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NONPARAMETRIC TESTS FOR SCALE'

By JeroME KroTz
Unaversity of California, Berkeley

1. Summary. This paper is concerned with two sample rank tests for scale
alternatives. The two samples are assumed to have continuous distribution
functions with the difference in respective location parameters (medians) known.

Various rank tests are considered and compared from the point of view of
limiting Pitman efficiency for normal and nonnormal alternatives. Among the
tests considered is a test with efficiency one relative to the F-test for normal
alternatives. Tables are given to facilitate its use.

Small sample power and efficiency for normal alternatives are computed for
equal sample sizes of 5. The small sample efficiency values differ appreciably
from the limiting value; this deficiency of power appears to derive from the use
of ranks per se rather than from the use of a rank test that is not optimal among
rank tests.

Lastly, a rank test is proposed for particular alternatives which is most power-
ful for rectangular densities. It is a simple test which is seen to have surprisingly
good power for normal alternatives.

2. Introduction. Let X;, -+, X,, and Y;, -+, Y, be two samples with
continuous cumulative distribution functions F and G. Set F(x) = ¥((z — v) /o)
and G(z) = ¥((x — v)/7) with ¥ a distribution function and ¢ and 7 scale
parameters. Assuming that the medians difference is known, we take » to be
the common unknown median for # and G without loss of generality. Under
this assumption, the null hypothesis

H:oc =71

gives F' = (@ and statistics of the form
N
(2.1) Zl Wxilins

have a distribution independent of ¥ under H. Here N = m + n, Wy, are given
numbers and Zy; = 1 if the 7th smallest order statistic in the pooled X and Y
sample is an X and is zero otherwise. Tests of the form (2.1) for scale alternatives
have been given by A. M. Mood [9], J. E. Freund and A. R. Ansari [5], D. E.
Barton and F. N. David [2], and more recently, by S. Siegel and J. W. Tukey
[12]. The test of Mood uses weights Wy; = (¢ — (N 4 1)/2)* while the others
use weights as follows for N even:
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TABLE OF Wys FOR FOUR STATISTICS
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where S is the statistic of Barton and David, W the statistic of Freund and
Ansari, and 7 and 7" are the statistics of Siegel and Tukey.

Mood gives the value 15/27° =~ .76 for the limiting Pitman efficiency of his
test relative to the F-test under normality. The value for the test of Siegel and
Tukey was found by the author in [8] to be 6/x° =~ .61, using the methods of
Chernoff and Savage [4] to establish limiting normality for the statistic. The
derivation of the efficiency of the test of Freund and Ansari given by Ansari and
Bradley in [1] applies equally well to the tests of Siegel and Tukey and of Barton
and David because of the following equivalence of the tests as seen from (2.2).
For N even

(T+ T4+ 1)/4=W = (N/2 + 1)N/2 — 8.

The test of Mood, which has greater efficiency, gives more weight to the ex-
treme ranks than does the Siegel-Tukey test. Thus the question arises whether
or not still greater efficiency can be obtained if even more weight is given the
extreme ranks. If one assigns weights [®'(¢/(N 4 1))]® where ® is the standard
normal cumulative, limiting efficiency one can be obtained relative to the F-
test for normal alternatives. Thus it is proposed to use the test statistic

N

(2.3) 2 [/ (N + 1))1Zw:

which shall be called the normal scores statistic. Large values of the statistic
are significant for ¢ > 7. The weights are simply the squares of the weights
used in Van der Waerden’s X-test [15].

The limiting efficiency can be calculated again using the methods of Chernoff
and Savage. It should be noted that the efficiency depends only on the limiting
form of the weights or on the function J defined in [4]. The weights in (2.3)
were simply chosen for convenience and any other weights with the same J
will have the same efficiency. In a recent paper by J. Capon [3] the weights
Wyi = EUy: were proposed where Uly; is the ¢th smallest order statistic from
a sample of N standard normal variables. This test was shown to have limiting
efficiency one relative to the F-test for normal alternatives. Thus the derivation
for the normal scores test need not be given here because of the asymptotic
equivalence of the two tests.

An interesting duality exists between the scale and location parameter prob-
lems. The correspondence of the Wilcoxon test to the Siegel-Tukey test, the
Van der Waerden test to the normal scores test, and the c;-test of Terry [14]
to the test of Capon should be noted.
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3. Efficiency comparisons for various distributions. B. V. Sukhatme [13] has
shown that the test of Mood when compared with the F-test can have limiting
Pitman efficiencies anywhere between 0 and o« for different distributions. He
also shows that the same is true of his proposed test which assumes that the
median is known. Since the efficacy expression of his test is the same as the
test of Siegel and Tukey, the efficiency of the latter can also take on values
anywhere between 0 and . The author conjectures that the same is true for
the normal scores test relative to the F-test but as yet has only been able to
show that values between .47 and « can be attained. (The value .47 was ob-
tained using ¥(z) = ®(z") and letting o — «.)

Because of the lack of robustness of the F-test with departures from normality
it seems of little interest to compare the various tests with the F-test for distri-
butions other than normal. Of more interest is the comparison of the nonpara-
metric tests for various distributions as has been done by J. L. Hodges, Jr. and
E. L. Lehmann [7] for the corresponding location parameter problem. To do
this we compute the ratios of the efficacies of the tests using the theorem of
Pitman (see, for example, Noether [10]). Assuming that F has a density f and
verifying the regularity conditions of [10], the efficacies are as follows:

(Normal scores)

(3.1) 2 [ [ () ot P (a) s |
(Mood)
720mn | 7 I\ g2 )
32 Omn T [” (p(a) — Da(a) de |

(Siegel and Tukey)
(33) %—n [[j xf*(x) dx — j:o xf*(z) dm:l ,

where ¢ is the normal density function. The last two expressions can be found
in [13]. If we compare the test of Siegel and Tukey to the normal scores test,
the relative efficiency can take on any value between 0 and o. Consider the
distribution (4.10) in [7] which is symmetric and defined for positive x by

CI)(:L'), O0=x=¢

Y(x) =

®(y), e<z < o,y=cec+alx—e¢e,a>0.

If we let @ — o and then e — =, the ratio of (3.3) to (3.1) converges to zero.
Similarly, consider the symmetric distribution defined for positive z by F(x) =
®(h'(x)) where

IA

30,7,&/6 for 0 =S u<?d

et a=5 for uw = é.
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TABLE 1

Efliciency Comparisons for Different Densities of the Siegel-Tukey Test (S-T),
Mood’s Test (M) and the Normal Scores Test (n.s.)

Density S-T/n.s. M/n.s. S-T/M
Exponential 0. 0. 0.600
Rectangular 0. 0. 0.806
Normal 0.608 0.760 0.800
Logistie 0.750 0.896 0.837
Double exp. 0.774 0.900 0.860
Cauchy 1.783 1.670 1.068

If we let 6 — 0, the efficiency of the Siegel-Tukey test relative to the normal
scores test converges to infinity.

The integrals have been evaluated (some numerically) for the normal, double
exponential, Cauchy, logistic, exponential, and rectangular densities. For the
last two densities the efficacy expression for the normal scores statistic gives
infinite values. However, a limiting argument will justify using a value of zero
for the efficiencies of the tests of Siegel and Tukey and of Mood relative to the
normal scores test. The appropriate efficacy ratios give efficiencies as summarized
in Table 1. The accuracy is believed to be at least 2 decimals.

Very roughly it appears to the author that the normal scores statistic should
be used in preference to the Siegel-Tukey statistic when the extreme rankings
give more dispersion information than do the central rankings. On the other
hand, the Siegel-Tukey statistic should be used in preference for those distri-
butions with heavy tails and more dispersion information in the central rankings.
The similarity of this conclusion to that given for the corresponding location
parameter problem in [7] can be seen.

4. Small sample power and efficiency. To calculate the power of a rank test,
1t is necessary to calculate the probabilities for alternatives of those orderings
which lie in the rejection region of the test. The probability of an ordering for
an alternative is calculated by integrating the joint density of the X and Y
samples over that part of the N dimensional space defined by the ordering.
For example, if we denote the densities by f and g respectively, then for a par-
ticular ordering

PIXYX --- YX] = min! ff _Ijlf(:ci) dxijlig(yj-) B

21 <Y1<22< "+ <Yn <

Fortunately, the problem of integration over N dimensions can be reduced to
a problem of calculating N successive one dimensional indefinite integrals using
a recursive scheme of Professor J. L. Hodges, Jr. If we denote an ordering of
X’sand Y’s by , the recursive scheme generates the probabilities of the orderings
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obtained by adjoining an X or a Y to the right, denoted by #X or Y. Let

A.(u) = Plall X’s and Y’s = u and in the order =J.
Then
Ax(u) = F(u), Ay(u) = G(u),

Aex(w) = (m+ 1) [ A1) do,

and
Ag(u) = (n 4+ 1) f_: AL(v)g(v) do,

where m and n are the numbers of X’s and Y’s, respectively, in the ordering
x. The desired probability of 7 is A.( ). This scheme was programmed for
a digital computer (I.B.M. 704) using normal densities for f and g. The proba-
bilities of all orderings with N < 10 were computed for selected o/ 7 ratios (2, 3,
and 4). The values are given in [8]. It should be noted that the program is ap-
plicable to other problems and has been used by Hodges and Lehmann for the
Jocation parameter problem. Table 2 gives some selected power values for the
Siegel-Tukey test, the normal scores test and the most powerful rank test at
the three chosen alternatives (m = n = 4, 5). For a = .06349 andm =mn =9
officiencies were calculated at various alternatives for the normal scores test
relative to the F-test. The efficiency definition of Hodges and Lehmann [6]
(pp. 329) is used with randomization between sample sizes m = n for the F-

test. The computed values indicate that this efficiency is a decreasing function
of O’/ T

Normal scores test (m = n = 5, @ = .06349)

/7 1.5 2 3 4
8 . 16950 27951 45007 55977
e .803 776 .683 .640

The small sample values are quite disappointing in view of the large sample
value of 1. The question naturally arises whether the loss is due to a failure in
the normal scores test at this small sample size and if so whether a substantial
improvement can be made with the use of a different rank test. Light can be
thrown on this question if we investigate the most powerful rank test for the
various alternatives. Using the likelihood ratio principle, power values are
caleulated along with corresponding efficiencies.

L. R. test (m = n = 5, a = .06349)

a/T 1.5 2 3 4
5 17082 . 28848 48116 .60770
e .810 .786 A 19 .688
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Power of the Siegel-Tukey Test, the Normal Scores Test, and the Most Powerful
Rank Test (Likelithood Ratio Test) for Normal Distributions at Sample Sizes
m=mn=4,m=mn = 5, and ¢/ Ratios of 2, 3, and 4

Sample size
m=n=14
M=n= 5
Sample size
men=14
m=n=5
Sample size
m=n=1}
ms=nzes= 5

10
11
2
13
15
16
17
18
19
20
21

s
4,151
3.752
3.586

5.582
5.338
5.229
5.122
4,878
L.769
4.634

Siegel-Tukey Test
Power = P[T = t]
a ofv =2 oft =3

0.01429 0.06619 0.11788
0.02857 0.10627 0.16671
0.0571% 0.20661 0.33305
0.10000 0.30159 0.44745
0.00397 0.02886 0.06262
0.00794 0.05771 0.12524
0.01587 0,09492 0,18218
0.02778 0.14395 0.25151
0.04762 0.21193 0.34067
0.07540 0.29554 0.46232
0.11I11 0.37637 0.55258

Normal Scores Test
Power = P[S = s]

a o/t =2 o/t =73
0.01429 0.06619 0.11789
0.07143 0.24669 0.38188
0.12857 0.39213 0.55640

0.0079%4 0.05771 0.12524
0,01587 0.09861 0.19000
0.02381 0.13506 0.24418
0.03175  0.16857  0.29314
0.06349 0.27951 0.45007
0,09524 0.37710 0.57145
0.12698 0.45052 0.64313

Most Powerful Rank Test (L.R.

a o/t =2 oft =3
0.01429 0,06619 0.11789
0.04286 0,16653% 0,28422
0.07143 0.24673 0.38189
0.10000 0.7%2128 0.47345

0.00794 0,05771 0.12524
0.01587 0.09861 0.19441
0,02381 0.13506 0.25917
0.03175 0.17112 0.31334
0.03968 0,20463  0,36230
0.04762 0.23340  0.40495
0.05556 0.26151 0.44374
0.06349 0.28848  0.48116
0.07143 0.31213  0,50625
0.0793%7 0.33524  0.5301%
0.08730 0.35623  0.55106
0.09524 0.37707 0,57185
0.10317 0.39698  0,5923T

oft = 4

0.15823
0.20740
0.42497
0.53929
0.09365
0.18729
0.25198
0,32742
0.44221
0.56864
0.65469

oft =4
0.15823
0.47413
0.64952

0.18729
0.26219
0.32270
0.37717
0.5597T
0.68336
0.74268

Test )

ofv =14
0.15823
0.37580
0.47413
0.56742

0.18729
0.28616
0.36105
0.42156
0.47604
0.52467
0.56678
0.60770
0,62922
0.6493%2
0.66738
0.,68455
0.70141
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The power and efficiency are only slightly greater for the L. R. test as com-
pared to the normal scores test. It appears that the loss in efficiency is inherent
in the use of ranks for small samples with a rather high price being paid for the
insurance obtained with rank statistics. This is in marked contrast to the cor-
responding location parameter problem where the small sample efficiency is
quite high.

5. Exact null distribution for the normal scores statistic. Under the null
hypothesis F = G each of the xC,, different orderings of the m X’s and n Y’s
are equally likely. The distribution can be obtained by enumerating the orderings
and ranking them according to the associated value of the statistic. If we let
S denote the statistic, then P[S < ] = r/5C. , where r is the number of order-
ings with a value for the statistic of x or smaller. The enumeration, although
straightforward can become quite lengthy as N increases. It is thus desirable
to reduce the enumeration as much as possible. It is sufficient to consider only
distinet values of the statistic and count the number of orderings corresponding
to each value. To do this the symmetry of the weights is used. We have from
the form of the weights Wa1 = Wy, Wxz = Wxn_1, -+ . Assume N is even
(= 2k). Then the number of different values of the statistic is equal to the
number of distinguishable ways in which m identical balls can be placed into
I different cells with each cell having room for at most two. Each cell corresponds
to a pair of identical weights (Wx1, Waw), (W, Wan—1), -+, (War , Waks1) -
Cell number 7 is said to have 0, 1, or 2 balls in it if the ordering of the X’s and
Y’s is such that Zy: + Zwv_is1 = 0, 1, or 2, respectively. For each arrangement
of the m balls in the k cells there corresponds 2° orderings, where 7 is the number
of cells with exactly one ball. If we count the total number of distinct values of
the statistic by fixing the numbers of 0’s, 1’s, and 2’s, counting the number of
distinguishable permutations, and then sum over all partitions of 0’s, 1’s and
2’s which add up to m, we have a total of

(5.1) (£)+(m_k2,1>+(m_k4,2)+...+(m_k%l>.

Here | = [m/2] is the largest integer less than or equal to m/2 and

(k)= k!
i, Wk — i — 7)!

is the trinomial coefficient which gives the number of distinguishable permuta-
tions of ¢ 1’s, 7 2’s, and k — ¢ — j 0’s. From the consideration that the total

number of orderings must be (Z) we have the following equality for N even

(5:2) ;(m R Lk (ﬂ)

For N odd a slight difficulty arises due to the fact that there is but one middle
weight wyk1 where & = [N/2]. Thus one of the cells is a half cell (can take only
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0 or 1 ball). However, this difficulty can be overcome if we drop this cell and
proceed as in the even case using m balls and then m — 1 balls since the middle
welght is zero. If it were not zero the value would have to be added to all the
values of the statistic which were computed using m — 1 balls. We note that
this method of enumeration can constitute a considerable saving. In particular,
when N = 20 and m = 10, the number of distinct values of the statistic given
by (5.1) is 8,953 which is less than five per cent of the total number of orderings

(?g) = 184,756. It should be noted that this scheme is applicable to other

statistics using symmetric weights. In particular, it can be applied to the sta-
tistics of Mood and of Capon and with a slight modification to the statistic of
Barton and David (here the half cell for N odd is the end cell and is not zero).
The scheme was programmed for a binary digital computer (I.B.M. 704) with
N = 4(1)20 and m = n. Table 3 gives the numerical approximations to the
weights used in the computation. Table 4 gives selected critical values and
corresponding exact probabilities for N = 8(1)20 (see Table 4 at end of article).

TABLE 3

Normal Scores Weights wy; for © < N /2 used in the Tabulation of the Distribution
wyi = [@7(¢/N + 1T

ill 2 3 4 5 6 g 8 9 10

0.7083 0.0642

0.9361 0.1855 O.

1.1306 0.3204 0.0324

1.3225 0.4550 0,1015 O,

1.4908 0.5848 0.1855 0,0195
1.6435 0.7083 0.2750 0.0642 O,

O o ~ O U & =

10
11
12
13
14
15
16
17
18
19
20

1.7827
1.,0127
2,0335
2.1462
2.2530
2.35%2
2.4508
2.5376
2,6244
2,7060
2.8241

0.8253
0.9361
1.040k4
1.1406
1.2343
1.3225
1.4090
1.4908
1.5675
1.6435
1.7135

0.3655
0.4550
0.5421
0.6266
0.7084
0.7871
0.8629
0.9360
1.0060
1.0741
1.1332

0.1216
0.1855
0.2524
0.3204
0.3776
0.3880
0.5206
0.5848
0.6474
0.7083
0.7676

0.0130
0.044%
0.0861
0,1340
0.1855
0.2389
0.2931
0.3474
0.4015
0.4550
0.5076

0.0093
0.0324
0.0642
0.1015
0.1424
0.1855
0.2299
0.2750
0,3203

0.

0.0070
0.0236
0.0497
0.0796
0.1340
0.1485
0.1855

0,0054
0.0195
0.0397
0.0642
0.0918

0.
0.004%
0.0158 0.
0.032% 0.0036
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6. The rectangular case. Using the calculated probabilities of the orderings
for the normal case with ¢/7 = 3 and m = n = 5, a listing was formed. The
orderings were sorted according to the associated probability value and from
this arrangement a pattern was suggested. The most significant orderings seemed
to be grouped according to fixed values of the statistics U and V where

U = number of X’s less than the minimum Y,
V = number of X’s greater than the maximum Y.

In addition, the probabilities in these groupings, although not constant, were
of the same order of magnitude. This suggests that for some distributions a
good rank test may be constructed using only the statistics U and V. In this
connection it should be noted that the test proposed by S. Rosenbaum in [11]
uses the statistic U + V.

If we consider the problem for rectangular densities it will be shown that
(U, V) forms a sufficient rank statistic for ¢ = 7. Thus, if we use the rectangular
density to construct a test it is hoped that the test will be useful for other distri-
butions. In particular, it is hoped that the test will have good power when the
samples are small for the normal case.

To fix ideas let X1, -+, Xn: R(—0, ¢) and Yy, -+, Ya: R(—r, 7). To
see that (U, V) is sufficient for the rank orderings we show that the conditional
probabilities of the orderings are constant for given values U = u, V = .
Evaluating the probabilities by first conditioning with respect to the values of
min ¥ and max Y we see that the remaining N — u — » — 2 X and Y variables
between min Y and max ¥ are independently and uniformly distributed between
these values. Since the remaining X and Y variables in this range are identically
distributed as well as being independent, their particular ordering does not
affect the value of the probabilities which are calculated by integrating out the
conditioning variables min ¥ and max Y. Thus the probabilities are constant
for fixed values of (U, V).

We proceed to calculate the most powerful rank test using the likelihood ratio
principle. Under the hypothesis we have

(6.1) P[U=u,V=v]=(N“;_“Z’"Q)/(ﬁ).

To calculate the joint probability under the alternative we write U = S+ Z
and V = T + W, where

— number of X’s in the interval [—o, —7),

number of X’s in the interval [—7, min Y),

number of X’s in the interval (max Y, 7],

— number of X’s in the interval (7, o).

N SN
l

Then
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PlU=uV =0y =), PZ=z,W=w|S=u—2T=v—w]

P[S=u—2T=v— w]

(N—u—-v—Z)
(6.2) :i’v n = 9

m u—z v—w_ m—u—v+z+w
' P q r ’
U—2,0—w

where p = ¢ = (¢ — 7)/(20) = (1 — 7/d)/2and r = 1 — p — ¢. The likeli-
hood ratio (the ratio of (6.2) to (6.1) is equivalent to

(63) > b(a, N, 2) B, N = a,0/(1 = p)),

using the notation for the binomial probability and its cumulative. The expres-
sion (6.3) was used to rank the values of (U, V) for /7 = 3and m = n = 5.
The problem is symmetric in U and V and so it suffices to list only the pairs
(u, v) for v = v provided the probabilities for the symmetric pair are included.
Using the ordering to form a test and applying it to the normal case, good
results were obtained. In fact, for the normal alternative ¢/7 = 3 at the first
four smallest natural levels the power is the same as that of the most powerful
rank test! The results are given in Table 5.

For large N it is desirable to have an asymptotic approximation. Let ox/7y — 1
with the speed of 1/N. If we write oy/7y = 1 + 2A/N we have Np =
A/ (1 4+ 2\/N) — \. Thus, the binomial converges to the Poisson and the as-
ymptotic approximation to the likelihood ratio test is equivalent to rejecting

TABLE 5

Power for normal distributions (o/7 = 3) of the most powerful rank test in the
rectangular case form = n = 5

Power of L.R. test

u v a Power b il Tewal
9 3 0.00794 0.12524 0.12524
i a 0.01587 0.19441 0.19441
9 2 0.03175 0.31334 0.31334
1 3 0.06349 0.48116 0.48116
0 5 0.07143 0.48285 0.50625
1 2 0.15079 0.68127 0.69535
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for those values (u, v) for which
®\(u) ®r(v) > Const.,

where ®,(w) is the cumulative Poisson distribution with parameter A. This
test was again applied for m = n = 5and oy/7y = 3 (A = 10). The (u, ) rank-
ings were the same as in the previous case with the same results applicable.
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Table 4
2 Normal Scores Distribution
P[S = s_] Nominal levels .
N__m .005 .01 025 .05 .10 «90 .95 2975 .99 2995
8 2 +0390 2.0756
03571 96429
8 3 022U5 .3905 ,6238 2,6604 13,1671
03571  ,07143 10714 ,89286 ~.96429
8 4 4100 .8093  .9753 33,3526 3,5859 3.7519
01429 07143 ,12857 .87143 ,92857 .98571
g 1 0
11111
g 2 0642  ,128)4 2.3518
05556 .08333 .97222
9 3 .1284 « 3392 5500 2,6268 33,3512 33,5620
,01191 .05952 ,09524 ,89286 .95238 ,97619
9 & L4034 6142 .8367 1.0475 13,6262 4,0595 4,2703
.01587 .03175 .05556 ,11905 ~,90476 ,96032 «99206
1o 2 . 0260 L1346 2,1482 2,6080
02222 11111 88849 97778
10 3 LA476 2562 .2915  .,5001 2.9735 3.5784 3,6870 3.9309
01667 .03333 .05000 .11667 .91667 ~.95000 ~.96667 ~ .9B3%3
10 4 .2692 <5131 .7570 1,0815 3.8086 4.,4037 4.512 4,7562
. 00476 .02381  ,Ohk762 ,10952 ,89524 ,95714 .976l9 .99524
iy 5 L6347 8786  .9872  1.,3384 1,5823 14,5253 4.8778 5.1217 5.2290  5.3376
.00794  ,01587 ,02381 ,06349 .10318 ,B96B3 ,96825 ~.97619 ~.98413 ~,99206
s
P[S = s] Nominal levels
N m . 005 0L « 025 « 05 a0 .90 «95 975 99 2995
11 1 0,
. 09091
11 2 LOUL3 .0886 .1855 2,3677 2.8488
.03636  .O05455 .09091 .90909 .98182
11 3 .0886 .2298 <3710 .543%6 33,0343 33,8254 4,0109 4,280%4
. 00606 .03030 04849 ,09697 .88485 ,95152 .97576 .98788
11 4 2741 4153 5436 6864 1,0955 4,0109 L4.4659 4.8058 4.9470 5.2165
.00606 .01212 .02121 ,O4546 ,09697 .89394% .95152 .97273 .98485 ~.99697
1. 5 1596 .7291  ,9986 1,2810 1,6209 4,8058 55,2165 5.4020 5.7419 5.8831
.00217 .01082 ,02597 .04978 .1103%9 .89827 ~.94589 ~.98052 .99134 .99567
12 2 .0186 0954 1722 2,5756 3,0739
,01515 07576 .09091 ,92424 .98485
12 3 +«LOBT 271D 3478  .5909 3,%263 33,6160 4,1531 4,6091
.00909 .02727 .06364 ,10000 ,90909 ~,94546 .97273 .99091
12 4 .1908 3571 6002 .7236 1,0562 4.2004 4,.6564% 5.1512 5,3508 5,6495
.00202 ,0l010 ,02828 ,04647 ,10303 ,90303 .O4748 ~,97374 .98990 ~,99798
12 5 .6095 27329  .8992 1,2312 1.6406 4,9088 5,445 5,7356 6.1571  6.2339
.00505 .01010 .02020 ,05051 ,1O0354 .89647 ,95455 .97727 .98990  .99495
12 6 .9853 1.1516 1.483%6 1.7733 2,1827 5.6983% 5,9880 6.4095 6.6992 6.7760
13 1 Os
07692
13 2 0324 L0648 L1664 2.,4666 2,7728 3,2868
.02564  ,03846 ,1153%9 ,88462 ,93590 .98718
13 3 .0648 .1664  ,1988 .3528  .5884 33,4208 3.9134 4.4264 4,6128 4,9190
.00350  .OLl748 ,02448  ,04895 .10490 .89860 .95455 .97203  .98601  .99301




TABLE 4 (Continued)

S
P[S = s]| Nominal levels
N m .005 .01 . 025 05 +10 .90 .95 .975 -99 .995
13 4 + 3004 .3852 L5192 L7748 1.0810 4.4264 %,9332 5.43%%0 5.5670 5.7534
,00559 .00979 .02657  LOh4T6 .10490 .89930 .94965 97483  .98741  ,99301
13 5 .5192 L7056 .9594 1,2150 11,6274 5.1870 5.6800 6.0738 6.3800 6.6862
.00389 ,9903%2 .02409 .O4895 .10490 .9005h4 .0l950 .97281  .99145  .9953k
13 6 o736  1.1458 1.4520 1.7724 2,2540 5,898 6.3800 6.7076 T7.0280 7.2326
.00525 ,L00991 .02389 .05012 ,10839 .89918 ,04988 .gT49k  .99068  .99LT6
1 1 .0070
. 14286
1y 2 0140 L0712 ,1925 2.6306 2.961% 3. 4873
.01099 .05495 ,10989 .90110 .94506 .98901
1y 3 .0782 1354  ,1995 .3780 .5701 3.6698 3.8649 4.5702  4.8836 5.214Y4
,00550 .01099 .01648  ,0ug45 .10989 .89560 .93%956 .97253 .98901  ,99451
1 4 L2637 .3350 5771 L7556 1.0223 4.5200 4.9478 5.43%00 5.9258  6.1179
.00500 ,00999 .02697 .05095 .10090 .89511 .9%905 97403  .99101 .99501
14 5 .5200 6985 .9721 11,2214 1,5920 5,2847 5.8687 6.3004 6.6342  6.9816
00400  .01139 .02597  .05095 .09990 ~.89910 .95005 .97303  .99001 .99501
1 6 .8976 1.1576 1.4069 11,7407 2.2296 6.0542 6.5771 6.9886  7.3592 7.6900
"00l66  .010%2 .02531 . 04962 ,09990 .90043 Q4872 .97336  .99001 .99534
i 7 |1.813 1.5924 1,963%0 2.3919 2.8333 6.7626 T.2313 T.6019 8.0540 8,.1248
.00525 .00991 .02389 ,04835 .09962 .90035 .95105 97611  .99009  .99476
1 1 0. ] 22
- 06667 1.366 7
15 2 0236 0472 .10ol5 .2030 2.7412 3.1403 3.6757
.01905 ,02857 ,O4762 ,09524 .91429 .95238 .99048
15 3 L0472 1251  .2266 340k L5014 33,6993 4.0637 4.7300 5.094%k - 5,4935
100220 .0L099 .02198  .04396 .O0945L ~.8923L .9UO45 .9T7363 .99121  .99560
S
P[S = s] Nominal levels
N m .005 % .025 o 05 1@ .90 .95 .975 .99 .995
15 4 .2861 3640 5131 .6808 1.0149 4.5643 5.1180 5.5950 6.1304% 6.4169
,00513 ,01099 ,02711  .04908 .10037 .90037 .95018 ~.97363  .98974  .99634
15 5 .5367 6741  .8%04 1.1511 1.5391 5.3862 6.0242 6.4405 6.9175 T7.2040
.00533 .01066 .0253L .0O4g62 .10390 .89977 .95005 .97503%  .99034%  .99567
15 6 .85%5 1.0373 1.3900 1.7001 2.1457 6.1969 6.7584 7.2040 T7.6267 7.9783%
.00500 .00999 .02458 04995  .09950 .90030 .9hkg65 .97423 .98981  .99521
15 7 |1.%010 1.5627 1.8795 2.3134 2.8516 6.9311 7.4429 7.8645 8.3415 8.5501
o082  .01088 .02378  .0MOB8 ,09946 .89899 .94TT9 .OTHE3 .98990  ,99549
16 1 .0054 1.40390
.12500 .87500
16 2 .0108 ,0551 .,0994 1478 2.8180 3.3137 3,8598
.00833 ,04167 .05000 .08%33 .89167 .95333 .99167
16 5 . 0605 1532  ,1975 L3482  .5757 3.8652 4.1766 4.9070 5.2688 5.7645
.00357 .1071 .02500 .05357 .1l0357 .89643 .94286 .97500 .98929  .99643
16 & 2472 .35%6 5349 L7181 1.0520 4.7281 5.2742 5.7804 = 6.3603 6.6274
.o0k95 .00989 .02582  .O4890 .,09835 .89T725 .OU945 97418  .99011  ,99506
16 5 .5403 .6910 .9669 1.2165 1.6119 5.5673 6.2359 -6.6534  T7.2232 7.4666
.00550 .00962 ,02518 ,05037 .1l0O73 .89927 .95009 97482  ,09084%  .99496
16 6 9279 1,1093% 1.4032 1,7752 2.2080 6.4165 7.0000 7.4042 7.9872 8.2899
.00487 .00999 .02523 .O4958 .10003 .89960 94955 ,97515 .,99051  .99513
16 7 [1.3865 1.5815 11,9619 2.3566 2.8740 7.1794 T7.751% 8,1842 8.6819  8.9253
.00507 .0l0l4 ,02465 .OK965 10000 .90087 .9k983 97465  .98986  .99493
16 8 |1.9220 2.1567 2.5680 3.0l42 3,5603 7.8016 8.4377 8.8864 9.2952 9.53%536
"00h66  .00979 .02510  .OU957 ~.09977 .90023 .95043 .9T490 .99021  .9953k
it 1 Qs 1.4908
.05882 .882725
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TABLE 4 (Continued)

ol1

S
P[S = s] ! Nominal levels
N m . 005 + 01 .025 .05 .10 .90 .95 975 .99 .995
IT 2 .0195  ,0390 0796  .1855 2.8850 33,1224 33,4736 4 .028)
.Ol471 ,02206 .03677 .08824% ,89706 93382 ,96324  ,99265
17 3 .0991 .1186  .2245 3669  .5524 4,0479 L4.3758 X4,9644 5.5192 5,6600
00735 .01029 .02353 ,05000 ,09853 ,90147 94853 .97500 .99118 ~.g9gul2
17 4 .2846 . 3642 . 5524 <7379  1.0351 L4.9606 5.5022 6.007% 6.5960 6.0134
.00630  .01050 ,02647 ,04958 ,09958 .90294  .94958 .97521  .99076  .99580
iT = 5497 6921  .9490 1,2168 1.6161 5.7047 6.3781 6.9134F T.4982 T7.7356
.00501  ,01018 .02537 .05220 ,09971 ~.89948 .95055 .97479  .98982  ,99kg99
17 6 .8930  1.1048 1.4023 1,7535 2.1942 6.5543 7.1785 7.6875 8.2423 8.5176
.00485  ,00978 .02545 ,05050 .09955 .90037 .95063 .97487 .98998  ,994gl
1t 7 [1.3197 1.5796 1.9804 2,3380 2.8695 T.3400 T7.9485 8.4537 9,0123 9.3060
.00504  ,00998 ,02499 .05008 -09991  .89994% .94987 .97547 ~.99003  .99501
17 8 |1.8293 2.120% 2.5498 2,9765 3.5610 8.1096 8.6888 9.1745 9.6534 99,9445
.00435  ,00991 .02493% ,05006 .09971 .89967 .95027 .97511 ~.98996 ~.99s519
18 1 L0044  1,.5675
.11111 ,88889
18 ¢ . 0088 .o441 0794 1737 33,0259 33,2718 3.6304 4.1919
. 00654 .03268  ,03%922 ,09150 ~.90850 ~.94118 .96732 .99346
18 3 . 0838 1428 2724 3683  .5752 4.1410 %4.4218 5.1979 5.6503 5,8962
-00490  ,00735 .02451  .04902 .10049 .89706 94608 .9779%  .99020 .99510
18 &4 . 2784 3727 5443 7698 1.0710 14,9252 5,5184 6.1261 6,8207 7.0462
.00458  .00882 .,02386 .05163 ,09967 -8977L  .94739 .97549  .99020  .99543
18 5 5773 7136 9458  1,2270 1.6209 5,8497 6.4801 7.0506 T7.6623 T7.956%
.00590  .01027 .02474% ,05135 ,09967 .90103 .95028 .97526 .98996 ,99510
18 6 .9098  1.0814 1.4365 1,7801 2,2330 6.6748 7.3562 T.9049  8.4741 8,8680
.00479  .00959 .02489 ,05010 .10165 .90002 .95007 .97517  .98998  ,99510
s
P[S < s]| Nominal levels
N m . 005 .01 .025 .05 .10 .90 .95 .975 .99 .995
18 7 |1l.3622 1.5877 1.9527 2.3670 2.8772 T7.4960 8.1552 8.6915 9.2451 9,6097
.00490  .01006 .02489  ,05028 ,09980 .90001 .95010 97499  .98988  .99510
18 8 |1.8561 2.1055 2.5507 2.9908 3.5680 8.2723 8.9153 9.4221 9.9482 10,2715
.00501  ,01017 .02507 .05000 .09989 .90000 .95048 ~.9748Y4 .98985  ,99500
18 9 [2.4143 2.6972 3.1854 3.6695 4.,2603 9.0461 9.6366 10.1210 10.6092 10.9837
-00502  .01033 .02501  .04982 ,10029 ~.89971 ~ .95019 97499  .98968  ,994g98
19 1 0. .0158 1.6435
.05263 .,15789 .8947Y4
1 2 .0158 0642 .0800  .1643 2.,9810 3.4143 33,7801 4,3495
.01170 .0292%F  .05263 .09357 .8B947h ~.94737 ~.97076 .99415
19 3 .0800 L1442 2285 .3550  .5658 L4,1226 4.6245 5.4120 5.6870 6.1203
.00516  .01032 .02890 .05263 ,09907 .89783 .95356 97317 .98968  .99587
19 4 2443 3550  .5035 .7520 1.0585 5,0694 5.6870 6.1420 7.0555 T7.2040
.00490  .00980 .02399 .0k979 .09907 ~.89809 94840 .97523 .99020 .99536
19 5 .5193 L6784 9416  1.2118 1.5967 5.9428 6.5869 T7.2156 7.7855 8.1938
.00507 -00955 .02503 .05100 .09890 .90050 ,94986 .97523  ,9901l .99475
19 6 .8900 1,0700 1.3918 1,7261 2,2112 6.7880 7.4914 8.0608 38,7225 9.03%96
-00505  .00991 .02503  .04990 .09992 .90004 ,95002 97494 .99005 .99499
19 7 |1.2918 1.5352 1.9219 2,3168 2.8519 7.6389 8.3327 8.9021 9.4787 9.9015
. 00504 .01000 .02507 .05003 .09979 .90004% .94997 .97499 .98998  .99500
19 8 |1.7886 2.0484 2.4986 2,9367 3.5400 8.4422 9.1052 9,632l 10.2439 10,5923
.00500  .0101% .02506  .05011 ~.10000 .90000 ~ .94991 -97515  .99002  .99500
19 9 |2.3234 2.6351 32,1212  3,6138 4.2576 9.2045 9.,8422 10,3815 10.9207 11.2331
-00502  .00997 .02506  ,05008 ,09986 ~.90010 ~.94997 .9749%  .99006 99497
20 .0036 1,7135
.10000 .90000




512

JEROME KLOTZ

TABLE 4 (Concluded)

s
P[S = s] . Nominal levels
N m .005 01 025 .05 +10 .90 .95 .975 .99 .995
20 2 .0072 .0360 .0954  ,1891 33,1444 33,5017 3.9573 4,5376
.00526 .02632 .05263% .10000 ~.90526 .95263 .97368 .994TYL
20 3 .0990 1278  .2215 .356%  .5724% 4,1946 4.7249 5.3052 5.8337  6.2511
.00526 .01228 ,02632 .05088 .10000 .90000 .95263 .Q7544  .98947  .994Th
20 &4 .2539 3421 5418 7291 1.0458 5.1370 5.8373 6.4366 7.1017  T7.4535
.00475  .00970 .02663 .05036 .09887 .89969 .95005 .OT441  ,99030  .99463
20 5 «5399 .6390 .9269 1.2052 1.5973 6.0829 6.7685 7.4310 8.,0566 8.5175
.00516 ,00980 .02516  .05005 .00935 .89990 .95021 .9T74385 .99007 99497
20 6 .8602 1.05%0 1.3985 1.7233 2.21l4 6.9540 7.70l1l 8.2939 8.9572 9.3525
.0050L  .01011 .02482  .05044 .10008 .89990 .94992 .97495  .98996 .99489
20 7 |(1.2700 1.4984 1.9061 2.3036 2.8538 7.8174 8,5606 9.1436 9.7737 10.1955
.0050L  ,00999 .02464  .05003 .09997 .90005 .94992 97500 ,99002  .99502
20 8 |1.75%39 2.0060 2.4731 2.9324 3.5259 8.6506 9.3624 9.9378 10.5647 10.9408
.00503 .00996 .02504%  .04999 .0999% .89996 .95005 .O7404  ,98995  .99500
20 9 |2.2852 2.5859 3.0891 3.5917 4.2359 9.4383 10.126% 10.6880 11.2839 11.6513
.00501  .00998 .02501  .0OL998 .00996 ~.899392 .95030 .9T749T .98995 .99500
20 10 |2.8655 3.2110 3.7519  4.2944 14,9631 10.1930 10.8643 11.4072 11.9482 12.2872
.00502 .00996 ~.02498  ,04999 .09999 .90001 .95001 .97502  .98997  .99498



