth noticing that the system matrices are ultimately identified from U and S only
(H � U � S �V t), and that the much larger and much more noise sensitive matrix V is for-
tunately never used. Even the state vector sequence X2 does not need to be constructed
explicitely.
Besides, this reduction will turn out to be very useful when an adaptive identification
algorithm is constructed (see section 6).

Example
The performance of the algorithm has been evaluated on both simulated and industrial
data sets. The following example is due to Prof. R.Guidorzi (University of Bologna)
(Guidorzi and Rossi 1974). The I/O-sequence was obtained under normal operating
conditions of a 120 MW power plant (Pont sur Sambre - France), a system with 5 in-
puts and 3 outputs. The identified models (for different system order estimates) were
evaluated by comparing original and simulated outputs, using the original input signals
and the identified model (Figure 1). These simulations demonstrate the remarkable ro-
bustness of the identification scheme with respect to over- and underestimation of the
system order.
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Figure 1: Identification of a power plant : original and reconstructed outputs for differ-
ent system order estimates.
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6 On-line algorithm

The above algorithm is easily converted into an adaptive one, where model updating
should account for time-variance. Every time step a new input-output measurement be-
comes available, defining a new column to be added to the matrix H. On the other hand
older measurements should be discarded by successively deleting columns from H. The
off-line algorithm of the previous section is then applied to the updated H-matrix.
Instead of using this moving window technique, one can also apply exponential weight-
ing. New columns are still added to H, but instead of deleting columns, all columns are
multiplied by a weighting factor α � α ≤ 1 � . This way, a column that was added q time
steps earlier, is weighted with a factor αq, thus effectively reducing the contribution of
older data.
Since only U and S in the SVD of H are needed (see section 5), H does not need to be
constructed explicitely, since the weighting can be applied to S as well.

Algorithm
Initialize U0 � I �

2mi
�

2li � ×
�
2mi

�
2li � � S0 � 0 �

2mi
�

2li � ×
�
2mi

�
2li � , m and l being the number of

inputs and outputs respectively, 2i being the number of block rows in the fictitious ma-
trix H

for k � 1 � ���
�
1. construct new column column to be added to H, using the 2i latest I/O-measurements
2. calculate SVD

Uk � Sk �V t
k �

�
α �Uk−1 � Sk−1 column �

and partition

Uk � Sk �
�

U11 U12

U21 U22 � � � S11 0
0 0 �

3. calculate the SVD of U t
12 �U11 � S11

Ut
12 �U11 � S11 �

�
Uq U⊥

q �
�

Sq 0
0 0 � � V t

q
V⊥t

q �
4. solve the following set of linear equations�

Ut
q �Ut

12 �U � m � l � 1 : � i � 1 � � m � l � � : � � S
U � mi � li � m � 1 : � m � l � � i � 1 � � : � � S �
�

�
A B
C D � � � Ut

q �Ut
12 �U � 1 : mi � li � : � � S

U � mi � li � 1 : mi � li � m � : � � S �
end

Example
As an example, a second order time-variant system with two inputs and two outputs
and sinusoidally varying system poles was identified. Figure (2) shows the identified
system poles when the weighting factor is set equal to 1 − 2−4.
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Figure 2: Identified poles for a second order time-varying system with sinusoidally
varying system poles

7 Conclusion

A novel strategy for state space identification from (noisy) I/O-measurements was pre-
sented. The system matrices are identified by only applying numerically stable SVD-
techniques to a block Hankel matrix (number of columns � number of rows), con-
structed with I/O-data. As it turns out that only the left singular basis is required, both
the computational load and the noise sensitivity are considerably reduced. Moreover,
the algorithm is easily converted into an adaptive version for slowly time-varying sys-
tems, making use of adaptive SVD-algorithms. Extensive simulations have demon-
strated the remarkable robustness of the identification scheme with respect to noise and
over- and underestimation of the system order.
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