
REVIEWFor reprint orders, please contact:
reprints@futuremedicine.com
Multifactor dimensionality reduction for 
detecting gene–gene and gene–environment 
interactions in pharmacogenomics studies

Marylyn D Ritchie† & 
Alison A Motsinger
†Author for correspondence
Vanderbilt University 
Medical Center, Department 
of Molecular Physiology & 
Biophysics, 519 Light Hall, 
Center for Human Genetics 
Research, Nashville, TN 
37232–0700, USA
Tel.: +1 615 343 5851;
Fax: +1 615 343 8619;
E-mail: ritchie@
chgr.mc.vanderbilt.edu
Keywords: epistasis, 
gene–environment 
interactions, gene–gene 
interactions, multifactor 
dimensionality reduction, 
pharmacogenomics
10.2217/14622416.6.8.823 © 2
In the quest for discovering disease susceptibility genes, the reality of gene–gene and 
gene–environment interactions creates difficult challenges for many current statistical 
approaches. In an attempt to overcome limitations with current disease gene detection 
methods, the multifactor dimensionality reduction (MDR) approach was previously 
developed. In brief, MDR is a method that reduces the dimensionality of multilocus 
information to identify polymorphisms associated with an increased risk of disease. This 
approach takes multilocus genotypes and develops a model for defining disease risk by 
pooling high-risk genotype combinations into one group and low-risk combinations into 
another. Cross-validation and permutation testing are used to identify optimal models. 
While this approach was initially developed for studies of complex disease, it is also directly 
applicable to pharmacogenomic studies where the outcome variable is drug treatment 
response/nonresponse or toxicity/no toxicity. MDR is a nonparametric and model-free 
approach that has been shown to have reasonable power to detect epistasis in both 
theoretical and empirical studies. This computational technology is described in detail in 
this review, and its application in pharmacogenomic studies is demonstrated.
One of the biggest challenges in human genetics
is identifying polymorphisms, or sequence varia-
tions, that lead to an increased risk of disease. In
the case of rare, Mendelian single-gene disorders,
such as sickle-cell anemia or cystic fibrosis, the
genotype–phenotype relationship is easily evi-
dent, as the mutant genotype is explicitly respon-
sible for disease. In the case of common,
complex diseases such as hypertension, diabetes,
or multiple sclerosis, this relationship is
extremely difficult to characterize, since disease is
likely to be the result of many genetic and envi-
ronmental factors. In fact, epistasis, or
gene–gene interaction, is increasingly assumed to
play a crucial role in the genetic architecture of
common diseases [1–3]. This challenge is equally
present in studies of pharmacogenomics [4].

The dimensionality involved in the evaluation
of combinations of multiple variables quickly
diminishes the value of traditional, parametric
statistical methods. Referred to as the curse of
dimensionality [5], as the number of genetic or
environmental factors increases and the number
of possible interactions increases exponentially,
many contingency table cells will be left with very
few, if any, data points. This can result in
increased Type I errors and parameter estimates
with very large standard errors [6–7]. Traditional
approaches using logistic regression modeling are
limited in their ability to deal with many factors,
and simultaneously fail to characterize epistasis

models in the absence of main effects due to the
hierarchical model-building process [8]. This leads
to an increase in Type II errors and decreased
power [9]. This is a particular problem with rela-
tively small sample sizes. Since sample collection
is time consuming and expensive, the decreased
power can make effective studies cost prohibitive
with traditional analytical methods.

To deal with these issues, much research is
required for improved statistical methodologies.
Many researchers are exploring variations and
modifications of logistic regression, such as logic
regression [10], penalized logistic regression [11],
and automated detection of informative com-
bined effects (DICE) [12]. Additional explora-
tions are being conducted in data mining and
machine-learning research, including data reduc-
tion and pattern recognition approaches. Data
reduction involves a collapsing or mapping of
the data to a lower dimensional space. Examples
of data reduction approaches include the combi-
natorial partitioning method (CPM) [13],
restricted partition method (RPM) [14], and mul-
tifactor dimensionality reduction (MDR) [15–17].
In contrast, pattern recognition involves extract-
ing patterns from the data to discriminate
between groups using the full dimensionality of
the data. Examples of pattern recognition meth-
ods include cluster analysis [18], cellular automata
(CA)  [19], support vector machines (SVM) [20],
self-organizing maps (SOM) [21], and neural
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networks (NN) [22]. These methodologies have
very different theoretical bases, while they share a
common goal of more efficient data exploration
and analysis.

Multifactor dimensionality reduction
A novel computational approach for the detec-
tion of complex gene–gene and gene–environ-
ment interactions has previously been developed.
MDR is a data reduction method for detecting
multilocus genotype combinations that predict
disease risk for common, complex diseases.
MDR pools genotypes into high-risk and low-
risk or response and nonresponse groups, in
order to reduce multidimensional data into only
one dimension. It is a nonparametric method,
therefore no hypothesis concerning the value of
any statistical parameter is made. It is also model
free, thus no genetic inheritance model is
assumed [16].

As mentioned earlier, traditional statistical
approaches were not successful in detecting
gene–gene and gene–environment interactions
associated with common, complex diseases and,
similarly, pharmacogenomic end points. Many of
these challenges were due to the application of the
methodologies, more so than the theoretical basis
behind them. However, to achieve success in
detecting epistasis, our goal was to explore differ-
ent alternatives and move in a completely differ-
ent direction. Thus, a nonparametric, model-free
approach was highly desirable.

MDR was designed to detect gene–gene or
gene–environment interactions in categorical
independent variables (such as genotype and
environmental data) and a dichotomous depend-
ent variable (such as case/control status or drug
treatment response/nonresponse). MDR per-
forms an exhaustive search of all possible single-
locus through k-locus interactions (as computa-
tionally feasible) to evaluate all possible combina-
tions of loci. As a result of the evaluations, MDR
will select a single combination of loci as the
optimal model for each level of k, creating a set of
models for k = 1 to M (where M is the maximum
interaction level analyzed). This set of models
can then be compared using various statistics to
determine if there is a single best model, or mul-
tiple significant models. This process requires a
heuristic approach by the end user, as this will
differ depending on the goal of the analysis. If
one views the application of MDR as a hypothe-
sis-generating exercise, and would prefer to select
a few false positives more so than missing a true
signal (false negative), then the selection of all

statistically significant models would be optimal.
However, if one is trying to select a single best
model for the purposes of replication or diagnos-
tic test design, then more stringent selection
criteria may be used. 

MDR algorithm
Figure 1 demonstrates the process for the MDR
algorithm. Before the MDR analysis begins, the
data set is divided into multiple partitions for
cross-validation, if cross-validation is specified.
MDR can be performed without cross-validation;
however, this is rarely performed due to the poten-
tial of overfitting [23]. Cross-validation [21] is an
important part of the MDR method, as it aims to
find a model that not only fits the given data, but
can also predict on future, unseen data. Since
attainment of a second data set for testing is time-
consuming and often cost-prohibitive, cross-vali-
dation produces a testing set from the given data
to evaluate the predictive ability of the model pro-
duced. Typically, in the case of tenfold cross-vali-
dation, the training set is comprised of 9/10 of the
data, while the testing set is comprised of the
remaining 1/10 of the data. First, an exhaustive
list of n combinations of loci to evaluate from the
list of all categorical independent variables is gen-
erated. These variables can include both genetic
and environmental data. There is no set limit on
the number of independent variables that can be
examined. However, limits due to computation
time may arise. In simulations, all single locus and
pair-wise interactions in simulated data sets with
up to 50,000 single nucleotide polymorphisms
(SNPs) genotyped in 1000 individuals have been
analyzed [24]. Next, each of the n combinations is
arranged in a contingency table in k-dimensional
space, with all possible multifactorial combina-
tions represented as cells in the table. The number
of cases and controls for each locus combination
are counted. In the third step, the ratio of
cases:controls within each cell is calculated. Each
multilocus genotype combination is then labeled
as high risk or low risk based on comparison of
the ratio to a threshold (T = 1). Therefore, if the
ratio within a multifactor combination is above
one it is labeled as high risk for disease, and if it is
below one it is labeled as low risk for disease. This
step compresses multidimensional data into one
dimension with two classes. Similarly, for pharma-
cogenomic end points, each genotype combina-
tion would be labeled response or nonresponse
based on the ratio of responders to nonrespond-
ers. This threshold, T = 1 has been used previ-
ously for both balanced and unbalanced data sets.
Pharmacogenomics (2005)  6(8)
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Figure 1. Summary 
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Traditionally for unbalanced data, oversampling
and undersampling has been used as opposed to
altering the threshold value. Further research is
being conducted to fully understand the implica-
tions of adjusting the threshold, as well as over
and undersampling for unbalanced data.

The disease risk distribution for each of the
multifactorial combinations represents the MDR
model for a particular combination of multilocus
genotypes. The classification error, or one minus

the training accuracy, for each model is calculated
based on the number of individuals within the
model that are actually cases in genotype combi-
nations classified as low risk and the number of
individuals that are actually controls in the geno-
type combinations classified as high risk. The
best k locus model is selected and the model is
evaluated against the testing group and testing
accuracy is calculated. Prediction error, or one
minus the testing accuracy, is based on the

of the general steps to implement the MDR method.

 list of n combinations are generated from the pool of all independent variables. Step two: For k = 1 to M, the 
nted in k-dimensional space, and the number of cases and controls are counted in each multifactor cell. Step 
to controls is calculated within each cell. In step four, each multifactor cell in the k-dimensional space is labeled 
io of affected individuals to unaffected individuals exceeds a threshold (T = 1), and low risk (LR) if the threshold 
ive the training accuracy is calculated. This is then repeated for each multifactor combination. In step seven, the 
ing accuracy is selected and evaluated in the test set. In step eight, the testing accuracy of the model is 
 permutation test is conducted to determine the statistical significance of the model(s). Steps 1 through 8 are 
le cross-validation interval. Bars represent hypothetical distributions of cases (left) and controls (right) with each 
 Dark-shaded cells represent HR genotype combinations, while light-shaded cells represent LR genotype 

 High risk; LR: Low risk; MDR: Multifactor dimensionality reduction.
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number of misclassified individuals in the testing
set, based on the model developed in the training
set. Error and accuracy are used interchangeably
in the MDR literature, as error is calculated by: 1
minus accuracy. This is repeated for each cross-
validation interval (i.e., training set and testing
set) and the average training accuracy and testing
accuracy are calculated across all intervals.
Among all of the k-locus models created, the sin-
gle model with the highest cross-validation con-
sistency is chosen as the best k-locus model. This
process is completed for k = 1 to M loci combina-
tions that are computationally feasible. An opti-
mal k-locus model is chosen for each level of k
considered; thus if k = 1–3 is tested, a one-locus
model, two-locus model, and three-locus model
will each comprise the final set. Traditionally,
once this set of models is completed, a final
model or set of models are chosen. The final
model is selected based on maximization of both
testing accuracy and cross-validation consistency.
Testing accuracy is how well the model predicts
risk/disease status in independent testing sets
generated through cross-validation. The average
testing accuracy for the model is calculated by
subtracting the average prediction error based on
the ten testing sets from one. The testing accu-
racy is averaged across the cross-validation inter-
vals regardless of the cross-validation consistency.
This will give a measure of testing accuracy for
the k-level model. Once it is determined that cer-
tain k-level interactions are of interest, a more
accurate estimate of the testing accuracy for that
particular combination of loci can be calculated
by forcing only those variables into an MDR
model. Cross-validation consistency is the
number of times a model is identified as the best
model across the cross-validation sets. Therefore,
for tenfold cross-validation, the consistency can
range from one to ten. The higher the cross-vali-
dation consistency is, the stronger the support for
the model. When testing accuracy and cross-vali-
dation consistency indicate different models, the
rule of parsimony can be used to choose between
them. Here, one might be interested in selecting
the simpler model (i.e., the model with fewer fac-
tors). However, as discussed below, it is often not
advantageous to select only one best model.

Once the best/final model is chosen, permuta-
tion testing is used to test the significance of the
hypothesis generated. Permutation testing
involves creating multiple permuted data sets by
randomizing the disease status labels. Typically,
at least 1000 randomized data sets are generated.
The theory behind permutation testing is to cre-

ate a distribution of a statistic, here testing accu-
racy, that could be expected simply by
chance [25]. For MDR, this distribution must be
created for each individual data set, mimicking
the configuration parameters and data set char-
acteristics of the original MDR analysis. Thus,
the entire MDR procedure is repeated for each
randomized data set. The single best model from
all levels of interaction is extracted for each ran-
dom data set as described above, which generates
a distribution of 1000 testing accuracies that
could be expected by chance alone. This would
be considered the omnibus permutation test.
Some users of MDR have used an alternative k-
locus permutation test, where a separate distri-
bution is created for each level of k [26–27]. The
significance of the final model is determined by
comparing the testing accuracy of the final
model to the distribution. A p-value is extracted
for the model by its location in this empirical
distribution. This omnibus permutation test
may be a conservative method. However, it is
more likely to control for Type I error while not
limiting power.

More recently, less emphasis has been placed
on choosing a single final model, and instead a
set of interesting models are generated. Signifi-
cance levels are assigned to each model in the
final set using the procedure described above and
then all significant models are reported. This
new approach attempts to use all information
within the final set of models. If the end goal of
the MDR method is hypothesis generation, this
approach may be preferred to reduce the risk of
false negatives.

MDR data analysis flow
Application of MDR to a data analysis plan is
merely one component of a complex process.
Figure 2 shows an example of a possible workflow
for a pharmacogenomic analysis. This workflow
assumes that the study subjects have already been
collected, DNA samples extracted and genotyping
has been performed. Each of these components of
pharmacogenomic studies are huge challenges in
themselves and a discussion of the details of each
step of the study design is out of the scope of this
report. Here, the process once the data set has
been collected and assembled is described.

First, the integrity of the data set should be
evaluated. There are a number of mechanisms by
which quality control can be performed on a
data set. In a genomic study examining unrelated
individuals, the two main concerns that should
be evaluated are the possibility of genotyping
Pharmacogenomics (2005)  6(8)



www.futuremedicine.com

Multifactor dimensionality reduction – REVIEW

Figure 2. Flow chart
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error and the inherent patterns of missing data.
The most common test performed to check for
genotyping error in case–control data is a test for
Hardy-Weinberg equilibrium (HWE) [28–30].
Theoretically, disease-free control groups should
follow HWE. Similarly, a combined group of
cases and controls with the same disease, such as
in a pharmacogenomic study where all individu-
als have the disease and case/control status is
determined by response to treatment, should
also follow HWE [28]. Often, if the test for HWE
shows that a marker is out of HWE in the entire
data set, this may be evidence for genotyping
error. However, this test is challenging when
deviations are observed from expected HWE fre-
quencies in either the case or control group.
Studies have shown that this may be a direct
result of a biologically meaningful result, and not
the presence of genotyping error [28–32]. Thus,
caution should be taken when evaluating these
results. The other quality control measure that is
important to evaluate is the missing data distri-
bution. Data missing at random is inevitable in
almost all studies consisting of large, complex
data sets [21]. Likewise, it is rarely problematic
when the quantity of missing data is sparse, and
the distribution of the missing data is random.

However, if the data are missing not-at-random,
this can lead to enormous problems in the analy-
sis of statistical results. In addition, the manner
in which the missing data are dealt with, includ-
ing data imputation, sample deletion and varia-
ble deletion, will heavily depend on the amount
and distribution of the missing data [21–33].

Once the data are clean and ready for analysis,
it is important to understand the genetic patterns
in the data set. For example, an analysis of the
linkage disequilibrium (LD) patterns in the data
set should be performed if multiple markers from
the same genes have been genotyped [34–37]. This
can be done using one of many freely available
software packages, such as Haploview [38]. It is
important to understand the degree of correlation
between the markers before any statistical analysis,
including an MDR analysis, is performed, so that
the interpretation of results can be maximized.
Further research is currently being conducted to
understand the impact that LD has on an MDR
analysis. An additional consideration is the ethnic-
ity distribution of the individuals in the data set. If
the data are comprised of multiple ethnic groups,
it is important to consider this in the analyses. If
the frequency of alleles and the frequency of the
clinical end point are similar, then the data may be
able to be merged for MDR analysis. However, if
there are differences in allele frequency or in the
frequency of response/nonresponse status, then
the groups should be analyzed separately. This will
prevent any spurious findings due to population
stratification. Testing for population stratification
can be performed in a variety of ways, including
genomic control [39] and using software such as
structure and STRAT [40], as well as Bayesian
methods [41].

Determination of the analyses to be per-
formed is the next step before an MDR analysis
takes place. It has been shown that creating sub-
sets of the complete data set based on the bio-
chemical pathways that the different genes
belong to is a successful strategy for an MDR
analysis [42]. The creation of this list of separate
analyses should be compiled before any analyses
are performed to ensure that the user has
planned possible scenarios that have the oppor-
tunity to produce biologically meaningful
results. Once this list has been assembled, the
MDR analyses can be performed.

The user should run the MDR analysis on
each data set with or without cross-validation
depending on their preference. The interpreta-
tion of results and selection of best models will be
different depending on whether cross-validation

 of workflow in an MDR analysis.
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was used. For example, if cross-validation is used,
then the best models are those that have high
cross-validation consistency (the number of times
the same model is selected across the cross-valida-
tion intervals) and maximum testing accuracy. All
models with statistically significant testing accu-
racy can be reported as interesting results, but the
cross-validation consistency may provide the final
determination of a single best model. If cross-val-
idation is not used, training accuracy or classifica-
tion error is the typical metric of model fitness.

Once the analyses are completed, all data sets
that are of interest can be evaluated through per-
mutation testing. Here, the models that have sta-
tistically significant results, not expected by
chance alone, can be determined [25]. The strin-
gency of the cutoff value selection is again
dependent on the goal of the analysis. In most
data-mining exercises, a p-value of 0.05, or even
0.10, is used as a first stage cutoff. All models
that meet this level of significance can be evalu-
ated in a second independent data set, and those
that replicate at a more stringent p-value can be
considered of greatest interest.

Finally, the interpretation of results concludes
the MDR analysis. Unfortunately, this is often the
most challenging aspect and, in many cases, still
cannot be fully understood. The distribution of
responders and nonresponders can be visualized as
part of the output of the MDR software (Figure 3).
This provides an idea of the way in which the
high/low risk genotype combinations are distrib-
uted. However, making biologic interpretations of
this model will require follow-up studies in model
organisms, cell culture or other in vitro experi-
ments. However, it is important to note which
genes are selected in the best models when multi-
ple data sets, or many levels of interaction, have
been performed. For example, if markers in the
same gene continuously result as the best model,
this could indicate that there is a high degree of
LD in that gene and the solutions are indicating a
single biologic signal. Similarly if cross-validation
was used, and the best two-locus model had a low
cross-validation consistency, but an excellent test-
ing accuracy, it would be wise to explore the raw
results to see what other models were selected in
the different cross-validation intervals. It is con-
ceivable that there is LD between the markers and
this yields a result where some of the intervals
show one model and other intervals show the
other model. The final result is a low consistency
for both models, where in reality, it is one signal.

Another important consideration is whether or
not the interaction models detected have been

observed in other genetic association studies, or
more importantly in any biochemical or model
organism experiments. If a biomolecular interac-
tion is known to occur, and the best MDR model
consists of markers in genes coding for the two
proteins, then this will help to interpret/explain
the statistical results. However, it is important to
note that evidence for statistical epistasis detected
by MDR does not necessarily mean that biologic
epistasis exists for these genes [43].

Summary of previous applications
MDR has been used to identify higher order
interactions in the absence of any significant
main effects in simulated data [16–17]. Studies
with simulated data (of multiple models of dif-
ferent allele frequencies and heritability) have
also shown that MDR has a high power to iden-
tify interactions in the presence of many types of
noise commonly found in real data sets (includ-
ing missing data and genotyping error), while
errors such as heterogeneity (genetic or locus),
and phenocopy diminish the power of MDR [17].
Additionally, a mathematical proof has shown
that no other method will discriminate between
clinical end points using multilocus genotype
data more efficiently than MDR [44]. In addi-
tion, MDR has demonstrated gene–gene interac-
tions in a variety of different real data sets,
including sporadic breast cancer [16], essential
hypertension [8], Type II diabetes [45], atrial
fibrillation [46], amyloid polyneuropathy [47],
coronary artery calcification [48], autism [26] and
schizophrenia [49].

The first application of MDR to pharmacoge-
nomics data was in a study of atorvastatin-
induced muscle damage [50]. Atorvastatin-
induced muscle damage can be monitored clini-
cally through lab tests of circulating blood creat-
ine kinase levels. Atorvastatin-induced myopathy
is typically rare when atorvastatin is prescribed as
monotherapy, but increases as additional drugs
metabolized by members of the cytochrome
P450 (CYP)3A gene family are prescribed. Thus,
the goal was to determine if polymorphisms in
CYP3A could predict the risk of developing ator-
vastatin-induced muscle damage. This retrospec-
tive study consisted of 68 cases of muscle damage
(increased serum creatine kinase [CK] levels) and
69 controls that experience no muscle damage
(normal serum CK levels). Here MDR identified
a statistically significant interactive effect
between gender and lipid status associated with
differential elevation in serum CK levels
(p < 0.05). This result suggested a potential
Pharmacogenomics (2005)  6(8)
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One of the previously mentioned successful
applications of MDR was reported in a study of
atrial fibrillation (AF) in a Chinese population.
A case–control study was conducted in 250
patients with documented AF and 250 matched
controls. Eight polymorphisms in genes from the
renin–angiotensin system were selected due to
previous associations with cardiovascular pheno-
types [46]. Several main effects were detected,
including three polymorphisms in the angi-
otensinogen gene, as well as a three-locus inter-
action between two polymorphisms in
angiotensinogen and the angiotensin converting
enzyme gene insertion/deletion. This three-locus
model correctly predicted disease status 62.74%
of the time (p < 0.001) [46].

Another recent application of MDR involved
a treatment response phenotype. Postoperative
atrial fibrillation (PoAF) is the most common
arrhythmia following heart surgery, and contin-
ues to be a major cause of morbidity [51–53]. Due
to the complexity of this condition, many genes
and/or environmental factors may play a role in
susceptibility. Previous findings have shown sev-
eral clinical and genetic risk factors for the devel-
opment of PoAF [54]. The goal of this study was
to determine whether interactions among candi-
date genes and a variety of clinical factors are
associated with PoAF [55].

Using the steps outlined in Figure 2, the authors
have conducted a study of PoAF. The MDR
method was applied to detect interactions in a
sample of 940 adult subjects undergoing elective

procedures of the heart or great vessels, requiring
general anesthesia and sternotomy or thoracot-
omy, where 255 developed PoAF. A random sam-
ple of controls matched to the 255 AF cases was
taken for a total sample size of 510 individuals.
Polymorphisms in three (interleukin [IL]-6, angi-
otensin I converting enzyme [ACE], and apolipo-
protein E [APOE]) candidate genes, all of which
were previously implicated in PoAF risk, and 36
clinical factors were chosen for analysis.

The data set was collected, DNA extracted and
genotyping conducted as part of the Pharmacoge-
netics Research Network (PGRN): Pharmacoge-
netics of Arrhythmia Therapy center at Vanderbilt
University (U01: HL65962). HWE was tested in
the data set and no statistically significant devia-
tions from HWE were detected. The amount of
missing data did not warrant further data manip-
ulations or imputations. The missing genotypes
were coded as a separate categorical level. Since
the polymorphisms were in different genes, there
was no need to test for linkage disequilibrium in
this data set. In addition, the data set consisted of
over 94% Caucasians, thus no stratified analyses
by race were performed.

Three separate MDR analyses were con-
ducted: a genetic analysis, clinical risk factor
analysis, and a gene–risk factor analysis. The
gene–risk factor analysis results were identical to
the clinical risk factor only analysis. Thus, only
the results of the two analyses were reported:
genetic analysis and clinical risk factor analysis.
The results of the analyses are shown
in Table 1 & 2. In the genetic analysis, a single
locus effect of IL-6 that is able to correctly pre-
dict disease status with 58.8% (p < 0.001) accu-
racy was detected. To verify that this was the best
genetic model, the cross-validation consistency
and testing accuracy statistics were used. The
goal is to find the model with the maximum
cross-validation consistency and the maximum
testing accuracy. In addition, if multiple models
have statistically significant testing accuracies, all
significant models might be reported as interest-
ing for follow up. In this study, the single locus
model of IL-6 had both the maximum testing
accuracy (58.8%) and the maximum cross-vali-
dation consistency (10), and was the only statis-
tically significant model. Figure 3 shows the
distribution of cases and controls for the single
locus MDR model generated. Based on logistic
regression, IL-6 has an odds ratio of 1.144 (95%
confidence interval: 1.035–1.264). That IL-6
was shown to have an association with disease
risk replicates the findings of Gaudino and
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colleagues [56], providing support for a postu-
lated role for activation of inflammatory path-
ways in this [57] and perhaps other forms of AF
[58]. This underscores a possible role for anti-
inflammatory approaches for the prevention of
this common complication.

In the clinical risk factor analysis, an interac-
tion between history of AF and length of hospi-
tal stay that predicted disease status with
68.54% (p < 0.001) accuracy was detected.
Again, we used cross-validation consistency and
testing accuracy. Here, all three models have
statistically significant testing accuracies. Thus,
we have selected the two-factor model as the
best model, since it has the highest testing accu-
racy (68.54%). However, all three models are
significant and should be considered of interest
for follow up. Figure 4 shows the distribution of
cases and controls for the interactive model.
Based on a logistic regression analysis of these
two main effect terms and their interaction
term, all three terms are statistically significant
(history of AF p < 0.001, length of stay
p < 0.001, interaction p < 0.04). PoAF is
known to prolong length of hospital stay, and
preoperative history of AF is a risk factor for
postoperative AF [59–60]. The interaction model
detected using MDR is consistent with these
findings. The occurrence of multiple significant
models also demonstrates the extreme complex-
ity of the phenotype and could imply the
importance of complicating issues such as
heterogeneity and phenocopy. 

These findings demonstrate the utility of novel
computational approaches for the detection of
disease susceptibility genes. These results also
showcase the value of being able to detect both
main effects and interactions. While each of these
results appears to be of interest, they only explain
part of PoAF susceptibility. It will be important
to collect a larger set of candidate genes and envi-
ronmental factors to better characterize the devel-
opment of PoAF. Applying this approach, we
were able to elucidate potential associations with
postoperative atrial fibrillation [55].

Outlook
The original distributed MDR software was
available as Linux®, UNIX®, and MAC OS®

command line software. Presently, MDR soft-
ware is being distributed in a Java software pack-
age with a user-friendly graphical interface or a
command-line option. The most current open-
source version is available at [101]. MDR has also
been added to Weka-CG, which is available from
the same website. The MDR software will con-
tinue to be distributed through the website [101]

and includes modules for data manipulation for
preprocessing and permutation testing.

In addition to advances being made in the
software, more research questions continue to
be followed-up. For example, questions regard-
ing adequate sample size and statistical power
for a given study arise as each new study begins.
For MDR, there is currently no theoretical
power calculation that can be performed. Thus

Table 1. Results of MDR analysis on genetic factors.

Number of loci Polymorphism in
model

Cross validation
consistency

Testing accuracy

1 IL-6 10 58.80*

2 IL-6, APOE4 5 53.20

3 IL-6, ACE, APOE3 9 53.99

*P < 0.001. ACE: Angiotensin-converting enzyme; APOE: Apolipoprotein E; IL: Interleukin; MDR: Multifactor 
dimensionality reduction.

Table 2. Results of MDR analysis on clinical factors.

Number of loci Variable in model Cross validation
consistency

Testing accuracy

1 Length of stay 10 66.94*

2 History of AF, length of 
stay

8 68.54*

3 AF at time of surgery, 
age, length of stay

3 61.36*

*p < 0.001. AF: Atrial fibrillation; MDR: Multifactor dimensionality reduction.
Pharmacogenomics (2005)  6(8)
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far, only empirical power studies have been
conducted. In previously published studies, it
has been shown that a sample size of 200 cases
and 200 controls is sufficient for detecting two-
locus interaction models [17]. Continued simu-
lation studies are being conducted to evaluate
adequate sample sizes for detecting higher
order interactions. As part of this set of simula-
tion studies, the power, Type I error, and
bias/variance statistics on the prediction error
estimates for a variety of sample sizes and effect
sizes are continuously evaluated. Classification
error, or training accuracy, is the current fitness
function utilized for selection of the best MDR
model to be evaluated during testing. However,
a number of other possible functions could be
used, including sensitivity, specificity, χ2, and
others. The authors are currently evaluating
which, if any, of these additional functions
improves the power of MDR. Cross-validation
is an optional technique to use in conjunction
with MDR. Bootstrapping is an additional
technique that may provide the ability to place
confidence intervals on the prediction error
estimates for the best models, as well as per-
form an MDR analysis effectively without
cross-validation. This technique is currently
being evaluated. Additionally, we have merged

MDR with a more traditional technique in
statistical genetics, the pedigree-disequilibrium
test (PDT) [61], to create MDR-PDT. MDR-
PDT will allow for the evaluation of complex
epistasis models in studies of family data
including discordant sibships and families with
an affected child and known parental genotype
data. The original version of MDR is capable
of evaluating family data as a matched
case–control study, but MDR-PDT has the
added benefit of calculating the geno-PDT sta-
tistic and using all information provided in
family data [62].

Finally, whole-genome association studies are
the future of pharmacogenomics. Many studies
will likely adopt this unbiased approach for asso-
ciation analysis. The development of the Inter-
national HapMap Project has provided a wealth
of information regarding the common variation
of the human genome [63]. Perhaps one of the
most exciting implications of this work is the
development of high-throughput genotyping
technologies designed to facilitate whole-genome
association analyses. By surveying a large
number of SNPs densely scattered throughout
the genome, case–control studies of common
complex diseases and pharmacogenomics may
utilize these technologies to capture much of the

Figure 4. MDR model demonstrating an interaction between history of AF and length 
of hospital stay that predicted disease status with 68.54% (p < 0.001) accuracy.

Light purple cells are low-risk, while dark purple cells are high risk. The number of cases is shown in the 
histogram on the left in each cell, while controls are shown by the histogram on the right. Length of stay was 
defined as the date difference between surgery date and discharge date. It is coded as follows: 1 = 0–4 days, 
2 = 5–7 days, 3 = 8–13 days, 4 = 14 or more days. These cutoffs correspond to the 40th, 80th and 95th 
percentile cutoffs. AF: Atrial fibrillation; MDR: Multifactor dimensionality reduction.
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Highlights

• Epistasis, or gene–gen
complex disease and 

• Detecting epistasis is 
new methods are bein

• Multifactor dimension
approach for detectin

• MDR has high power 
demonstrated in both

• MDR can be used for 
treatment response/n

• MDR has successfully 
postoperative atrial fib
variation present in affected individuals. It is the
goal of these large-scale studies to pinpoint
genetic variations that contribute to the suscepti-
bility of complex diseases. The hundreds of
thousands of markers typed in these studies
constitute massive amounts of data, and the ana-
lytical challenge of data analysis on this scale is a
major hurdle for their success [64].

Epistasis is often found when properly inves-
tigated; however, whole-genome studies prove
especially difficult for the analysis of interac-
tions, as the combinatorial nature of the

problem exponentially increases the number of
statistical tests required. MDR might have the
potential for application in population-based
case–control whole-genome association studies.
Further investigations into the computational
feasibility of such studies are warranted. One
advance that is currently being evaluated is a
parallel implementation of the MDR algo-
rithm. Parallel MDR is a new implementation
of the MDR algorithm that can scale to handle
extremely large data sets, dramatically decreases
single-processor runtimes, and can also use a
parallel software framework to allow operation
in a clustered computing environment to fur-
ther reduce runtime. Research is currently
underway to estimate the number of factors
that will be practical to analyze with this soft-
ware. It is hoped that these advances will pro-
vide further enhancement of this powerful
computational methodology.
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