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THE EFFECTS OF VIOLATIONS OF ASSUMPTIONS
UNDERLYING THE ¢ TEST!
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As psychologists who perform in
a research capacity are well aware,
psychological data too frequently
have an exasperating tendency to
manifest themselves in a form which
violates one or more of the assump-
tions underlying the usual statistical
tests of significance. Faced with the
problem of analyzing such data, the
researcher usually attempts to trans-
form them in such a way that the
assumptions are tenable, or he may
look elsewhere for a statistical test,
The latter alternative has become
popular because of the proliferation
of the so-called nonparametric or
distribution-free methods.  These
techniques quite generally, however,
couple their freedom from restricting
assumptions with a disdain for much
of the information contained within
the data. For example, by classifying
scores into groups above and below
the median one ignores the fact that
there are intracategory differences
between the individual scores. As a
result, tests which make no assump-
tions about the distribution from
which one is sampling will tend not
to reject the null hypothesis when it
is actually false as often as will those
tests which do make assumptions.
This lack of power of the nonpara-

1 This project was undertaken while the
author was a Public Health Service Research
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tions involved in this study were performed in
the Duke University Digital Computing Lab-
oratory which is supported in part by Na-
tional Science Foundation Grant G-6694,
The author wishes to express his appreciation
to Thomas M. Gallie, Director of the Labora-
tory, for his cooperation and assistance,

metric tests is a decided handicap
when, as is frequently the case in
psychological research, a modicum
of reinforcement in the form of an
occasional significant result is re-
quired to maintain the research re-
sponse,

Confronted with this discouraging
prospect and a perhaps equally dis-
couraging one of laboriously trans-
forming data, performing related
tests, and then perhaps having diffi-
culty in interpreting results, the re-
searcher is often tempted simply to
ignore such considerations and go
ahead and run a ¢ test or analysis of
variance. In most cases, he is de-
terred by the feeling that such a
procedure will not solve the problem.
If a significant result is forthcoming,
is it due to differences between means,
or is it due to the violation of assump-
tions? The latter possibility is usually
sufficient to preclude the use of the
tor Ftest,

It might be suspected that one
could finesse the whole problem of
untenable assumptions by better
planning of the experiment or by a
more judicious choice of wvariables,
but this may not always be the case.
Let us examine the assumptions more
closely. It will be recalled that both
the ¢ test and the closely related F
test of analysis of variance are pre-
dicated on sampling from a normal
distribution. A second assumption
required by the derivations is that
the variances of the distributions
from which the samples have been
taken is the same (assumption of
homogeneity of variance), Thirdly,
it is necessary that scores used in
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the test exhibit independent errors.
The third assumption is usually not
restrictive since the researcher can
readily conduct most psychological
research so that this requirement is
satisfied. The first two assumptions
depend for their reasonableness in
part upon the vagaries inherent in
empirical data and the chance shape
of the sampling distribution. Certain
situations also arise frequently which
tend to produce results having in-
trinsic non-normality or heterogene-
ity of variance, For example, early
in a paired-associate learning task,
before much learning has taken place,
the modal number of responses for a
group will be close to zero and any
deviations will be in an upward direc-
tion. The distribution of responses
will be skewed and will have a small
variance. With a medium number
of trials, scores will tend to be spread
over the whole possible range with a
mode at the center, a more nearly
normal distribution than before, but
with greater variance. When the
task has been learned by most of the
group, the distribution will be skewed
downward and with smaller variance.
In this particular case, one would
probably more closely approximate
normality and homogeneity in the
data by using some other measure,
perhaps number of trials for mastery.
In many situations this option may
not be present.,

There is, however, evidence that
the ordinary ¢ and F tests are nearly
immune to violation of assumptions
or can easily be made so if precau-
tions are tdken (Pearson, 1931; Bart-
lett, 1935; Welch, 1937; Daniels,
1938; Quensel, 1947; Gayen, 1950a,
1950b; David & Johnson, 1951; Hor-
snell, 1953; Box, 1954a, 1954b; Box
& Anderson, 1955). Journeyman
psychologists have been apprised of
this possibility by Lindquist (1953)
who summarizes the results of a

study by Norton (1951). Norton's
technique was to obtain samples of
Fs by means of a random sampling
procedure from distributions having
the same mean but which violated
the assumptions of normality and
homogeneity of variance in prede-
termined fashions. As a measure of
the effect of the violations, Norton
determined the obtained percentage
of sample Fs which exceeded the the-
oretical 5% and 19, values from the
F tables for various conditions. If
the null hypothesis is true, and if the
assumptions are met, the theoretical
values are F values which would be
exceeded by chance exactly 5% or
19, of the time. The discrepancy be-
tween these expected percentages and
the obtained percentages is one use-
ful measure of the effects of the viola-
tions,

Norton's results may be summa-
rized briefly as follows: (¢) When the
samples all came from the same
population, the shape of the distribu-
tion had very little effect on the per-
centage of F ratios exceeding the
theoretical limits. For example, for
the 59, level, the percentages ex-
ceeding the theoretical limits were
7.839%, for a leptokurtic population
asoneextreme discrepancy and 4.76%,
for an extremely skewed distribution
as another. (b) For sampling from
populations having the same shape
but different wvariances, or having
different shapes but the same vari-
ance, there was little effect on the
empirical percentage exceeding the-
oretical limits, the average being be-
tween 6.59, and 7.09%,. (c) For sam-
pling from populations with different
shapes and heterogeneous variances,
a serious discrepancy between theo-
retical and obtained percentages oc-
curred in some instances. On the
basis of these results, Lindquist (1953
p. 86) concluded that ‘‘unless the
heterogeneity of either form or vari-
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ance is so extreme as to be readily
apparent upon inspection of the data,
the effect upon the F distribution will
probably be negligible.”

This conclusion has apparently had
surprisingly little effect upon the
statistical habits of research workers
(or perhaps editors) as is evident
from the increasing reliance upon the
less powerful nonparametric tech-
niques in published reports. The
purpose of this paper is to expound
further the invulnerability of the ¢
test and its next of kin the F test to
ordinary onslaughts stemming from
violation of the assumptions of nor-
mality and homogeneity. In part,
this will be done by reporting results
of a study conducted by the author
dealing with the effect on the ¢ test
of violation of assumptions. In addi-
tion, supporting evidence from a
mathematical framework will be used
to bolster the argument,

To temper any imputed dogmatism
in the foregoing, it should be empha-
sized that there are certain restric-
tions which preclude an automatic
utilization of the ¢ and F tests with-
out regard for assumptions even when
these tests are otherwise applicable.
It is apparent, for example, that the
violation of the homogeneity of vari-
ance assumption is drastically dis-
turbing to the distribution of ¢'s and
Fs if the sample sizes are not the same
for all groups, a possibility which was
not considered in the Norton study.
It also seems clear that in cases of
extreme violations, one must have a
sample size large enough to allow
the statistical effects of averaging
to come into play. The need for such
considerations will be made apparent
in the ensuing discussion. There is
abundant evidence, however, that
both the ¢ and the F tests are much
less affected by extreme violations
of the assumptions than has been
generally realized.

A SAMPLING EXPERIMENT

At this point we will concern our-
selves with the statement of the
results of a random sampling study.
The procedure is one of computing a
large number of ¢ values, each based
upon samples drawn at random from
distributions having specified char-
acteristics, and constructing a fre-
quency distribution of the obtained
t's. The present study was performed
on the IBM 650 Electronic Com-
puter programmed to perform the
necessary operations which can be
summarized as follows: (a) the gener-
ation of a random number, (4) the
transformation of the random num-
ber into a random deviate from the
appropriate distribution, (¢) the suc-
cessive accumulation of the sums and
sums of squares of the random devi-
ates until the appropriate sample size
is reached, (d) the computation of a
¢ based upon the sums and sums of
squares of the two samples, (¢) the
sorting of the #'s on the basis of size
and sign and the construction of a
frequency distribution based upon
the sorting operation. The complete
sequence of operations was performed
internally, the end result, the fre-
quency distribution of 1000 #'s, being
punched out on IBM cards.

Comments on many of the above
operations are relevant and will be
made according to their order above.

(@) The random numbers con-
sisted of 10 digits, the middle 10
digits of the product of the previously
generated random number and of one
of a sequence of 10 permutations of
the 10 digits (0, 1, 2, - - -, 9) placed
as multipliers in the machine. To
start the process it was necessary to
place in the machine a 10 digit ran-
dom number selected from a table of
random numbers. The randomness
of numbers generated in such a
fashion was checked by sorting 5000
of them into 50 categories on the
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basis of the first 2 digits. A x? was
computed to determine the fit of the
obtained distribution to a theoretical
one consisting of 100 scores in each
of the 50 categories. The obtained x?
of 47.83 is extremely close to the
49.332 value, which is the theoretical
median of the x? distribution with
50 degrees of freedom.

(6) In order to obtain the random
deviates (the individual random
scores from the appropriate popula-
tion), the random numbers obtained
in the above fashion were considered
to be numbers between 0 and 1 and
interpreted as the cumulative prob-
ability for a particular score from the
prescribed population. From a table
entered in the machine, a random
deviate having that probability was
selected. This is identical with the
procedure one uses in entering the
ordinary 2z table to determine the
score below which, say, 97.5% of
the scores in the distribution lie. The
obtained value, 1.96, is the deviate
corresponding to that cumulative
percentage. The distribution of such

in the computer and were so arranged
that the mean of each distribution
was 0 and the variance 1. To verify
these values, population means and
variances based on samples of 5000
deviates from each of the three popu-
lations were estimated by the usual
formulas. The results were for the
normal distribution a sample mean
of .0024 and a variance of 1.0118,
for the exponential a mean of .0128
and a variance of 1.0475, and for the
rectangular a mean of —.0115 and a
variance of 9812, All of these results
could quite easily have arisen from
random sampling from distributions
having the assumed characteristics.
To change the size of the variance of
the population, all deviates were
multiplied when necessary by a con-
stant, in this case, the number 2. The
resulting distribution has a mean of
0 and variance of 4. The only vari-
ances used in this study were 1 and 4.

(¢) The sample sizes selected were
S and 185.

(d) The formula used for the com-
putation of ¢ was the following:

Mi—M,

I=

/‘/ ZX 32~ NiME+2X2— N Mo?
Ni+N;—2

deviates from a normal population
obtained by using a large random
sample of probabilities is normally
distributed. Similar tables can be
constructed for other populations.
The populations selected for this
study were the normal, the expo-
nential (J-shaped with a skew to the
right) having a density function of
y=¢"% and the rectangular or uni-
form distribution. These distribu-
tions represent extremes of skewness
and flatness to compare with the
normal. The tables of deviates cor-
responding to each of the selected dis-
tributions were contained internally

()

N N,

where M; and M, are the means of
the first and second samples and N
and N, are the respective sample
sizes. This expression, or an equiva-
lent statement of it, is found in any
statistics book and is undoubtedly
employed in a preponderance of the
research in which a ¢ test involving
nonrelated means is used. As pointed
out in most statistic texts, this test
is not appropriate when variances
are different. Tests are available
which are more or less legitimate un-
der these conditions, but a certain
amount of approximation is involved
in them. It was felt, however, that
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the ordinary ¢ test might under some
conditions be as good an approxima-
tion as the more complex forms of ¢
tests and that a verification of this
notion was desirable. In addition,
the above formula makes use of a
pooled estimate of variance for the
error term and in this respect is simi-
lar to the F test of analysis of vari-
ance. Because of this fact, certain
results can be generalized from the ¢
to the F test.

To summarize, random samples
were drawn from populations which
were either normal, rectangular, or
exponential with means equal to 0
and variances of 1 or 4, For several
combinations of forms and variances,
t tests of the significance of the differ-
ence between sample means were
computed using combinations of the
sample sizes 5 and 15. For each of
these combinations, frequency dis-
tributions of sample #'s were obtained
on the IBM 650 Electronic Com-
puter.

REesuLTts

The results of the sampling study
will be presented in part as a series
of frequency distributions in the form
of bar graphs of the obtained distri-
tribution of #'s for a particular condi-
dition. Upon these have been super-
imposed the theoretical ¢ distribution
curve for the appropriate degrees of
freedom. This furnishes a rapid com-
parison of the extent to which the em-
pirical distribution conforms to the
theoretical.

First we shall consider those combi-
nations possible when both of the
samples are from normal distribu-
tions but variances and sample sizes
may vary. Next will be considered
the results of sampling from non-
normal distributions, but both sam-
ples are from the same type of dis-
tribution. Finally we deal with the
results of sampling from two differ-

ent kinds of populations, for example,
one sample from the normal distri-
bution, and another from the ex-
ponential.

Potentially, a very large number of
such combinations are possible. Limi-
tations of the time available on the
computer necessitated a paring down
to a reasonable number. Although
the computer is relatively fast when
optimally programmed, it neverthe-
less required almost an hour, on the
average, to complete a frequency
distribution of 1000 #'s. The combi-
nations presented here are those
which seemed most important at the
time the study was made.

As a measure of the effect of viola-
tion of assumptions, the percentage of
obtained #'s which exceed the theoret-
ical values delineating the middle
959, of the ¢ distribution is used. For
8, 18, and 28 df which arise in the
present study, the corresponding
values are respectively +2.262,
42,101, and +2.048., If the as-
sumptions are met, and if the null
hypothesis of equality of means is
true, 5%, of the obtained #'s should
fall outside these limits. The differ-
ence between this nominal value and
the actual value obtained by sam-
pling should be a useful measure of the
degree to which violation of as-
sumptions changes the distribution
of ¢ scores. There is, of course, a ran-
dom quality to the obtained percent-
age of £'s falling outside the theoretical
limits. Hence, the obtained value
should be looked upon as an approxi-
mation to the true value which
should lie nearby.

In the figures and in the text, the
various combinations of population,
variance, and sample size will be
represented symbolically in the fol-
lowing form: E(0, 1)5-N(0, 4)15.
Here the letters E, N, and R refer to
the population from which the sam-
ple was drawn, E for exponential-
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F16. 1. Empirical distribution of #'s from
N, 1)5-N(0, 1)5 and theoretical distribu-
tion with 8 df.

N for normal, and R for rectangular,
The first number in the parenthesis is
the mean of the population distribu-
tion, in all cases zero, while the
second number is the variance. The
number following the parenthesis is
the sample size for that particular
sample. In the example above, the
first sample is of Size 5 from an ex-
ponential distribution having a vari-
ance of 1. The second sample is from
a normal distribution with variance
of 4 and the sample size is 15.

Sampling from Normal Distributions

In order to justify the random
sampling approach utilized in this
study, and partly to confirm the
faith placed in the tabled wvalues of
the mathematical statisticians, the
initial comparisons are between the
theoretical distributions and the ob-
tained distributions with assumptions
inviolate, Figures 1 and 2 exhibit
the empirical distributions of ¢'s when
both samples are taken from the same
normal distribution with zero mean
and unit variance—designated N(0,
1). In Fig, 1 both samples are of
Size 5, while both are 15 in Fig. 2.
The theoretical curves, one for 8 df,
the other for 28, represent quite well
the obtained distributions. Ordi-
nates approximately two units from
the mean of the theoretical distribu-
tions mark off the respective 5% lim-
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its for rejecting the null hypothesis.
In Fig. 1,2 5.39, of the obtained #'s
fall outside these bounds, while in
Fig. 2 only 4.09, of the sample !'s
are in excess. Since in both cases
the expected value is exactly 5%, we
must attribute the discrepancy to
random sampling fluctuations. The
size of these discrepancies should be
useful measures in evaluating the
discrepancies which will be encoun-
tered under other conditions of sam-
pling. For examples of 2000 ¢'s a dis-
crepancy as large as 19, from the
nominal 5%, value evidently occurs
frequently, and for this reason should
not be considered as evidence to re-
ject the theoretical distribution as an
approximation to the empirical one.

As an initial departure from the
simplest cases just presented, Fig. 3
compares theoretical and empirical
distributions when samples are taken
from the same N(0, 1) population,
but the first sample size is 5, the sec-
ond is 15—that is, N(0, 1)5-N(0, 1)13.
While this in no sense is a violation
of the assumptions of the ¢ test, it is
interesting to note that again sam-
pling fluctuations have produced an
empirical distribution with 4.09, of
the #'s falling outside the nominal 5%
limits.

? The numbers in the tails of some of the
figures report the number of obtained ¢'s fall-
ing outside the boundaries.
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F1c. 2. Empirical distribution of #'s from
N(0, 1)15-N(0, 1)15 and theoretical distribu-
tion with 28 df.




VIOLATIONS OF ASSUMPTIONS UNDERLYING THE ¢t TEST

The violation of the assumption of
homogeneity of variance has effects as
depicted in Fig, 4. Here the ob-
tained distribution is based upon
two samples of Size 5, one from
N(0, 1) and the other from N(0, 4).
The fit is again seen to be close be-
tween theoretical and empirical dis-
tributions, and 6.49, of the obtained
's exceed the theoretical 59, limits.
By increasing the sample size to 15,
a distribution results (not shown here)
for which only 4.99, of the t's fall
outside the nominal limits. It would
seem that increasing the sample size
produces a distribution which con-
forms rather closely to the ¢ distri-
bution. As will be seen later, thisisa
quite general result based upon
mathematical considerations, the im-
plications of which are important to
the argument. For the moment it is
evident that differences in variance
at least in the ratio of 1 to 4 do not
seriously affect the accuracy of prob-
ability statements made on the basis
of the £ test.

This last conclusion is true only so
long as the size of both samples is the
same, If the variances are different,
with the present set of conditions
there are two combinations of vari-
ance and sample size possible. In
one-case the- first sample may be of
Size 5 and drawn from the popula-
tion with the smaller variance, while
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F1G. 4. Empirical distribution of #s from
N, 1)5-N(0, 4)5 and theoretical distribu-
tion with 8 df.

the second sample of Size 15 is
drawn from the population having
the larger variance—N(0, 1)5-N(0,
4)15. In the second case the small
sample size is coupled with the larger
variance, the larger sample size with
the smaller variance—N(0, 4)5-N(0,
1)15. The respective results of such
sampling are presented in Fig, 5 and
6. The empirical distributions are
clearly not approximated by the ¢
distribution. For the distribution
of Fig. 5, only 1% of the obtained
t's exceed the nominal 5%, values,
while in Fig. 6, 169, of the {'s fall
outside those limits,

There are good mathematical rea-
sons why a difference in sample size
should produce such decided dis-
crepancies when the variances are un-
equal, Recall that Z2(X — M)?/(N—1)
is an estimate of the variance of the
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F1G. 3, Empmcal distribution of #'s from

N(O, 1)5-N(0, 1)15 and theoretical dlstnbu-J

tion with 18 df.
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FIG 5. Empirical distribution of #'s from
N(0, 1)5-N(0, 4)15 and theoretical distribu-
tion with 18 df. -
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F16. 6. Empirical distribution of #'s from
(N(0, 4)5-N(0, 1)15 and theoretical distribu-
tion with 18 df.

population from which the sample is
drawn. Hence, 2(X — M)? will in the
long run be equal to (N—1)o?. The
formula used in this study for com-
puting ¢ makes use of this fact and,
in addition, under the assumption
that the variances of the populations
from which the two samples are
drawn are equal, pools the sum of the
squared deviations from the respec-
tive sample means to get a better
estimate, That is Z(X1—M;)?
+2Z(X2—Mj)* is an estimate of
(N1—1)0'12+(N2'—1)0'22. If 0'12=0'22
=¢? (homogeneity of variance), then
the sums estimate (Ni+N:—2)a2,
Hence,

Z(X1— My)*+2(Xo— My)?
Ni+Nz—2

(1]

is an estimate of o2 If o1257%0a,? the
estimating procedure is patently il-
legitimate, the resulting value de-
pending in a large measure upon the
combination of sample size and vari-
ance used. For example, the case
N(0,1)5-N(0,4)15has N1 =35, N;=15,
0'12=1, 0'22-':4, and N1+N2‘—2=18.
With these values, Formula 1 has
an expected value of [(4:1)4(14-4)]
/18=3.33, Using the appropriate
values for the other situation, N(0,
4)5-N(0, 1)15, the result of formula
1is [(4-4)+(14-1)]/18=1.67. This
means that on the average, the de-

nominator for the ¢ test will be larger
for the first case than for the second.
If the sample differences between
means were of the same magnitude
for the two cases, obviously more
“significant” #'s would emerge when
the denominator is smaller. It so
happens that when this latter condi-
tion exists, the variance of the numer-
ator also tends to be greater than
in the other condition, a fact which
accentuates the differences between
the two empirical distributions.

Welch (1937) has shown mathe-
matically that in the case of sample
sizes of 5 and 15, a state which pre-
vails here, the percentage of t's ex-
ceeding the nominal 59, value varies
as a function of the ratio of the two
population variances and can be as
low as 09 and as high as 31.3%.
If Ny=N, there is never much bias,
except perhaps in the case in which
the sample sizes are both 2. For
Ni=N;=10, the expected value of
the percentage of f's exceeding the
nominal 5%, limits varies between 5%
and 6.59), regardless of the difference
between the variances. . For larger
sample sizes, the discrepancy tends
to be even less.

Since the pooling procedure for esti-
mating the population variance is
used in ordinary analysis of variance
techniques, it would seem that the
combination of unequal variances and
unequal sample sizes might play
havoc with F test probability state-
ments. That is, a combination of
large variance and large sample size
should tend to make the F test more
conservative than the nominal value
would lead one to expect, and, as
with the ¢ test, small variance and
large sample size should produce a
higher percentage of ‘‘significant’
Fs than expected. These conclusions
are based upon a very simple exten-
sion to more than two samples of the
explanation for the behavior of the
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¢ test probabilities with unequal sam-
ple sizes.

A more sophisticated mathematical
handling of the problem by Box
(1954a) reaches much the same con-
clusions for the simple-randomized
analysis of variance. In a table in his
article are given exact (i.e., mathe-
matically determined) probabilities
of exceeding the 59, point when vari-
ances are unequal. In this case,
sampling is assumed to be from nor-
mal distributions. If the sample
sizes are the same, the probability
given for equal sample sizes range
from 5.559, to 7.42%,, for several
combinations of variances, and num-
bers of samples. If, when variances
are different, the samples are of differ-
ent sizes, large discrepancies from
the nominal values result. Combining
large sample and large variance less-
ens the probability of obtaining a
“significant” result to much less than
5%, just as we have seen for the ¢
test. In a subsequent article, Box
(1954b) presents some results from
two-way analysis of variance. Since
these designs generally have equal
cell frequencies the results are not
too far from expected, His figures
all run within 29, of the 5%, value
expected if all assumptions were met.

It would seem then that both em-
pirically and mathematically there
can be demonstrated only a minor
effect on the validity of probability
statements caused by heterogeneity
of variance, provided the sizes of the
samples are the same. This applies
to the F as well as the ¢ test. If how-
ever, the sample sizes are different,
major errors in interpretation may re-
sult if normal curve thinking is used.

Sampling from Identical Non-Normal
Distributions: (Equal Variances)

Let us now proceed to violate the
other main assumption, that of nor-
mality of distribution from which
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sampling takes place. At this time
we will consider the ¢ distributions
arising when both samples are taken
from the same non-normal distribu-
tion. The distributions shown here,
and all subsequent ones, are based
upon only 1000 ¢'s, and hence will
exhibit somewhat more column to
column fluctuation than the preced-
ing distributions.

Figure 7 compares the theoretical
¢ distribution and the empirical dis-
tribution obtained from two samples
of Size 5 from the exponential distri-
bution—E(0, 1)5-E(0, 1)5. The fit
is fairly close, but the proportion of
cases in the tails seems less for the
empirical distribution than for the
theoretical, By count, 3.1% of the
obtained #'s exceed the nominal 59
values—that is, the test in this case
seems slightly conservative. If both
sample sizes are raised to 15 (distri-
bution not shown here), the corre-
sponding percentage of obtained #'s is
4.0%. While this is probably not an
appreciably better fit than for sam-
ples of Size 5, we shall see later that
there are theoretical reasons to sus-
pect that increasing the sample size
should better the approximation of
the empirical curve by the theoretical
no matter what the parent popula-
tion may be.

If both samples are of Size 5 from
the same rectangular distribution—
R(0, 1)5-R(0, 1)5—the result is as

VALUE OF t

F1G6. 7. Empirical distribution of #s from
E(0, 1)5-E(0, 1)5 and theoretical distribu-
tion with 8 df.
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depicted in Fig. 8. The fit of theoreti-
cal curve to empirical data here is as
good as any thus far observed. The
percentage of obtained t's exceeding
the 5% values is 5.1, in this particu-
lar case. For the case in which the
sample sizes are both 15 (not shown
here), the fit is equally good, with
5.09, of the cases falling outside of the
nominal 5%, bounds.

Sampling from Non-Normal Distribu-
tions: (Unequal Variances)

We may assume that if the vari-
ances are unequal, and at the same
time the sample sizes are different,
the resulting distributions from non-
normal populations will be affected
in the same way as the distributions
derived from normal populations,
and for the same reasons. These cases
will not be considered.

If sampling is in sizes of 5 from
two exponential distributions, one
with a variance of 1, and the other of
4, a skewed distribution of obtained
I's emerges (not shown here)., We
shall discover that a skewed distri-
bution of #'s generally arises when
the sampling is from distributions
which are different in degree of skew-
ness or asymmetry. (For an explana-
tion, see discussion of E(0, 1)5-
N(0, 1)5 below.) Apparently, the
effect of increasing the variance of
the exponential distribution as in the
present case—HA(0, 1)5-E(0, 4)5—is
to make the negative sample means
arising from the distribution with
larger variance even more negative
than those from the distribution with
smaller variance. In terms of per-
centage exceeding the nominal 5%,
limits for this case, the value is 8.3%,
of which 7.6%, comes from the skewed
tail. This combination of variances
and distribution was not tested with
larger samples, but we shall see when
comparing exponential and normal
distributions that an increase in the
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F1G. 8. Empirical distribution of #'s from
R(0, 1)5-R(0, 1)5 and theoretical distribu-
tion with 8 df.

sample size decreases the skew of the
obtained ¢ distribution there. Theo-
retically, this decrease should occur
in almost all cases, including the pres-
ent one.

The result is much less compli-
cated if, while variances are differ-
ent, the sampling is from symmetrical
rectangular distributiongs—R(0, 1)-
R(0, 4)5, For this small sample situ-
ation, (not illustrated), there occurs
a distribution of obtained ¢'s having
7.1% of the values exceeding the
nominal 5%, points, This is roughly
the same magnitude as the corre-
sponding discrepancy from normal
distributions. For the normal, it will
be recalled that an increase of the
sample sizes to 15 decreased the ob-
tained percentage to 4.99,. There
is no reason to believe that increasing
the size of the rectangular samples
would not have the same effect.
However, time did not permit the de-
terminaiton of this distribution.

Sampling from Two Different Distri-
butions

By drawing the first sample from
a distribution having .one shape,
and by drawing the second from a
distribution having another shape
(other than shape differences arising
from heterogeneity of variance), yet
another way has been found to do
violence to the integrity of the as-
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sumptions underlying the ¢ test, Per-
haps the least violent of these hap-
penings is that in which at least one
of the populations is normal. :

When one sample is from the ex-
ponential* distribution and the other
from the normal, the interesting re-
sult shown in Fig. 9 occurs. This is
the small sample case—E(0, 1)5-
N(0,1)5. It will be recalled that
for ‘skewed distributions the mean
and median are at different points,
In the exponential distributions, for
example, the mean is at the 63rd cen-
tile. If samples from the exponential
distribution are small, there will be a
tendency for the sample mean to be
less than the population mean, obvi-
ously since nearly two-thirds of the
scores are below that mean. Since
the population mean of the present
distributions is 0, the result will be a
preponderance of negative sample
means for small samples. If the other
sample is taken from a symmetrical
distribution,  which would tend to
produce as many positive as negative
sample means, the resulting distribu-
tion of obtained #'s would not balance
about its zero point, an imbalance ex-
acerbated by small samples. ‘In Fig,
9, 7.1% of the obtained cases fall out-
side the 5%, limits, with most, 5.6%,
lying in the skewed tail, The effect of
increasing the sample size to 15is to
normalize the distribution consider-
ably; the resulting curve, Fig. 10, is

FREQUENCY
$ 8 8

3

VALUE OF ¢

F16. 9. Ezﬁpiﬁcal distribution of #'s from
E(, 1)5-N(0, 1)5 and theoretical distribu-
tion with 8 df.

59

80+

604

FREQUENCY

40

20+

VALUE OF ¢

F1G. 10.. Empirical distribution of #'s from
E@©, 1)15-N(0, 1)15 and theoretical distribu-
tion with 28 df,

fairly well approximated by the ¢ dis-
tributién. One of the tails, however,
does contain a disproportionate share
of the cases, 4.29% to 0.9% for the
other tail, or a total of 5.19 falling
outside the nominal 59, limits. Nev-
ertheless, the degree to which the
theoretical and empirical distribu-
tions coincide under these conditions
is striking., It seems likely that if
both samples were each of Size 25,
the resulting sample distribution of
t's would be virtually indistinguish-
able from the ¢ distribution for 48 df,
or the next best thing, the normal
curve itself. To test this hypothesis,
an additional empirical ¢ distribution
based on'sample sizes of 25 from these
‘same exponential and normal popula-
tions was obtained (not-shown here).
The results nicely confirm the pre-
sumption. Comparison with the
usual 59, values reveals 4.69, of
the empirical #'s surpassing them.
Whereas with the smaller samples the
ratio of #'s in the skewed tail to those
in the other tail is roughly 80:20, the
corresponding ratio for the larger
sample case is 59:41. Clearly, the in-
crease in sample sizes has tended to
normalize the distribution of ¢’s.
For these conditions, involving
rather drastic violation of the mathe-
matical assumptions of the test, the
¢ test has been observed to fare well
with an adequate sample size. Such
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a state of affairs is to be expected
theoretically, By invoking a few
theorems of mathematical statistics
it can be shown that if one samples
from any two populations for which
the Central Limit Theorem holds,
(almost any population that a psy-
chologist might be confronted with),
no matter what the variances may be,
the use of equal sample sizes insures
that the resulting distribution of ¢'s
will approach normality as a limit.
It would appear from the present re-
sults that the approach to normality
is rather rapid, since samples of sizes
of 15 are generally sufficient to undo
most of the damage inflicted by vio-
lation of assumptions. Only in ex-
treme cases, such as the last which
involves distributions differing in
skew, would it seem that slightly
larger sizes are prescribed. Thus it
would appear that the ¢ test is func-
tionally a distribution-free test, pro-
viding the sample sizes are sufficient-
ly large (say, 30, for extreme viola-
tions) and equal.

The distributions arising when
sampling is from the normal and the
rectangular distributions—N(0, 1)5-
R(0, 1)5 and N(0, 1)15-R(0, 1)15
—would further tend to substantiate
this claim. The respective percent-
ages exceeding the 5% nominal
values are 5.69, and 4.69, from
the empirical distributions for these
cases, the distributions of #'s being
symmetrical and close to the theo-
retical (not shown).

The only other combination exam-
ined in the sampling study is the un-
interesting case of exponential and
rectangular distributions. This dis-
tribution (not shown) is again skewed
with the effect of increase of sample
size from 5 to 15 to cut down the
skew and to decrease the percentage
of cases falling outside the theoretical
59% values from 6.49, to 5.6%. For
those cases falling outside the nomi-

nal 59, values, the ratio is 79:21 for
the smaller samples. This is changed
to 69:31 for the sample size of 15.
Here again it would seem that larger
sample sizes would be required to in-
sure the validity of probability state-
ments utilizing the ¢ distribution as
a model.

The results of the total study are
summarized in Table 1 which gives
for each combination of population,
variance, and sample size (¢) the per-
centage of obtained #'s falling outside
the nominal 5%, probability limits of
the ordinary ¢ distribution, and (b)
the percentage of obtained ¢'s falling
outside the 1% limits. The combina-
tions are represented symbolically as
before. The table is divided into two
parts, the first part presenting infor-
mation on the empirical distributions
which are intrinsically symmetrical.
The second part is based upon the in-
trinsically nonsymmetrical distribu-
tions, additional information in this
section of the table being the percent-
age of obtained t's falling in the larger
of the tails, The percentage for the
smaller tail may be obtained by sub-
traction of the percentage in the larg-
er tail from the total.

Certain implications of the table
should be discussed. In the Norton
study, more severe distortions some-
times occurred with significance lev-
els of 1% and .19, than appeared
with the 5%, level. The inclusion in
Table 1 of the percentages of ob-
tained ¢'s falling outside the nominal
19, values makes possible the com-
parison of the 19, and 5% results.
The 1% values seem to be approxi-
mately what would be expected con-
sidering that sampling fluctuations
are occurring. It was not felt feasible
to determine the results for the .19,
level since with only 1000 or 2000
cases the number of obtained #'s fall-
ing outside the prescribed limits was
negligible in most cases. It is pos-
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sible, however, that the distortions in
the apparent level of significance are
more drastic for the smaller a values.

All the results and discussion
have been limited thus far to the
two-tailed ¢ test. With notable ex-
ceptions, the conclusions we have
reached can be applied directly to the
one-tailed ¢ test as well. The ex-
ceptions involve those distributions
which are intrinsically asymmetric
(see Table 1). In these distributions
a preponderance of the obtained #'s
fall in one tail. Depending upon the
particular tail involved in the one-
tailed test the use of ¢ should produce
too many or too few significant re-

TABLE 1

OBTAINED PERCENTAGES OF CASES FALLING
OUTSIDE THE APPROPRIATE TABLED {
VALUES FOR THE 5% AND 19, LEVEL

OF SIGNIFICANCE

Obtained Percentage at

Symmet'ric
Distributions 5% level 19 level
N(0,1)5-N(0, 1)5 5.3 0.9

N, 1)15-N(0, )15 4.0 0.8
N(, 1)5-N(0, 1)15 4.0 0.6
N(0, 1)5-N(0, 4)5 6.4 1.8
N0, 1)15-N(0,4)15 4.9 1.1
N(0, 1)5-N(0, 4)15 1.0 0.1
N(@©,4)5-N(O,1)15 16.0 6.0
E(0, 1)5-E(0, 1)5 3.1 0.3
E(0, 1)15-E(0, 1)15 4.0 0.4
R(0,1)5-R(0, 1)5 5.1 1.0
R(0,1)15-R(0, 1)15 5.0 1.5
R(0, 1)5-R(0,4)5 7.1 1.9
NQ©, 1)5-R(0, 1)5 5.6 1.0
N(0, 1)15-R(0, 1)15 5.6 1.1
Asymmetric Obtained Percentage at
Distributions 5% level 19 level
Larg- Larg-
Total er Total er
Tail Tail
E(0,1)5-N©,1)5 7.1 5.6 1.9 1.9
E(0,1)15-N(0, 1)15 S.1 4.2 1.4 1.2
E(,1)25-N(©,1)25 4.6 2.7 1.3 1.1
E(0,1)5-R(0,1)5 6.4 5.0 3.3 2.5
E(0,1)15-R(0,1)15 5.6 3.9 1.6 1.2
E(0, 1)5-E(0, 4)5 83 7.6 1.1 1.7
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sults when sampling is from a combi-
nation of populations from which an
asymmetric ¢ distribution is expected.
It seems impossible to make any
simple statements about the behav-
ior of the tails in the general case of
asymmetric ¢ distribution except to
say that such distributions are ex-
pected whenever the skew of the two
parent populations is different. The
experimenter must determine for
each particular instance the direction
of skew of the expected distribution
and act accordingly. Table 1 gives
for the intrinsically asymmetric dis-
tributions the total percentage of ob-
tained #'s falling outside the theo-
retical 5% and 19, limits and the per-
centage in the larger tail. From
these values can be assessed the ap-
proximate magnitude of the bias in-
curred when a one-tailed test is used
in specific situations.

DiscussioN AND CONCLUSIONS

Having violated a number of as-
sumptions underlying the ¢ test, and
finding that, by and large, such vio-
lations produce a minimal effect on
the distribution of t's, we must con-
clude that the ¢ test is a remarkably
srobustitest in the technical sense of

"the word. This term was introduced

by Box (1953) to characterize sta-
tistical tests which are only inconse-
quentially affected by a violation of
the underlying assumptions. Every
statistical test is in part a test of the
assumptions upon which it is based.
For example, the null hypothesis of a
particular test may be concerned
with sample means. If, however, the
assumptions underlying the test are
not met, the result may be “signifi-
cant” even though the population
means are the same. If the statisti-
cal test is relatively insensitive to
violations of the assumptions other
than the null hypothesis, and, hence,
if probability statements refer pri-
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marily to the null hypotheses, it is
said to be robust. The ¢ and F tests
apparently possess thi§ quality to a
high degree. .

In this particular context, an im-
portant example of a test -lacking
robustness is Bartlett's test for
homogeneity of variance (Bartlett,
1937). Box (1953) has shown that
this test is extremely sensitive to
non-normality and will under some
condifions be prone to yield “signifi-
cant” results even if variances are
equal. For example, Box tables a
number of exact probabilities of ex-
ceeding the 59, normal theory sig-
nificance level in the Bartlett test
for various levels of \s, the kurtosis
parameter, for different quantities of
variances being compared. As an ex-
treme case, if Ns=2 (i.e., a peaked
distribution) with 30 variances being
tested, the probability of rejecting
the hypothesis at the nominal .05
level is actually .849, If A= —1 (i.e.,
a flat distribution), the probability is
.00001. Note that in both these
cases, all wvariances are actually
equal. Box, realizing that in the case
of equal sample sizes the analysis of
variance is affected surprisingly little
by heterogeneous variance and non-
normality, concludes that the use of
the nonrobust Bartlett test to “‘make
the preliminary test on variances is
rather like putting out to sea in a
rowing boat to find out whether con-
ditions are sufficiently calm for an
ocean liner to-leave port!” Appar-
ently, as reported in this same arti-
cle, other commonly used tests for
evaluating homogeneity are subject
to the same weakness.

We may conclude that for a large
number of different situations con-
fronting the researcher, the use of
the ordinary ¢ test and its associated
table will result in probability state-
ments which are accurate to a high
degree, even though the assumptions

of homogeneity of variance and nor-
mality of the underlying distribu-
tions are untenable. This large num-

" ber of situations has the following

general characteristics: (a) the two
sample sizes are equal or nearly so,
(b) the assumed underlying popula-
tion distributions are of the same
shape or nearly so. (If the distribu-
tions are skewed they should have
nearly the same variance.) If these
conditions are met, then no matter
what the variance differences may
be, samples of as small as five will
produce results for which the true
probability of rejecting the null hy-
pothesis at the .05 level will more
than likely be within .03 of that level.
If the sample size is as large as 15,
the true probabilities are quite likely
within .01 of the nominal value,
That is to say, the percentage of
times the null hypothesis will be re-
jected when it is actually true will
tend to be between 4%, and 69, when
the nominal value is 59.

If the sample sizes are unequal,
one is in no difficulty provided the
variances are compensatingly equal.
A combination of unequal sample
sizes and unequal variances, how-
ever, automatically produces inaccu-
rate probability statements which
can be quite different from the nomi-
nal values. One must in this case re-
sort to different testing procedures,
such as those by Cochran and Cox
(1950), Satterthwaite (1946), and
Welch (1947). The Welch procedure
is interesting since it has been ex-
tended by Welch (1951) to cover the
simple randomized analysis of vari-
ance which suffers the same defect as
the ¢ test when confronted with both
unequal variance and unequal sam-
ple sizes. The Fisher-Behrens pro-
cedure suggested by many psycholog-
ically oriented statistical: textbooks
has had its validity questioned (Bart-
lett, 1936) and, hence, is ignored by



VIOLATIONS OF ASSUMPTIONS UNDERLYING THE ¢t TEST 63

some statisticians (e.g., Anderson &
Bancroft, 1952, p. 82).

If the two underlying populations
are not the same shape, there seems
to be little difficulty if the distribu-
tions are both symmetrical. If they
differ in skew, however, the distribu-
tion of obtained t's has a tendency it-
self to be skewed, having a greater
percentage of obtained ¢#'s falling out-
side of one limit than the other. This
may tend to bias probability state-
ments. Increasing the sample size
has the effect of removing the skew,
and, due to the Central Limit Theo-
rem and others, the normal distribu-
tion is approached by this maneuver.
By the time the sample sizes reach
25 or 30, the approach should be close
enough that one can, in effect, ignore
the effects of violations of assump-
tions except for extremes. Since this
is so, the t test is seen to be func-
tionally nonparametric or distribu-
tion-free. It also retains its power in
some situations (David & Johnson,
1951), There is, unfortunately, no
guarantee that the ¢ and F tests are
uniformly most powerful tests. It is
possible, even probable, that certain

of the distribution-free methods are
more powerful than the ¢ and F tests
when sampling is from some unspeci-
fied distributions or combination of
distributions, At present, little can
be said to clarify the situation. Much
more research in this area needs to be
done.

Since the ¢ and F tests of analysis
of variance are intimately related, it
can be shown that many of the state-
ments referring to the ¢ test can be
generalized quite readily to the F
test. In particular, the necessity for
equal sample sizes, if variances are
unequal, is important for the same
reasons in the F test of analysis of
variance as in the £ test. A number
of the cited articles have demon-
strated both mathematically and by
means of sampling studies that most
of the statements we have made do
apply to the F test. It is suggested
that psychological researchers feel
free to utilize these powerful tech-
niques where applicable in a wid-
er variety of situations, the pres-
ent emphasis on the nonparametric
methods notwithstanding.
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