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ABSTRACT 

Shah, D. A., and Madden, L. V. 2004. Nonparametric analysis of ordinal 
data in designed factorial experiments. Phytopathology 94:33-43. 

Plant disease severity often is assessed using an ordinal rating scale 
rather than a continuous scale of measurement. Although such data 
usually should be analyzed with nonparametric methods, and not with the 
typical parametric techniques (such as analysis of variance), limitations 
in the statistical methodology available had meant that experimental 
designs generally could not be more complicated than a one-way layout. 
Very recent advancements in the theoretical formulation of hypotheses 
and associated test statistics within a nonparametric framework, together 

with development of software for implementing the methods, have made 
it possible for plant pathologists to analyze properly ordinal data from 
more complicated designs using nonparametric techniques. In this paper, 
we illustrate the nonparametric analysis of ordinal data obtained from 
two-way factorial designs, including a repeated measures design, and 
show how to quantify the effects of experimental factors on ratings 
through estimated relative marginal effects. 

Additional keywords: distribution-free methods, normalized distribution, 
rank-based methods.  

 
Before beginning an experiment, researchers must decide on the 

experimental design, the measurement scale to be used in quanti-
fying the response of individuals to imposed treatments, and 
ideally, the method of analyzing and expressing the obtained data. 
These decisions are interconnected, because the appropriate 
statistical methods for analyzing the data depend on the measure-
ment scale chosen and experimental design (59,60). In fact, the 
chosen design may restrict which analyses are possible, and the 
measurement scale can determine which designs should be used. 
Continuous measurement scales (sometimes called interval or 
ratio scales [23]) are popular among plant pathologists, partly be-
cause this type of scale gives data that can be analyzed fairly 
easily by so-called parametric statistical methods (e.g., analysis of 
variance [ANOVA] and t tests) with few or no imposed limitations 
on the type of experimental design that can be used. 

Nevertheless, plant pathologists face many situations in which 
the use of a continuous scale of measurement is time consuming 
or impractical. Assessing severity of disease for many of the root 
pathogens certainly falls into this category, as does the assessment 
of virus disease severity in many plants (20,46,49). In these and 
similar situations, researchers have often used an ordinal scale of 
measurement (10,21,25,29,42,48,54,56,67). An ordinal scale is 
one in which the values used for the measurement are interpret-
able only in terms of their arrangement in a given order, for 
example, from least to most severe. Therefore, a 0-to-4 scale, in 
which 0 = no disease, 1 = slight, 2 = moderate, 3 = severe, and 4 = 
completely killed, only has meaning within the conceptual in-
terpretation that the disease severity levels have an intrinsic order 

to them. One could just as well use the labels 0 = no disease, 10 = 
slight, 50, = moderate, 100 = severe, and 120 = completely killed. 
Many disease assessment keys are ordinal (27,34,57,61). 

It is easy to see that, with ordinal scales, differences between 
the measured values are not interpretable, at least in a quantitative 
sense. Regardless of the value labels chosen, the difference be-
tween slight and moderate is not necessarily the same as the 
difference between severe and completely killed. Furthermore, 
means (and differences between means) based on these value 
labels cannot be interpreted in the same sense as the means of 
observations measured on a continuous scale. Parametric methods 
of analysis using statistics based on means, or differences between 
means (such as ANOVA), are thus, strictly speaking, inappropriate 
for analyzing data on an ordinal scale, though they are used quite 
often in many disciplines (47). 

The statistical approach for dealing with ordinal data should be 
invariant to the choice of transformation or measurement scale 
used, that is, it should maintain the original order of the values on 
the ordinal scale (2). Analysis based on rank transformations 
meets these criteria. Given an observation (x) in a set of obser-
vations, the rank of x is the number of observations that are less 
than or equal to x. Ranks represent the underlying order of the 
values and are invariant under monotonic transformations. That is, 
if one used values from the 0-to-4 scale or 0-to-120 scale, or the 
square root of the values, the ranking of the observations would 
not change. Differences in ranks are more readily interpretable (if 
the difference in the ranks of two observations is 3, then there are 
exactly two observations between them) than the differences be-
tween ordinal values. The Kruskal-Wallis test (23,37) is a popular 
rank-based statistical method of analysis and is the nonparametric 
equivalent of the one-way ANOVA. The Friedman test (15,23) is a 
rank-based method for a randomized complete block design with 
one experimental factor (plus a blocking factor). 

Although classical rank-based methods have been researched 
and used over a fairly long time, they were generally not satis-
factory beyond the one-way layout for experiments. That is, they 
could not be used for factorials, split plots, nested and repeated 
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measures designs (2,3,16). Moreover, some nonparametric methods 
developed for higher-order layouts were not purely rank-based (7) 
and were not invariant under monotonic transformations. An ap-
parent exception was the rank transform method, in which the 
original observations are replaced by their ranks and the usual 
parametric ANOVA performed on the ranks themselves (31). Sev-
eral criticisms of the rank transform method have been published 
based on theoretical, analytical, and methodological arguments 
(2,7,8,16,58,64,65). First, hypotheses tested in ANOVA are based 
on differences between means (i.e., decomposition of means [or 
mean ranks]), or shifts in the means, which are affected by mono-
tonic transformations of the data. However, rank statistics are 
invariant to monotonic transformation, so it is inappropriate to use 
rank statistics to test hypotheses that depend on the transformation 
(3). Second, ranked data will not be normally distributed, violating 
the standard assumption of normality for the popular parametric 
tests. Third, ranked data generally will have unequal variances (2), 
even if the original data have constant variance, a further and 
serious violation of the assumption of typical parametric tests. 

One simple example is given here of the problems that can 
occur in testing certain hypotheses of interest with the rank trans-
form method. Consider an experiment with two crossed factors, A 
and B, in which both factors affect the expected (mean) response 
(i.e., both main effects are significant), but that the interaction of 
A and B has no effect on the expected response (e.g., that the 
effect of B on the expected value does not depend on the level of 
A). A type I error occurs if a test for interaction is significant in 
this scenario. Blair et al. (8) showed with detailed simulations 
with normally distributed data that there can be a very high type I 
error rate in testing for interactions using the rank transform 
method, and the error rate increases as the magnitude of the main 
effects increases. Furthermore, the error rate increases as sample 
size increases. The type I error rate can well exceed 50%, and 
even approach 100% under many realistic circumstances, indicat-
ing that the test results for interaction are essentially worthless in 
this type of situation (58). 

Research on rank-based methods eventually led to the realiza-
tion that the problem lay in the proper definition of treatment or 
factor effects. With continuous scale data and ANOVA (or t tests), 
effects are straightforward and unambiguous, being defined with 
expected (mean) values (estimated by arithmetic averages or by 
the ANOVA model being used). For a one-way layout, for in-
stance, the null hypothesis being tested is that expected value (µ) 
is the same for all treatments. The effects of the treatments are 
quantified by the differences in estimated µ values. This formu-
lation for treatment effects, unfortunately, does not carry over to 
the nonparametric situation for factorials and other complicated 
experimental designs. However, once a suitable definition of what 
is now called nonparametric effects and hypotheses was estab-
lished in a highly significant paper by Akritas and Arnold (4), a 
unified approach was paved to the analysis of all ordinal data, as 
well as other data that did not meet the assumptions of parametric 
statistical analysis. Much progress was made in the late 1990s on 
the unified theory for rank statistics by E. Brunner and colleagues, 
extending methods of analysis for ordinal data beyond the one-
way layout to factorials, split plots, and repeated measures (i.e., 
data collected over time on experimental units) (5,6,11,13,14,18). 
Many of the advancements are summarized in two recent books 
(12,15) and a recent review (17). 

The nonparametric methodology of Brunner and colleagues 
represents a significant advancement in the statistical analysis of 
ordinal data, because as we have pointed out, the approach is 
generalizable for many experimental designs. Now that statistical 
software is available for performing the calculations, researchers 
outside of statistics can conduct appropriate analysis and interpret 
their results, provided they are taught how to conduct the analysis. 
In this paper, we demonstrate the nonparametric analysis of 
ordinal data from designed experiments using the new rank-based 

methods. We first present the basic concepts behind the analysis, 
using minimal mathematics, and then demonstrate the methodol-
ogy by analyzing published data sets. We first consider a one-way 
layout as a relatively simple situation to introduce and explain 
several relevant concepts. Then, we consider a two-way (crossed) 
layout as well as a repeated measures design and discuss how to 
apply the method to a split-plot design. Finally, we place the non-
parametric analysis presented in this article in a broader statistical 
framework for the analysis of ordinal data. We hope this presen-
tation will show that researchers now have alternatives to ANOVA 
and other parametric methods for analyzing ordinal disease rating 
data.  

ONE-WAY LAYOUT: CONCEPTS AND EXAMPLE 

Nonparametric effects and hypotheses. In the nonparametric 
framework, there are no parameters (such as the mean or variance) 
from distributions (e.g., normal) on which to base treatment 
effects and hypotheses. One approach that is generalizable to 
many situations is to define treatment effects in reference to the 
distributions of the variables measured in the experiment (4,5). 
Suppose we have an experiment with a treatments (i = 1, …, a) 
and ni independent experimental units or replications (k = 1, …, 
ni) per treatment. We place an i subscript on n because each treat-
ment could have a different number of replications. The measure-
ment in the kth replication of treatment i is represented by Xik, 
which is a random variable with normalized distribution Fi(x). For 
instance, the measurement in the third replicate of treatment 2 is 
X23. Lower case x is used to indicate any specific value of the 
random variable X. For data without ties, the distribution (some-
times called the cumulative distribution) is the probability that X 
is less than or equal to a specific value, x. To handle data with or 
without ties, the normalized distribution, Fi(x), is used instead of 
the simpler distribution function (36). The formula for Fi(x) is 
given by Brunner et al. (page 46 of literature citation 12). The 
normalized distribution can represent any type of random variable, 
including continuous and ordinal categories. It is assumed (for 
now) that the Xik values are independent. 

The weighted average of all the Fi(x)s in an experiment, H(x), is 
given by 
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where N is the total number of observations ( �� a
in1 ). Each distri-

bution is multiplied by the number of replications in equation 1, 
so that more weight is given to groups (treatments) with more in-
formation (i.e., independent observations) than groups with less. 
When the number of replications is the same for each treatment, 
then H(x) is a simple average of the normalized distributions. For 
ease of presentation, we generally abbreviate H(x) and Fi(x) as H 
and Fi, respectively. Using H and Fi, we define the so-called 
relative effect for the ith treatment as 

�� ii HdFp  (2) 

in which dFi is the first derivative of Fi. The pi value describes the 
so-called stochastic tendency of Fi with respect to H (17,18). 
Specifically, if pi is >1/2, observations in the ith treatment tend to 
be larger in comparison to an independent random variable that 
has H as its distribution; likewise, if pi is <1/2, observations in the 
ith treatment tend to be smaller. A pi of 1/2 indicates that there is 
no tendency for observations from the ith treatment to be larger or 
smaller in comparison to a random variable with H as its distribu-
tion. Differences in the pi values are used to compare treatments. 

For continuous data, dFi is just the probability density function 
for the ith treatment. With a normal distribution, dFi represents the 
classic bell-shaped Gaussian curve taught in introductory statistics 
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classes. It may be interesting to note that if x is substituted for H 
in equation 2, the expected value (i.e., mean [µi]) for the ith 
treatment is obtained. In one sense, therefore, one can think of the 
relative treatment effect as a generalized expectation or mean. 

The relative treatment effects, pi, are estimated by replacing the 
distribution functions H and Fi by their corresponding empirical 
distributions, Ĥ  and iF̂ . The direct calculations are quite tedious 
for this (pages 45 to 52 in Brunner et al. [12]), although users of 
the methodology do not need to be concerned with this step. It can 
be shown that the estimated relative treatment effect ( ip̂ ) can be 
determined directly from the observation midranks (with mid-
ranks, if there are three tied values, for example, they would all 
have the same rank). For brevity, we generally refer to midranks 
simply as ranks. If Rik is the rank of Xik among all N observations, 
then the mean rank for the ith treatment can be written as 
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The dot subscript indicates that the average over all the repli-
cations for the ith treatment is calculated. The relative treatment 
effect can then be estimated from the mean rank as 
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Thus, there is a straightforward link between the mean ranks used 
in many nonparametric analyses and the relative effects of this 
method. Note that the ranks are not of direct interest here for 
characterizing observations from individual treatments, but are 
used “as a natural and convenient tool for estimating the relative 
treatment effects” (12). The ip̂  has an asymptotic normal distri-
bution (6), but its variance or standard error [se( ip̂ )] when the null 
hypothesis is not true (i.e., when the relative effects are not all 
equal) is a very complicated expression that generally requires 
specialized software to calculate (17). 

To demonstrate some of these concepts, consider the data in 
Figure 1, which corresponds to a simple situation of two treat-
ments (i.e., a = 2) with 15 observations per treatment (i.e., n1 =  
n2 = 15; k = 1, …, 15). The observations (X1k and X2k for treat-
ments 1 and 2, respectively) are shown in the inset box of the 
figure. The normalized distributions were estimated from these 
data using the methods described by Brunner et al. (pages 45 to 47 
in literature citation 12) and shown on the graph. Although the 
methods in this paper are based on the normalized distributions, 
one usually does not need to directly estimate and graph these for 
data analysis purposes; however, their presentation can be useful 
for understanding the concepts behind the analysis. The standard 
distribution and normalized distribution are the same here due to 
the lack of ties in this demonstration data set. Because the values 
of X were generally smaller in treatment 1 than in treatment 2, the 
estimated distribution for the first treatment ( 1̂F ) is to the left of 
the one for the second treatment ( 2̂F ). The estimated weighted 
average distribution ( Ĥ ) at each observed value (at each of the 
2�15 = 30 observations) is estimated directly using the ranks of the 
observations: � � NRXH ikik /2/1)(ˆ

��  (page 50 in Brunner et al. 
[12]). Mean ranks (based on equation 3) were 

�1R = 9.5 and 
�2R = 

21.5. Estimated medians were 3.0 and 5.7 for treatments 1 and 2, 
respectively. Moreover, using equation 4, estimated relative 
treatment effects were 1p̂ = 0.3 and 2p̂ = 0.7. Thus, based on these 
pi estimates, two equivalent statements can be made: (i) observa-
tions from treatment 2 tend to take on larger values in comparison 
to an independent random variable that has H as its distribution; or 
(ii) observations from treatment 2 tend to take on larger values 
compared with observations from both treatments combined. This 
is analogous to the normal-theory-based situation, in which the 
expected (mean) value of treatment 2 is larger than the overall 
mean of the two treatments ( � ). We emphasize here that the esti-
mates of the relative effects are not affected by monotonic trans-

formations of the observations. For example, taking the square 
root or the logarithm of the data in Figure 1 does not change the 
estimates of 1p̂  (=0.3) and 2p̂  (=0.7). 

For the special case of a one-way layout with only two treat-
ments, interpretation of the relative effects can be even more di-
rect. Instead of considering the effects relative to a mean weighted 
distribution (H), one can consider the relative effect of F2 with 
respect to F1 (with p = p2 – p1 + 1/2), essentially ignoring H. Here, 
p is the probability that the response variable from treatment 2 is 
greater than the response variable from treatment 1. Equivalently, 
when p is >1/2, observations from treatment 2 tend to be larger 
(are “tendentiously larger”) than observations from treatment 1 
(12). Graphically, F2 tends to be to the right of F1 (Fig. 1) when p 
is >1/2. If there are no differences in the distributions for the two 
treatments, p2 = p1 = 1/2, which means that p equals 1/2. For the 
example data in Figure 1, p̂ = 0.7 � 0.3 + 0.5 = 0.9, indicating a 
strong tendency for observations in treatment 2 to be larger than 
those in the first treatment and for the F1 curve to be to the left of 
the F2 curve. This is supported by the estimates of the distribution 
functions ( 1̂F , 2̂F ). 

Hypotheses and tests. Statistical hypotheses for treatment 
effects are formulated in terms of the normalized distributions. 
The simplest null hypothesis (H0) is that the treatments have no 
effect at all. This can be written as the null hypothesis ( FH0 ) 

a
F F...FFH ��� 210 :  (5) 

Using the example in Figure 1, the null hypothesis is simply that 
F1 = F2, that is, that the two distributions are the same (overlap 
completely). The data that were used to construct the estimated 
distributions ( 21

ˆ,ˆ FF ) are utilized to test this hypothesis (described 
below). The alternative hypothesis is that at least one of the 
relative treatment effects (pi) is different from the rest. Thus, when 
treatments do not have equal distributions, the treatment differ-
ences are quantified by differences in relative effects. Readers 
experienced in ANOVA will recognize that equation 5 is simply a 
generalization of the usual null hypothesis of a linear-model 

 

Fig. 1. Estimated (normalized) distribution function, also known as the 
empirical distribution function, for two treatments (labeled 1 and 2; thick 
broken lines) and the estimated weighted distribution function (thin solid 
line). The lines are “step-like” in appearance because the estimates were 
determined just for the observed data points, shown in the insert. Data were 
obtained with a random number generator. Estimated relative treatment 
effects ( ip̂ ) are shown in the frame. 
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analysis for normally distributed data that is discussed in intro-
ductory statistics books: 

aH ������
� ...: 210  (6) 

where µi is the mean (expected value) for the ith treatment. The 
null hypothesis of equation 5, however, does not depend on any 
distributional parameters and is applicable for any measurement 
scale of the data. 

Analysis of data is based on the observed ranks, Rik. Because 
the rank is a nonlinear transformation of the data, variances of the 
ranks will generally vary with treatment (2,17). This is a major 
reason why the standard rank transform method of Conover (23) 
and Conover and Iman (24) is generally inappropriate for ana-
lyzing ordinal data (16), as discussed in the introduction. In the 
approach of Brunner et al. (13) and Brunner and Puri (17,18), the 
rank transformation is not regarded as a technique for the deri-
vation of statistics (as it is with the Conover and Iman method 
[24]), but as a property of a statistic that can be useful for compu-
tational purposes (12). Two types of statistics can be used for 
testing the null hypothesis shown in equation 5 (17). The first is 
the so-called Wald-type statistic (WTS), which has, asymp-
totically, a chi-square distribution (with a – 1 degrees of freedom 
[df = a � 1]) under the null hypothesis. However, very large 
sample sizes are needed to achieve a good approximation, and the 
test does not perform well with small or moderate sample sizes 
(6,12,17). The second statistic is known as the so-called ANOVA-
type statistic (ATS), which has, based on asymptotic theory, an 
approximate F distribution (with dfN [numerator] and dfD [de-
nominator] degrees of freedom) under the null hypothesis. The 
approximation—developed by Brunner et al. (11) based on the 
ideas of Box (9)—holds for all but very small sample sizes. 
Degrees of freedom for this statistic are determined from compli-
cated expressions based on the number of treatment levels, num-
ber of observations, and the variance of ranks in each treatment 
(18). The dfD calculation is, essentially, an extension of the 
method used for a two-sample t test when the variances of the two 
samples are not equal, a method taught in introductory statistics 
courses. Often, dfN is somewhat less than a � 1, and dfD is some-
what less than the corresponding value for a one-way ANOVA F 
test on the original data. 

In addition to the tests of the general null hypothesis, other 
contrasts can be tested with WTS and ATS. For instance, the 
difference in normalized distributions between two treatments or 
two groups of treatments (e.g., 1 and 2 versus 3 and 4) can be 
evaluated in terms of their relative treatment effects. An additional 
test statistic, called the linear rank statistic (L) has also been 
derived for testing so-called patterned alternative hypotheses (12). 
For instance, if treatments correspond to increasing inoculum dose 
applied to plants, one can test the alternative hypothesis that there 
is a linear increase in the relative treatment effects of the disease 
rating distributions (relative to the null hypothesis of equation 5). 
The test statistic for patterned alternatives has a standard normal 
distribution under the null hypothesis (equation 5), which is 
approximated by a t distribution at small sample sizes. 

Software. The estimation of nonparametric treatment effects 
and the tests of hypotheses for the approach outlined above 
require the calculation of midranks and the ability to specify 
heteroscedastic variance structures in the model. These can be 
done easily with SAS (SAS Institute, Cary, NC), using PROC 
RANK to first obtain the midranks and then PROC MIXED, with 
appropriate options, to specify the heteroscedastic variance model 
and request the proper test statistics. PROC MIXED is a very 
general procedure for fitting linear mixed models to data, but can 
be used for many specific purposes once the modeling conven-
tions are understood. 

Additionally, Brunner and colleagues have written SAS macros 
to perform the calculations for several different experimental 

designs. The macros are downloadable for free online (available 
on the website of E. Brunner at the University of Göttingen, 
Germany). PROC MIXED cannot be used to calculate standard 
errors for the estimates of the relative treatment effects. However, 
a separate macro can be used to estimate the standard errors. 
Recently, the SAS macros have been converted to run on the R 
statistical program (The R Foundation for Statistical Computing, 
Vienna, Austria) for those who do not have access to SAS. 

Detailed instructions on the use of PROC MIXED and macros 
for the nonparametric analysis, and advice on the interpretation of 
output, are available in electronic format from both authors. 

One-way layout example. We illustrate here how to use SAS 
to analyze data nonparametrically for the one-way layout. Later, 
we show how to analyze data from more complicated designs. 

Verticillium dahliae Kleb. is a soilborne pathogen that infects 
potato (Solanum tuberosum L.), causing potato early dying (PED). 
Omer et al. (52) compared several different isolates of V. dahliae 
based on the severity of PED on potato cv. Superior. Their study 
was done in the greenhouse and was a completely randomized 
design, with isolate as the treatment factor. Severity of foliar 
symptoms was recorded on a 1-to-6 ordinal scale: 1 = no visible 
symptoms, 2 = slight chlorosis of lower leaves, 3 = extensive 
chlorosis of lower leaves, 4 = extensive chlorosis and some 
necrosis of lower and upper leaves, 5 = severe stunting with 
chlorosis and necrosis of entire plants, and 6 = dead or nearly 
dead plants. We examine here a subset of their data from test 1, 
consisting of six V. dahliae isolates from Montana. Isolates were 
either of the 4A or 4B vegetative compatibility groups. There were 
eight replications of each isolate. 

The data set therefore consists of the following variables: 
isolate (six levels), rating (ordinal rating score between 1 and 6), 
and subject (i.e., a unique identifier for each experimental unit; 
this variable is needed when calculating confidence intervals). 
Although data were collected over 6 weeks, we use the data only 
from week three. 

Isolate had a significant effect on the distribution of rating 
values based on the test statistics. The WTS was 135.4 (df = 5), 
which was significant at P < 0.001. The ATS was 10.10 (dfN = 
3.86 and dfD = 30.6), which was also significant at P < 0.001. The 
results for the WTS probably should not be used because of the 
moderate sample sizes (eight replications) here, but are shown for 
comparison. The median disease ratings per isolate ranged from 
1.0 to 3.5, which resulted in ip̂  values ranging from 0.23 to 0.88 
(Table 1). The analysis is based on all the data and not medians, 
but the median does provide one convenient (and traditional) sum-
mary of the central value for each treatment. The meaning of the 

ip̂  values can be put in perspective by considering two of the 
isolates. The value of 0.88 (corresponding to the largest median 
rating) indicates that observations for the first isolate tended to be 
larger than those represented by the weighted mean distribution H. 
The value of 0.23 (corresponding to the smallest median rating) 
indicates that observations for the fifth isolate tended to be smaller 
than observations with H for a distribution. Thus, the first and 
fifth isolates were the farthest apart in terms of estimated rela- 
tive treatment effects. The confidence intervals were calculated 
based on the (estimated) standard error (se) according to the 
method of Brunner et al. (page 60 of literature citation 12). The 
approach is slightly more complicated than simply adding or 
subtracting z�se( ip̂ ), where z is the standard normal variable at the 
specified confidence level, to ip̂ . Corrections are made to ensure 
that the limits of the interval fall between the maximum and 
minimum possible pi values [ni/(2N), 1 – ni/(2N)]. For this data 
set, the range is [8/96, 1�8/96] or [0.083, 0.917]. One can see in 
Table 1, among other things, that there is no overlap of the 
estimated relative treatment effects for the first and fifth isolates. 
The contrast of the two vegetative compatibility groups resulted  
in an ATS of 20.47 (dfN = 1 and dfD = 30.6; P < 0.001), indi- 
cating that there was a significant difference in disease between 
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the two groups. In addition to predetermined contrasts, pairwise 
comparison of relative treatment effects can also be done using t 
tests of ip̂  differences, in which the standard error of the differ-
ence of two estimated relative treatment effects is determined as 
the square root of the sum of the squares of the two individual 
standard errors. 

The analysis of the PED data set also could have been done 
with the Kruskal-Wallis test because there was only one experi-
mental factor. In fact, it should be noted that for the one-way lay-
out, the Kruskal-Wallis test is a special case of the more general 
relative treatment effects test (17), in which the variance of ranks 
(under the null hypothesis) is the same for all levels of the 
treatment, ��0

2 = N(N + 1)/12. Analysis of data from a one-way 
layout serves as a convenient way of introducing the general 
methodology without the complications of multiple factors. 

FACTORIAL EXPERIMENTAL DESIGNS 

Concepts. One can directly generalize the relative treatment 
effect analysis for a single experimental factor to two or more 
factors. The concepts are explained here for the situation with two 
factors, which we label A and B. We suppose that the experiment 
has a levels of factor A (i = 1, …, a) and b levels of factor B (j = 
1, …, b). There are nij experimental units or replications for each 
combination of the levels of A and B, and the index k is used to 
refer to a specific replicate (k = 1, …, nij). The subscript ij is 
placed on n because the number of replications can vary with the 
levels of the experimental factor. For example, if there are five 
field-plot replications corresponding to the first level of A (i = 1) 
and third level of B (j = 2), then n13 equals 5. If a = 4 levels of 
factor A and b = 3 levels of factor B, then there is a total of a × b = 
12 combinations of factor levels (i.e., there are 12 unique ij 
combinations). The measurement in the kth replication of the ij 
factor level combination is represented by Xijk, which is a random 
variable with normalized distribution Fij. Unlike the situation with 
normal data, however, no assumptions are made about the form of 
Fij. The weighted average of all the distributions (i.e., for the total 
of a × b combinations of the two factors) is given by 

� �
� �

�

a

i

b

j
ijijFn

N
H

1 1

1
 (7) 

As with the one-way layout, more weight is given to distri-
butions with more information (i.e., more observations) than to 
distributions with less information. In a similar way, one can 
define the mean (normalized) distribution for the ith level of A 
across the levels of B (

�iF ) and the mean normalized distribution 
for the jth level of B across the levels of A ( jF

�
). These are 

theoretical values and are analogous to the main-effect expected 
(mean) values (e.g., µi� and µ

�j) that one considers in an ANOVA 
for normal data. Direct estimates of Fij, �iF , and jF

�
 can be ob-

tained (pages 45 to 47 in Brunner et al. [12]) but are not generally 
needed for the analysis. 

The relative effect of the ith level of A and jth level of B (i.e., 
the ij combination of the two factor levels) is given by 

�� ijij HdFp  (8) 

The relative effect, pij, known as the relative marginal effect in 
factorials, measures the difference of the distribution for the ijth 
combination (Fij) from the weighted mean distribution. These 
relative effects can be estimated very simply from the observation 
midranks without directly using the estimates of H and Fij (12). If 
Rijk is the rank of Xijk, then one can write the mean rank for a 
specific combination of levels of A and B (e.g., for ij) as 
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As with equation 3, the dot subscript indicates an average over the 
nij replications. The relative effect is then estimated as 
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One can also estimate p for the ith level of factor A across all the 
levels of B and for the jth level of factor B across all the levels  
of A using “main effect” mean ranks [ )2/1)((1ˆ ��

��� ii R/Np ; 
)21)(1(ˆ /R/Np jj ��

���
]. Calculation of the standard error of the 

estimated relative marginal effect, se( ijp̂ ), is quite complicated 
when the null hypothesis is not true, but is easily done with the 
SAS macro (12). 

For two factors, there are three relevant null hypotheses based 
on the normalized distributions, no main effect of A [ )(0 AHF ], no 
main effect of B [ )(0 BHF ], and no interaction of A and B 
[ )(0 ABHF ]. These can be written as 
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for all i = 1, .., a and j = 1, …, b. Note that 
��

F  is simply the mean 
(normalized) distribution across all levels of factors A and B. 
These hypotheses are all straightforward generalizations of the 
ones based on expected values (µi•, µ•j, and µ••) for a two-way 
ANOVA and presented in introductory textbooks on ANOVA and 
experimental design. General interpretation of the hypotheses is 
the same as with ANOVA, except that the response is the (normal-
ized) distribution of the data and not just the expected value. For 
example, an interaction means that the effect of the ith level of A 
on the distribution depends on the level of B, or that the effect of 
the jth level of B depends on the level of A. It should be noted that 

TABLE 1. Median, mean rank, and estimated relative treatment effects ( ip̂ ) for the severity of foliar symptoms on potato caused by Verticillium dahliae
isolatesa 

 Confidence interval (95%) for relative treatment effect 

Isolate 
Vegetative 

compatibility group 
Median  

disease rating 
Mean rank 

(
�iR ) 

Estimated relative 
effect ( ip̂ )b Lower limit Upper limit 

83 4A� 3.5� 42.8� 0.88 (0.019)� 0.82 0.90 
111 4A 2.0 27.8 0.57 (0.051) 0.47 0.66 
120 4A 2.0 21.6 0.44 (0.084) 0.29 0.60 
201 4B 1.5 17.6 0.36 (0.076) 0.23 0.52 
202 4B 1.0 11.6 0.23 (0.050) 0.16� 0.36 
203 4B 2.0 25.7 0.52 (0.066) 0.40 0.65 

a Omer et al. (52). 
b Standard errors (se) are given in brackets after the ip̂  estimates, which were determined based on output of the SAS macro.�In general, if the SAS macro is 

not available, se( ip̂ ) can be roughly approximated by se(
�iR )/N, in which se(

�iR ) is the standard error of the mean rank for the ith isolate (treatment) as 
determined in the MIXED procedure of SAS with the LSMEANS option (SAS Institute, Cary, NC). 
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there may be a significant interaction in terms of distributions 
even when there is no interaction in terms of means (18). 

The main effects and interaction can be tested with both a WTS 
and an ATS, with the latter being preferred for typical sample 
sizes in plant pathology (say, 20 or fewer replications). Moreover, 
various other hypotheses can be tested using contrasts in the same 
way that was done for the one-way layout. Linear rank statistics 
also can be used to test hypotheses with specific patterned alterna-
tives. 

Two-way factorial example. Krause et al. (35) examined the 
suppressive effects of nine different potting mixes (potting mixes = 
1, …, 9; actual descriptions are given in the cited article) on 
Rhizoctonia damping-off of radish seedlings. The mixes had been 
either fortified or not (natural) with a combination of the biocon-
trol organisms Chryseobacterium gleum 299 (C299R2) and Tricho-
derma hamatum 382 (T382). Damping-off severity was determined 
7 days after planting on a 1-to-5 ordinal scale: 1 = symptomless;  
2 = small root or stem lesion; 3 = large root or stem lesion; 4 = 
postemergence damping-off; and 5 = preemergence damping off. 
Ratings were done on each of five pots (consisting of 32 plants 
each) per combination of potting mix and fortification, and there 
were eight separate batches (replications). The different pots 
served as subsamples, and the median rating over the five pots 
was calculated for each mix–fortification–replication combination. 
Brunner et al. (chapter 9 in literature citation 12) gives an alterna-
tive way of dealing with the subsamples. This is a two-factor 
crossed experimental design. 

The median disease ratings, mean ranks, and estimated relative 
marginal effects are shown in Table 2. Ratings ranged from 1.2 up 
to 4.2, and estimated relative effects ranged from 0.14 up to 0.80, 
which clearly varied with potting mix and fortification with bio-
control agents. A quick scan through the ijp̂  values indicates that 
there were some large differences among the potting mixes in 
terms of their suppression of Rhizoctonia damping-off, but maybe 
not overall between fortified and unfortified mixes. 

The test statistics are given in Table 3. Based on the ATS, there 
was a significant effect of potting mix on the suppression of 
damping-off (P < 0.001), but the main effect of mix fortification 
was only marginally significant (P 	 0.06). However, there was a 
significant interaction of potting mix and fortification (P = 0.023), 

indicating that the difference between natural and fortified mixes 
depended on the specific potting mix. Based on the estimated 
relative effects and their standard errors, fortification significantly 
decreased disease in potting mixes 3 and 9 and not the others. 
Contrasts of the mean ranks confirmed that fortification was 
effective in these two mixes. 

The same conclusions would be made in this example using the 
WTS or the ATS (Table 3). It should be noted that when there are 
only two levels of a factor, as with fortification here, the two test 
statistics are the same. The P values can be different, however, 
because a chi-square test is performed with the WTS and an F test 
is performed with the ATS. The main problem with using the 
WTS is that the test statistic is only asymptotically chi-square, 
and studies show that the asymptotic value is not approached 
rapidly with increasing sample size (11,13). Misleading (overly 
small) P values can be obtained at small-to-moderate sample sizes 
when the null hypothesis is actually true (11). The ATS is also 
based on asymptotic theory (11), but studies show the approxi-
mation is very accurate at most typical sample sizes (12). For any 
single data set, the P values for the WTS are smaller than the ATS. 
This can be seen with the test for the interaction of fortification 
and potting mix. Although there was no impact on conclusions 
here, it is very possible to falsely reject the null hypothesis using 
the WTS in borderline cases. For the remainder of the article, we 
refer only to results based on the ATS. 

Repeated measures: concepts. It is common in plant pathol-
ogy to assess disease severity repeatedly over time in the same 
experimental units (30,40,67). The data obtained are often referred 
to as repeated measures or longitudinal data. Experimental designs 
of this type are known as repeated measures designs. In one 
common approach to data analysis, assessment time is considered 
one of the factors in the experiment. However, a consequence of 
this method of data collection is that the data from the same 
experimental unit are correlated, but that data from different 
experimental units can still be assumed to be independent (45). 

We consider only the two-factor situation here, but the approach 
is expandable to multiple factors. Factor A is a treatment-type 
factor (with a levels) that is being investigated, and factor B is the 
time factor (with j = 1, …, b levels). For simplicity, we refer to 
factor A as treatment. Almost all of the presentation on concepts 

TABLE 3. Test statistics for the effects of potting mix and fortification with biological controls on Rhizoctonia damping-off of radish seedlingsa 

 Wald-type statistic  Analysis of variance-type statistic 

Effect dfN dfD Chi-square P value dfN dfD F P value 

Fortification 1 126 3.54 0.060 1.00 89.1 3.54 0.063 
Potting mix  8 126 529.28 <0.001 6.83 89.1 49.26 <0.001 
Fortification × potting mix 8 126 18.84 0.016 6.83 89.1 2.49 0.023 

a Data from Krause et al. (35). dfN = numerator degrees of freedom; and dfD = denominator degrees of freedom. 

TABLE 2. Median, rank, and relative treatment effects for severity rating of Rhizoctonia damping-off of radish seedlings in relation to potting mixes and 
fortification with biological controlsa  

 Median disease rating Mean rank (
�ijR ) Estimated relative treatment effect ( ijp̂ )b 

Potting mix Natural Fortified Natural Fortified Naturalc Fortified 

1 1.2 1.2 21.9 20.6 0.15 (0.030) 0.14 (0.027) 
2 3.6 3.2 95.1 82.6 0.66 (0.049) 0.57 (0.049) 
3 3.5 2.3 93.2 54.4 0.64 (0.076)* 0.37 (0.012) 
4 1.1 1.3 23.4 29.9 0.16 (0.032) 0.20 (0.033) 
5 4.0 4.2 107.9 115.9 0.75 (0.073) 0.80 (0.059) 
6 3.7 3.9 105.6 103.1 0.73 (0.053) 0.71 (0.061) 
7 1.2 1.2 25.3 26.8 0.17 (0.034) 0.18 (0.038) 
8 3.8 3.8 100.8 108.6 0.70 (0.044) 0.75 (0.069) 
9 3.9 3.0 109.4 80.4 0.76 (0.045)* 0.56 (0.057) 

a Data from Table 2 of Krause et al. (35) and description of the potting mixes.  
b Standard errors (se) are given in brackets after the ip̂  estimates, which were determined based on output of the SAS macro. In general, if the macro is not 

available, se( ip̂ ) can be roughly approximated by se(
�iR )/N, in which se(

�iR ) is the standard error of the mean rank for the ith treatment as determined in the 
MIXED procedure of SAS with the LSMEANS option (SAS Institute, Cary, NC). 

c Asterisk indicates that the relative effect is significantly different between natural potting mix and biocontrol-fortified mix (P = 0.05). 
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and methodology for the two-factor crossed design in the previous 
sections applies here and is not repeated. However, because there 
are not separate plots for each assessment time of each treatment, 
but just for treatments, the number of independent replications for 
each treatment is ni (as with the one-way layout), and not nij. 
(Note that Brunner et al. [12] reverses the order of the subscripts 
for repeated measures, using Xikj instead of Xijk). 

Because of the dependencies within an experimental unit (sub-
ject), if j and j
 represent two different times, there is a nonzero 
correlation (or covariance) between measurements at these times 
within replicates (Xijk and Xij�k). The dependencies within experi-
mental units can be directly handled using the relative marginal 
effects analysis. With linear models and normally distributed data, 
certain functional forms (e.g., autoregressive, antedependence) are 
commonly used for the correlation (or covariance) of X between 
times within experimental units (subjects) (59). However, with the 
nonparametric approach, one usually must assume a completely 
arbitrary covariance matrix for characterizing the variances of X at 
each time (at each level of A) as well as the covariances of X 
between all possible pairs of times (within each level of A). This 
is due, in part, to the nonlinear aspect of the rank transformation 
(2). 

Due to the correlations, the statistical methodology of a re-
peated measures analysis is more complicated than a crossed 
factorial. Readers can refer to Wolfinger (66) and Lindsey (38) for 
more general information on this subject. Two features of the non-
parametric analysis are worth pointing out here. First, the esti-
mated relative marginal effects are not unbiased for small or 
moderate sample sizes (for example, less than 10 replications) 
(12). Fortunately, the bias can be estimated and used to make 
corrections. Second, the denominator degrees of freedom (dfD) for 
the ATS equals � for the main effect of B (time) and the A–B 
interaction, rather than a finite number determined for crossed 
factorials. 

Repeated measures: example. We revisit the data collected by 
Omer et al. (52) on PED. The data set examined here is the same 
as in the one-way layout example, but now we consider weekly 
disease assessments made over a 6-week period. So, the data file 
contains variables for isolate, time, rating, and subject (a unique 
identifier for each isolate–replication combination). 

Median disease ratings and the estimated relative treatment 
effects ( ijp̂ ) over time are shown in Figure 2. Disease severity 
increased over the 6-week assessment period for all isolates. Test 
statistics for the overall effects of isolate, time, and the isolate–
time interaction are shown in Table 4. The significant interac- 
tion indicates that the isolates had different disease rating curves 
over time. 

When there are more than two levels of the treatment factor 
(i.e., a > 2), one can test for so-called pairwise interactions. In 
particular, for every pair of treatments, i and i
, the null hypothesis 
is tested that the difference in the (normalized) distributions is the 
same at all times. This can be written as 

���� ��� iijiij
F FFFF ABH :)(0  for j = 1, …, b (12) 

The equation for this hypothesis is just a special case of the third 
part of equation 11 (for interaction) when there are only two levels 
of factor A. A significant test result indicates that the pair of 
disease rating curves is different over time (i.e., that pij � pi�j is not 
constant at all j values). The ATSs for these global pairwise 
comparisons are shown in Table 5. Some profiles were similar 
(e.g., isolates 111 and 120), but many were significantly different 
in this example. 

A question of interest at the start of the study could be whether 
some isolates are more aggressive than others. If so, one possible 
outcome would be disease progress curves which diverge over 
time. This is a more specific alternative hypothesis than the global 
one (tested previously) of any difference in progress curves over 

time. More specific hypotheses (patterned alternatives or inter-
actions) concerning disease progress curves can be tested using 
the methodology of this paper. In this example, we tested the hy-
pothesis that the difference in relative treatment effects between 
pairs of isolates (pij – pi�j) increased linearly with time. The pattern 
is thus summarized as �wj(pij – pi�j), in which wj = 1, 2, 3, 4, 5, 
and 6 are the weight coefficients for each week. 

Test statistics are given in Table 5. P values for this patterned 
alternative test were lower than the P values for the global al-
ternative for pairs of isolates with clearly diverging rating curves 
(e.g., isolate 111 versus 201), indicating the higher power of the 
patterned alternative test when the hypothesized alternative is 
true. On the other hand, for pairs of curves that were well sepa-
rated (and significant based on the global test) but did not diverge 
over time (e.g., isolate 83 versus 201), the P value for the 
patterned alternative test was not significant (Table 5). 

In separate analyses, we found that the marginal effects analysis 
could be use to analyze disease progress curves in field plots with 
as few as four replications (D. A. Shah and L. V. Madden, 
unpublished data). 

Split plot. In a split-plot experimental design, one assigns the a 
levels of the first factor (e.g., factor A) to the larger experimental 
units (whole plots), which are then divided (or split up) into 
smaller units (subplots) to which one randomly assigns the b 
levels of the second factor (e.g., factor B) within each whole plot. 
In other words, the experimental unit for one of the factors (factor 
B) is a subunit of the experimental unit with respect to another 
factor (factor A) (59). 

Fig. 2. A, Median disease ratings and B, estimated relative marginal effects 
( ijp̂ ) for the severity of potato early dying symptoms measured over a 
6-week period (52). The 95% confidence intervals are shown for isolates 83 
and 202 only (to avoid major overlap of intervals).  
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Although a split plot may appear different from the repeated 
measures design, the two have much in common and can be 
analyzed nonparametrically in much the same way. The splitting 
of each experimental unit imposes nonzero correlations (or covari-
ances) between observations within each large experimental unit, 
that is, between Xijk and Xij�k. Although for linear models and 
normally distributed data, the correlations of X for a split plot can 
be assumed to be fixed for all pairs of j and j
 (because the subplot 
factor levels are randomized within the whole-plot units), for the 
nonparametric analysis, the covariance structure could be more 
complicated (3). In particular, the variance at each time for each 
whole-plot factor level could be different. Thus, one can analyze 
data from split plots using the methods and dedicated software 
(macros) for repeated measures or with PROC MIXED of SAS. 
One simply substitutes the subplot factor for the time factor of a 
repeated measures analysis. This approach allows an unspecified 
variance–covariance matrix. Other variance–covariance structures 
could be considered using PROC MIXED of SAS. Using data 
published by Harveson and Rush (30), we have found that the 
nonparametric analysis was effective for testing for whole-plot, 
subplot, and interaction effects, and for comparing estimated 
relative marginal effects for the different factor levels (D. A. Shah 
and L.V. Madden, unpublished data). 

DISCUSSION 

Statisticians and other researchers often fall into two camps in 
terms of how quickly one should abandon parametric (typically, 
normal-distribution-based) methods in favor of nonparametric 
procedures. Researchers in the one camp will argue that the distri-
butional assumptions of ANOVA and related methods can rarely, 
if ever, be achieved, and primarily rely on nonparametric statis-

tical methods. Those in the other camp will point out that ANOVA 
is remarkably robust to moderate (or even greater) violations of 
the assumptions, and routinely use parametric methods. With the 
recent advances in the theory and application of mixed models to 
data analysis (45), even traditional problems such as nonconstant 
variance and complicated correlations of observations can be 
handled in a parametric framework. Moreover, generalized linear 
models (GLMs) and generalized linear mixed models (GLMMs) 
can be used to analyze, parametrically, data with common discrete 
distributions such as the binomial, Poisson, and negative binomial 
(41,44,45,55). 

Parametric statistical methods can be used successfully for a 
wide range of data analysis problems. However, certain data 
measurement classes clearly pose serious problems for parametric 
analyses. Use of ANOVA for ordinal data is problematic, as 
discussed in the introduction. It has been straightforward for dec-
ades to properly test for the effects of treatments on biological re-
sponses using nonparametric methods, but these analyses generally 
were restricted primarily to simple one-way experimental designs 
or randomized complete block designs (with one fixed factor). 

Consequently, researchers in many fields typically do one of 
four things when dealing with factorials. First, they ignore the 
problems of ordinal measurement scales and analyze the data 
using parametric methods. Such an approach has been common in 
the social sciences, where the data often consist of rating scores of 
behavior or conditions or the ordinal preference data of indi-
viduals (e.g., strongly agree versus strongly disagree; worst versus 
best) (28,47). As discussed by Snedecor and Cochran (63), for 
ANOVA to be appropriate for such ordinal (category) data, one 
must assume that the rating values represent equal gradations on 
an underlying (unobserved) scale. This assumption often is diffi-
cult or impossible to verify (59). 

The second approach is to acknowledge the inherent properties 
of ordinal data (either implicitly or explicitly) but perform addi-
tional analyses to determine if the ordinal rating score behaves 
similarly to a continuous scale variable. (Even normality of a 
rating value can be assessed if there are enough observations, 
although the meaning may not be clear [47]). Then ANOVA is 
used on the rating data when such an approach seems reasonable. 
For instance, Lipps and Madden (39) showed that there was a very 
high correlation between a 0 to 10 rating for wheat powdery 
mildew (Table 2 in literature citation 39) and the directly esti-
mated percent disease severity. This is a case where the assump-
tion of equal gradations of an underlying disease severity scale 

TABLE 5. Tests of isolate and time interactions for pairs of isolates (i.e., pairwise comparisons) for potato early dyinga  

 Global alternativesb Patterned alternative interactionc 

Isolate comparison ATS dfN P value L df P value 

111 vs. 120 1.17 2.85 0.318 –0.74 9.63 0.761 
111 vs. 201 3.40 2.79 0.019 3.55 13.52 0.002 
111 vs. 202 11.08 2.59 <0.001 5.95 11.80 <0.001 
111 vs. 203 2.89 2.17 0.051 3.09 13.87 0.004 
111 vs. 83 7.53 2.07 <0.001 –0.59 12.01 0.718 
120 vs. 201 3.51 2.82 0.017 5.78 10.71 <0.001 
120 vs. 202 13.62 3.36 <0.001 7.26 8.08 <0.001 
120 vs. 203 4.61 2.74 0.004 4.55 9.19 <0.001 
120 vs. 83 9.90 2.77 <0.001 0.13 12.34 0.451 
201 vs. 202 5.82 2.73 <0.001 3.67 10.53 0.002 
201 vs. 203 0.93 2.66 0.416 –0.01 12.97 0.503 
201 vs. 83 11.46 2.24 <0.001 –5.06 13.26 1.000 
202 vs. 203 6.14 2.78 <0.001 –3.40 12.48 0.998 
202 vs. 83 25.74 2.66 <0.001 –6.92 9.28 1.000 
203 vs. 83 7.93 2.01 <0.001 –4.14 11.33 0.999 

a Data from test 1 of Omer et al. (52). 
b ATS is the analysis of variance-type statistic (ATS) for the interaction of the two listed isolates and time, which has an approximate F distribution under the 

null hypothesis of no interaction. dfN = numerator degrees of freedom. The denominator degrees of freedom (dfD) is �, and not listed. The alternative 
hypothesis is any type of interaction (i.e., global alternative). 

c L is the test statistic for the patterned interaction of the two listed isolates and time, which has an approximate t distribution under the null hypothesis of no 
interaction; df is the associated estimated degrees of freedom (determined using the formula on page 143 of Brunner et al. [12]). 

TABLE 4. Test statistics for the effects of Verticillium dahliae isolate and 
time after inoculation on the severity of potato early dying symptomsa 

 Analysis of variance-type statistic 

Effect dfN dfD F� P value 

Isolate 4.22 34.13 35.28 <0.001 
Time  3.13 � 457.78� <0.001 
Isolate × time 10.90 � 7.78 <0.001 

a Data from Omer et al. (52). dfN = numerator degrees of freedom; and dfD = 
denominator degrees of freedom. 
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may be warranted. In some instances, considerable effort has been 
invested in relating rating data to continuous scale data (51,62). 
Moreover, researchers sometimes transform rating data to develop 
a disease score (commonly called a disease severity index) that is 
analogous to a continuous scale variable (10,19,30,35) with a 
normal distribution. The transformed ratings are then analyzed 
with ANOVA. These efforts may avoid or circumvent some prob-
lems associated with the parametric analysis of ordinal data. How-
ever, because parametric methods are not scale invariant, inter-
pretation of the results may be ambiguous, especially if the effects 
of the transformation (rating scale compression, elongation, or 
introduction of nonlinearity) are unknown. 

A third possible approach used by researchers is to ignore the 
factorial structure of the experimental design and analyze the data 
as if they originated from a one-way layout (25). For instance, if 
the design was a crossed three-way factorial, with two, three, and 
four levels of factors A, B, and C, then one creates a single 
pseudo-treatment factor () with 2 × 3 × 4 = 24 levels and 
determines the effect of treatment on the response using the 
Kruskal-Wallis (37) procedure or other appropriate approach. 
Such an approach is equivalent to assuming a three-way inter-
action, which may or may not be justified, because there are no 
explicit tests for main effects or any of the interactions. Moreover, 
this approach cannot be used for split plots or repeated measures 
because the correlations of observations are not accounted for. 

The fourth approach consists of ranking the data and then 
simply using ANOVA on the rank-transformed data. This rank 
transform method (23,24) is common in some fields (58) and has 
been advocated by some statisticians (24) as a nonparametric 
method. The statistical problems with this approach were summar-
ized in the introduction and are considered in detail elsewhere 
(2,7,8,16,64,65). The statistical evidence is now strong that the 
rank transform method should not be used as a general method of 
data analysis because of incorrect results for tests of many dif-
ferent hypotheses of interest regarding the means with factorial 
designs. 

With the recent advances in the theory and application of rela-
tive marginal effects and hypothesis testing of distribution func-
tions for factorial layouts (4–6,12,13,17,18), researchers now have 
some useful and statistically sound nonparametric alternatives to 
the less-than-desirable methods described previously for analyzing 
ordinal data. Although parametric approaches certainly offer the 
most flexibility in analyzing data from the full range of experi-
mental designs, as demonstrated here, factorials, split plots, and 
repeated measures can all be analyzed appropriately in a nonpara-
metric framework with disease rating and other ordinal-scale data 
(12,17). In fact, the approach can also be taken for continuous data 
in which the distributional assumptions of parametric analysis are 
not justified. The new nonparametric analyses can be done using 
commercially available software from SAS and using free macros 
for the SAS and R statistical systems. Main effects, interactions, 
and other contrasts can be tested with WTS or ATS of the ranks, 
the latter being preferred for the typical number of replications in 
most studies. Contrasts can be constructed for testing meaningful 
hypotheses, with either so-called patterned alternatives or global 
alternatives (Table 5). Main effects and their interactions can be 
quantified by estimated relative marginal effects, ijp̂ , and the 
(estimated) standard errors of ijp̂ , which are directly related to the 
ranks of the observations. As stated by Brunner et al. (12) in a 
repeated-measures context, “not only are these relative effects 
independent of the specific choice of the grading [rating] scale, … 
but they also allow smaller tendencies in the time curves to be 
depicted.” 

A desirable property of ANOVA, if assumptions are (reason-
ably) met, is that the procedure can be used for very small number 
of replications (e.g., three), although the power of the tests and the 
precision of the parameter estimates (i.e., standard error of ex-
pected values for each treatment level) increases dramatically with 

increasing number of replications. Asymptotic theory is used with 
the nonparametric marginal effects approach to derive the Wald- 
and ANOVA-type test statistics (WTS and ATS) and determine the 
distribution of the estimated relative effects when the null hy-
pothesis is not true (18). However, the approach using the ATS 
works well with moderate or even small sample sizes (14,26). 
Moreover, Brunner et al. (11) have shown that the power of the 
marginal effects analysis is high under many circumstances and is 
similar to ANOVA for normally distributed data. Brunner and col-
leagues do recommend more than the three replications that are 
often used in agricultural experiments (13); however, a large 
number of replications will not always be practical. In preliminary 
numerical studies, we found that the approximation of the ATS 
with an F statistic is reasonable even with as few as four repli-
cations (L. V. Madden, unpublished data). If one has the choice 
between a large number of replications of small size or a small 
number of replications of large size (i.e., with many subsamples), 
then the former is preferred for the nonparametric analysis. The 
exception would be if plot size directly determines the results 
(20,40) because of, for example, disease spread within and be-
tween plots. In this case, finding a way to use a continuous scale 
for assessing disease would be preferable. 

Although this article argues heavily in favor of using the mar-
ginal effects analysis (12,17), there are some valuable alternatives 
when the original data are ordinal in scale. Under some circum-
stances, it is useful to use randomization and resampling methods 
to test hypotheses about the effects of factors (43), although we 
find these methods to be of most use, both in terms of inter-
pretation of results and in carrying out the analysis, when there are 
only a (relatively) small number of factors and levels to the factors 
(L. V. Madden and D. A. Shah, unpublished data). It should be 
pointed out that some randomization and resampling methods still 
treat data as continuous rather than ordinal. If the ordered values 
are recorded on an integer scale, one can determine the proportion 
of observations greater than (or less than) a specific integer. For 
instance, with a 1-to-4 scale, one could define the variable y as 1 
if the rating is >2, and 0 otherwise. The fraction of individuals 
across the replications with y = 1 is then an indication of the 
severity of the disease for the population. If there is one obser-
vation per combination of factor levels and replications, the new 
variable is binary (either 0 or 1), and GLMs (e.g., logistic model 
analysis) can be used to test for main effect and interactions (22). 
If there are subsamples for each combination of factor level and 
replication, then the proportion y/n (with n = number of sub-
samples) can be analyzed with GLMs, GLMMs, or with ANOVA 
after suitable transformation of the proportions (32,33,41,55,68). 
In fact, Krause et al. (35) took this approach, in part, in analyzing 
their rating data. The approach can be extended to encompass the 
entire range of rating categories and analyzed with ordered 
logistic models (1,59). However, it may be difficult to fit ordered 
logistic models to data without a large number of replications if 
there are many different rating categories, many levels of the ex-
perimental factors, or many different factors. Nevertheless, con-
siderable progress is being made in this area of data analysis (1) 
that will be of direct value to plant pathologists. 

Continuous scale data are very useful for developing functional 
relationships between disease intensity and time, space, and other 
variables, based on our understanding of the biological mecha-
nisms and (current and past) empirical evidence (20). The mar-
ginal effects nonparametric analysis discussed here does allow for 
some quantification of trends of ordinal data over time or space 
through an analysis and comparison of the estimated relative mar-
ginal effects. With proper choice of contrasts, with or without the 
use of patterned alternative hypotheses, relatively sophisticated 
analysis of disease increase in time and spread in space can be 
accomplished. Nevertheless, the approach does not fully permit 
the determination of a functional relationship between disease in-
tensity and the variables of interest. This is a limitation of ordinal 
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data, not of the statistical methods discussed. Thus, continuous-
scale measurements of disease are advantageous for many quanti-
tative epidemiological studies. Conversely, continuous-scale meas-
urements of disease are only useful if severity can be determined 
accurately and reliably (50,53). Ordinal measurements are bene-
ficial for diseases that are difficult to measure quantitatively (such 
as those caused by soilborne pathogens and by viruses). For these 
situations, the approach discussed in this paper will be advan-
tageous.  
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