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1 Introduction

Meta-analysis, a term coined by Glass (1976), is intended to provide the statistical analysis
of a large collection of analysis results from individual studies for the purpose of integrating
the findings.

Meta-analysis, or Research Synthesis, or Research Integration is precisely a scientific
method to accomplish this goal by applying sound statistical procedures, and indeed
it has a long and old history. The very invention of least squares by Legendre (1805)
and Gauss (1809) is an attempt to solve just a unique problem of meta analysis: use
of astronomical observations collected at several observatories to estimate the orbit of
comets and to determine meridian arcs in geodesy (Stigler, 1986). In order to determine
the relationship between mortality and inoculation with a vaccine for enteric fever, Pearson
(1904) used data from five small independent samples, and computed a pooled estimate
of correlation between mortality and inoculation in order to evaluate the efficacy of the
vaccine. As an early application of meta analysis in the physical sciences, Birge (1932)
combined estimates across experiments at different laboratories to establish reference
values for some fundamental constants in physics. Early works of Cochran (1937), Yates
and Cochran (1938), Tippett (1931) and Fisher (1932) dealt with combining information
across experiments in the agricultural sciences in order to derive estimates of treatment
effects and test their significance. Likewise, there are plenty of applications of meta
analysis in the fields of education, medicine and social sciences, some of which are briefly
described below.

In the field of education, meta analysis is useful in combining studies about coaching
effectiveness to improve SAT scores in verbal and math (Rubin, 1981; DerSimonian and
Laird, 1983), in studying the effect of open education on (i) attitude of students toward
school, (ii) student independence and self-reliance, and in combining studies about the
relationship between teacher indirectness and student achievement (Hedges and Olkin,
1985). In social science, there is a need to combine several studies of gender differences in
separate categories of quantitative ability, verbal ability, and visual-spatial ability (Hedges
and Olkin, 1985). For some novel applications of meta analysis in the field of medicine, we
refer to Pauler and Wakefield (2000) for three applications involving Dentrifice data, Anti-
hypertension data and Pre-eclampsia data, to Berry (2000) for questions about benefits
and risks of mammography of women based on six studies, to Brophy and Joseph (2000)
for meta analysis involving three studies to compare streptokinase and tissue-plasminogen
activator to reduce mortality following an acute myocardial infarction, and lastly to Do-
minici and Parmigiani (2000) for an application of meta analysis involving studies in which
outcomes are reported on continuous variables for some medical outcomes in some studies
and on binary variables on similar medical outcomes in some other studies. Of course,
there are numerous other diverse applications of meta analysis in many other fields.

1



As the scope of meta analysis grew over the years, several terminologies also came
into existence such as quantitative research synthesis, pooling of evidence or creating an
overview. While most of the above early works, including Mosteller and Bush (1954),
provided a logical foundation for meta analysis, the appearance of several books, notably
Glass et al. (1981), Hunter et al. (1982), Rosenthal (1984), Hedges and Olkin (1985),
and the edited volume by Cooper and Hedges (1994) and literally thousands of meta-
analytic papers during the last twenty years or so, primarily covering applications in
health sciences and education, has made the subject to have a very special role in diverse
fields of applications.

The essential character of Meta-Analysis is that it is the statistical analysis of the
summary findings of many empirical studies, which are called primary analyses, all tar-
geted towards a common goal. Meta-Analysis is essentially quantitative in nature, using
various statistical methods in a practical way, to extract and analyse relevant information
from large masses of data. A common criticism of meta analysis is that it is illogical
because it combines results from studies which are not the same (mixing apples with or-
anges). Nevertheless, it should be clear that the only studies which need to be integrated
or synthesized in meta analysis are those which are different but share a common goal.

A fundamental assumption behind conducting a meta analysis or pooling of evidence
or information or data across studies in order to obtain an average effect across all studies
is that the size of the effect (basic parameter of interest) reported in each study is an
estimate of the common effect size of the whole population of studies. It is therefore
essential to test for homogeneity of population effect sizes across studies before conducting
meta analysis if obtaining an estimate of average effect or its test is the primary goal of
meta analysis.

The notion of effect size is central to many meta analysis studies which often deal
with comparing two treatments, control and experimental, in an effort to find out if there
is a significant difference between the two. In the case of continuous measurements, a
standardized mean difference plays an important role to measure such a difference. In
the case of qualitative attributes, difference or ratio of two proportions, odds ratio and
φ coefficient are used to capture such differences. Again, when the objective is to study
relationship between two variables, an obvious choice is the usual correlation coefficient.

Recent meta-analytic work however concentrates on discovering and explaining varia-
tions in effect sizes rather than assuming that they remain the same across studies, which
is perhaps rarely the case owing to uncontrollable differences in study contexts, designs,
treatments, and subjects. Scientific literatures are cluttered with repeated studies of the
same phenomena because some investigators may be unaware of what others are doing,
or may be skeptical about the results of past studies, or because they wish to extend
previous findings. In any event, when results of several scientific studies of the same phe-
nomena exist and differ, it is indeed interesting to ponder how science should proceed.
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It is of course clear how it should not proceed, namely, by pretending that there does
not exist a problem, or by discarding most of the studies which violently disagree, and
keeping only a handful of those which closely agree. If studies which are expected to
show similar results do show similarities by conducting an appropriate test of homogene-
ity and accepting the hypothesis of homogeneity, the case for summarizing results of all
studies with a single average effect size can be strengthened and defended. If, however
this hypothesis is rejected, no single number can adequately account for the variety of
reported results. Thus, if the results from various studies differ either significantly or
even marginally, the true scientific instinct should be to investigate methods to account
for the variability by further systematic work. This is precisely the spirit of some recent
research in meta analysis using random and mixed effects models, allowing inclusion of
trial-specific covariates which may explain a part of the observed heterogeneity. In other
words, a set of conflicting findings from different studies is looked upon as an opportunity
for learning and discovering the sources of variation among the reported outcomes rather
than a cause for dismay.

While most common meta analysis applications involve comparison of just one variable
(experimental) with another (control), multivariate data can also arise in meta analysis
due to several reasons. First, the primary studies themselves can be multivariate in nature
because these studies may measure multiple outcomes for each subject, and are typically
known as multiple-endpoint studies. It should however be noted that not all studies in a
review would have the same set of outcomes. For example, studies of Scholastic Aptitude
Test (SAT) do not all report math and verbal scores. In fact, only about half of the studies
dealt with in Becker (1990) provided coaching results for both math and verbal! Secondly,
multivariate data may arise when primary studies involve several comparisons among
groups based on a single outcome. As an example, Ryan et al. (1986) studied the effects
of practice on motor skill levels on the basis of a five-group design, four different kinds of
practice groups and one no-practice group, thus leading to comparisons of multivariate
data. This kind of studies are usually known as multiple-treatment studies.

As mentioned earlier, although most statistical methods of meta analysis focus on
deriving and studying properties of a common estimated effect which is supposed to exist
across all studies, when heterogeneity across studies is believed to exist, a meta analyst
must estimate the extent and sources of heterogeneity among studies if the hypothesis
of homogeneity is not found to be tenable. While fixed effects models discussed in this
book under the assumption of homogeneous effects sizes continue to be the most common
method of meta analysis, the assumption of homogeneity given variability among studies
due to varying research and evaluation protocols may be unrealistic. In such cases, a
random effects model which avoids the homogeneity assumption, and models effects as
random and coming from a distribution is recommended. The various study effects are
believed to arise from a population and random effects models borrow strength across
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studies in providing estimates of both study-specific effects and underlying population
effect.

Whether a fixed effects model or a random effects model, a Bayesian approach con-
siders all parameters (population effect sizes for fixed effects models, in particular) as
random and coming from a super population with its own parameters. There are several
advantages for a Bayesian approach to meta analysis. The Bayesian paradigm provides in
a very natural way a method for data synthesis from all studies by incorporating model
and parameter uncertainty. Moreover, a predictive distribution for future observations
coming from any study, which may be a quantity of central interest to some decision
makers, can be easily developed based on what have been already observed. The use
of Bayesian hierarchical models often leads to more appropriate estimates of parameters
compared to the asymptotic ones arising from maximum likelihood especially in case of
small sample sizes of component studies which is typical in meta analysis.

There are at least two other vital issues with meta analysis procedures. Although it is
true that most of the primary studies to be included in a meta analysis provide a complete
background of the problem being considered along with relevant entire or summary data,
it also happens sometimes that some studies report only the ultimate finding in terms of
the sign of the estimated underlying effect size being positive or negative or in terms of
the significance or non-significance of the test for the absence of an effect size. It then
poses a challenge for the statisticians to develop suitable statistical procedures to take
into account this kind of incomplete information to carry out meta analysis. Fortunately,
there are techniques under the category of vote counting procedures to effectively deal
with such situations.

The problem of selection or publication bias is rather crucial in the context of meta
analysis since the reported studies on which meta analysis is typically based tend to be
mostly significant and there could be many potential nonsignificant studies which are not
reported at all simply because of their non-significant findings and hence these studies
are not amenable to meta analysis considerations. Such a situation is bound to happen in
almost any meta analysis scenario in spite of one’s best attempt to get hold of all relevant
studies, and statistically valid corrective measures should be developed and followed to
deal with such a serious publication bias issue. Again, fortunately, there are some valid
procedures to tackle this vital problem.

At this point, let us emphasize that there are four important stages of research syn-
thesis.

(i) problem formulation stage

(ii) data collection stage

(iii) data evaluation stage
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(iv) data analysis and interpretation stage.

We describe below these four stages.

The formulation of the research synthesis problem has important implications for
the statistical methods to be used, and usually there are two broad considerations: the
universe to which generalizations are made (fixed effects model and random effects model),
and the nature of the effect size parameters to be inferred upon (Hedges, 1994). Research
synthesis extends our knowledge through the combination and comparison of primary
studies, and an important issue is how the results of the synthesis are to be interpreted.
One perspective is the fixed effects model where the universe to which generalizations
are made consists of ensembles of studies identical to those in the study sample except
for the particular primary units appearing in the studies. The other perspective is the
random effects model where the universe to which generalizations are made consists of a
population of studies from which the study sample is drawn. Another fundamental issue
in problem formulation concerns the nature of the effect size parameter to be estimated or
tested. The inference about effect size is usually sought to answer the question: what is
the relationship between two variables X and Y ? The variables X and Y are chosen with
only the constraint that their relationship is of interest to us. The answer to this question
essentially comes in two parts: (a) the estimate of the magnitude of the relationship
(effect size) along with an indication of the accuracy or the reliability of the estimated
effect size (standard error or confidence interval), and (b) a test of significance of the
difference between the realized effect size and the effect size expected under the null
hypothesis of no relation between X and Y . Some common effect size measures are
given by standardized difference of two means, standardized difference of two proportions,
difference of two correlations, ratio of proportions, odds ratio, risk ratio, and so on.

Data collection or literature search stage in research synthesis is very different from
primary research, and can be very challenging. There are usually five major modes of
searching for sources of primary research, namely, manual and computer search of subject
indexes from abstract databases, footnote chasing (references in review/nonreview pa-
pers and books), consultation (formal/informal requests, conferences), browsing through
library shelves, and manual and computer citation searches (White, 1994). It is hoped
that all these search procedures would lead to an exhaustive collection of relevant litera-
ture for the problem under study, and encompass books/book chapters, research/technical
reports, conference papers, and other possible sources. Sometimes we may have to use
special ways and means to retrieve what are known as fugitive literature and information
appearing in unpublished papers/technical reports, unpublished dissertations/master’s
theses, and the like. Above all, we may need to deal with the important issue of publica-
tion bias while doing the research synthesis, bearing in mind the fact that often research
leading to nonsignificant conclusions are not reported at all or rarely so (the well known
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file-drawer problem).

Data evaluation stage consists of carefully checking the nature and sources of primary
research data, missing observations in primary data, and sources of potential bias in the
primary data, all in an attempt to assign suitable weights to the various primary data
sources at the time of carrying out meta analysis or data synthesis.

Finally, data analysis stage deals with statistically describing and combining various
primary studies, and is essentially a wide collection of statistical methods depending on
the nature of the underlying problem. Thus, there are ways to combine various measures
of effect sizes either for estimation or test or confidence interval, and also ways to deal
with missing values in primary studies as well as publication bias.

Given the above broad spectrum of topics that can be covered under the umbrella of
a workshop on meta analysis, our goal in this workshop is primarily concerned with some
statistical aspects of meta analysis. As already mentioned, the heart of the enterprise of
carrying out meta analysis or synthesizing research consists of comparing and combining
the results of individual primary studies of a particular, focused research question, and
the emphasis is essentially on two types of statistical analysis: combining results of tests
of significance of effect size, and combining estimates of effect size. The effect size, as
explained earlier, is a generic term referring to the magnitude of an effect or more generally
the size of the relation between two variables. Moreover, in case of diverse research findings
from comparable studies, an attempt must be made to understand and point out reasons
for such differences.

Keeping the above general points in mind, the outline of the workshop is as follows.

Lecture 2 describes various standard measures of effect size based on means, propor-
tions, φ coefficient, odds ratio, and correlations. Some illustrative examples to explain the
related computations and concepts are included.

Lecture 3 deals with methods of combining individual tests based on primary research
with plenty of applications. This lecture is exclusively based on combination of P-values
mainly because the studies which are meant for meta analysis more often report their
P values than other details of the study. The methods described here are exact and it
should be mentioned that there are other methods based on suitably combining often
independent component test statistics whose sampling distributions may not be readily
available.

Lecture 4 describes methods of combining individual estimates of effect sizes based
on primary research to efficiently estimate the common effect size parameter as well as
to construct its confidence interval. The methods suggested in this lecture are mainly
asymptotic in nature.
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Lecture 5 is devoted to a detailed analysis of a special kind of meta analysis problem,
namely, inference about the common mean of several univariate normal populations
with unknown and unequal variances. This problem has a long and rich history, and very
significant in applications.

Lecture 6 describes various tests of the important hypothesis of the homogeneity of
population effect sizes in some particular models. In the context of statistical meta
analysis, one should carry out these tests of homogeneity of effect sizes before applying
tools of combining the effect sizes.

One way random effects models, useful when the basic hypothesis of homogeneity
of effect sizes does not hold, will be taken up in Lecture 7. There is a huge literature
on this topic and we will make an attempt to present all the important results in this
connection. Typically, there are two scenarios: error variances are all equal (homogeneous
case) and error variances are not equal (heterogeneous case). We will deal mostly with
the latter more challenging case.

Lecture 8 will be devoted to discussing two important aspects of statistical meta analysis:
publication bias and vote counting procedures. These problems arise when we may
not have access to all the literature on the subject under study and also when we do so
there is not enough evidence in the studies.

A different kind of meta analysis dealing with combination of polls will be discussed
in Lecture 9. This particular topic has applications in market research.

Lecture 10 is designed to address the methods of meta analysis in case of binary data
involving both binary and ordinal outcomes. Some applications of this useful set up will
be presented.

There are many computational aspects of statistical meta analysis. This will be taken up
in Lecture 11.

There remain many advanced topics such as meta regression, multivariate meta analy-
sis, bayesian meta analysis, recovery of interblock information which will not be discussed
in this workshop.

Finally, sample data sets which are analyzed throughout the book are included in the
final section. The Bibliography at the end contains a long list of papers referred to in this
workshop.

We conclude this introductory lecture with the observation that virtually all of the
statistical methods described here are based on standard large sample results for the
(asymptotic) distributions of sample means, sample proportions, sample correlations, and
so on, and hence due caution should be exercised when using these methods. Such results
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are listed below for ready reference (see Rao, 1973; Rohatgi, 1976).

1. X1, · · · , Xn are iid with mean µ and variance σ2. Then, for large n, X̄ ∼ N [µ, σ2

n
],

i.e.,
√

n(X̄−µ)
σ

∼ N [0, 1]. This is a standard version of the celebrated Central Limit
Theorem (CLT).

2. X1, · · · , Xn are iid with mean µ and variance σ2. Then, for large n,
√

n(X̄−µ)
s

∼
N [0, 1] where s2 =

Pn
i=1(Xi−X̄)2

n−1
. This is an application of CLT coupled with Cramer’s

theorem (Slutsky’s theorem).

3. X ∼ B[n, P ]. Then, for large n, X−nP√
nPQ

∼ N [0, 1] where Q = 1 − P , i.e.,
√

n(p−P )√
PQ

∼
N [0, 1] where p = X/n. This is a standard application of the Central Limit Theorem
(CLT).

4. X ∼ B[n, P ]. Then, for large n, sin−1√p ∼ N [sin−1
√
P , 1

4n
]. This is a well known

version of Fisher’s variance-stabilizing transformation applied to the binomial pro-
portion.

5. (X1, Y1), · · · , (Xn, Yn) are iid from a bivariate distribution with means (µ1, µ2), vari-

ances (σ2
1, σ

2
2), and correlation ρ. Then, for large n, r ∼ N [ρ, (1−ρ2)2

n−1
] where r is the

usual sample correlation defined as

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

[
∑n

i=1(Xi − X̄)2.
∑n

i=1(Yi − Ȳ )2]1/2
. (1.1)

This is also an application of CLT coupled with Cramer’s theorem (Slutsky’s theo-
rem; see Rao, 1973).

6. (X1, Y1), · · · , (Xn, Yn) are iid from a bivariate distribution with means (µ1, µ2),
variances (σ2

1, σ
2
2), and correlation ρ. Then, for large n, z ∼ N [ζ, 1

n−3
] where

z = 1
2
loge[

1+r
1−r

] and ζ = 1
2
loge[

1+ρ
1−ρ

]. This is a well known version of Fisher’s variance-
stabilizing transformation applied to the sample correlation coefficient.
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2 Measures of Effect Size

Quite often the main objective in a study is to compare two treatments: experimental
and control. When these treatments are applied to a set of experimental units, the out-
comes can be of two types: qualitative and quantitative, leading to either proportions
or means. Accordingly, effect sizes are also essentially of these two types: those based on
differences of two means, and those based on differences of two proportions. A third type
of effect size, namely, correlation, arises when the objective in a study is to ascertain the
nature and extent of relationship between two variables.

2.1 Effect Size based on Means

An effect size based on means is defined as follows. Denote the population means of the
two groups (experimental and control) by µ1 and µ2, and their variances by σ2

1 and σ2
2,

respectively. Then the effect size θ based on means is a standardized difference between
µ1 and µ2, and can be expressed as

θ =
µ1 − µ2

σ
(2.1)

where σ denotes either the standard deviation σ2 of the population control group, or an
average population standard deviation (namely, an average of σ1 and σ2).

The above measure of effect size θ can be easily estimated based on sample values,
and this is explained below. Suppose we have a random sample of size n1 from the first
population with the sample mean X̄1 and sample variance S2

1 , and also a random sample
of size n2 from the second population with the sample mean X̄2 and sample variance S2

2 .
One measure of the effect size θ, known as Cohen’s d (Cohen, 1969, 1977, 1988) is then
given by

d =
X̄1 − X̄2

S
(2.2)

where the standardized quantity S is the pooled sample standard deviation defined as
S =

√
S2 where

S2 =
(n1 − 1) S2

1 + (n2 − 1) S2
2

n1 + n2

,

(n1 − 1) S2
1 =

n1∑
i=1

(X1i − X̄1)
2, (n2 − 1) S2

2 =

n2∑
i=1

(X2i − X̄2)
2. (2.3)

A second measure of θ, known as Hedges’s g (Hedges, 1981, 1982), is defined as
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g =
X̄1 − X̄2

S∗
(2.4)

where the standardized quantity S∗ is also the pooled sample standard deviation defined
as S∗ =

√
S∗2 where

S∗2 =
(n1 − 1) S2

1 + (n2 − 1) S2
2

n1 + n2 − 2
. (2.5)

It can be shown that (see Hedges and Olkin, 1985)

E(g) ∼ θ +
3 θ

4N − 9

σ2(g) = var(g) ∼ 1

ñ
+

θ2

2(N − 3.94)
(2.6)

where

N = n1 + n2, ñ =
n1 n2

n1 + n2

. (2.7)

In case the population variances are identical in both groups, under the assumption of
normality of the data, Hedges (1981) shows that

√
ñg follows a non–central t–distribution

with non–centrality parameter
√
ñ θ and (n1 + n2− 2) degrees of freedom. Consequently,

the exact mean and variance of Hedges’ g are given by

E(g) =

√
N − 2

2

Γ
(

N−3
2

)
Γ
(

N−2
2

) θ
σ2(g) = var(g) =

N − 2

N − 4
(1 + θ2)− θ2 N − 2

2

(
Γ
(

N−3
2

))2(
Γ
(

N−2
2

))2 (2.8)

and Γ(·) denotes the gamma function. As Cohen’s d is proportional to Hedges’ g, the
results in (2.8) can be easily transferred providing mean and variance of Cohen’s d.
The exact mean in (2.8) is well–approximated by (2.6) so that an approximately unbiased
standardized mean difference g∗ is given as

g∗ =

(
1− 3

4N − 9

)
g. (2.9)

Finally, a third measure of θ, known as Glass’s ∆ (Glass, McGaw, and Smith, 1981), is
defined as
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∆ =
X̄1 − X̄2

S2

(2.10)

where the standardized quantity is just S2, the sample standard deviation based on the
control group alone. This is typically justified on the ground that the control group is
in existence for a longer period than the experimental group, and is likely to provide a
more stable estimate of the common variance. Again under the assumption of normality
of the data, Hedges (1981) shows that

√
ñ ∆ follows a non–central t–distribution with

non–centrality parameter
√
ñ θ and (n2 − 1) degrees of freedom.

The variances of the above estimates of θ, in large samples, are given by the following.

σ2(d) = var(d) =

[
n1 + n2

n1 n2

+
θ2

2 (n1 + n2 − 2)

]
·
[

n1 + n2

n1 + n2 − 2

]
σ2(g) = var(g) =

n1 + n2

n1 n2

+
θ2

2 (n1 + n2 − 2)

σ2(∆) = var(∆) =
n1 + n2

n1 n2

+
θ2

2 (n2 − 1)
(2.11)

The estimated variances are then obtained by replacing θ in the above expressions by
the respective estimates of θ, namely, d, g, and ∆. These are given below.

σ̂2(d) = v̂ar(d) =

[
n1 + n2

n1 n2

+
d2

2 (n1 + n2 − 2)

]
·
[

n1 + n2

n1 + n2 − 2

]
σ̂2(g) = v̂ar(g) =

n1 + n2

n1 n2

+
g2

2 (n1 + n2 − 2)

σ̂2(∆) = v̂ar(∆) =
n1 + n2

n1 n2

+
∆2

2 (n2 − 1)
(2.12)

Large sample tests for H0 : θ = 0 versus H1 : θ 6= 0 are typically based on the
standardized normal statistics

Z =
θ̂

σ̂(θ̂)
(2.13)

where θ̂ is an estimate of θ defined above with σ̂(θ̂) as its estimated standard error, and
H0 is rejected if |Z| exceeds zα/2, the upper α/2 cut-off point of the standard normal
distribution. Of course, if the alternative is one-sided, namely, H2 : θ > 0, then H0 is
rejected if Z exceeds zα, the upper α cut-off point of the standard normal distribution.
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Again, if one is interested in constructing confidence intervals for θ, it is evident that, in
large samples, the individual confidence intervals are given by

1− α = P
[
θ̂ − zα/2 σ̂(θ̂) ≤ θ ≤ θ̂ + zα/2 σ̂(θ̂)

]
. (2.14)

Example 2.1. Consider the data set given below.

Table 2.1 Studies of Gender Difference in Quantitative Ability
Total Standardized Unbiased

sample mean standardized mean 95% CI on θ
Study size (N) difference (g) difference (g∗)

1 76 0.72 0.71 [ 0.256 , 1.184 ]
2 6.167 0.06 0.06 [ 0.010 , 0.110 ]
3 355 0.59 0.59 [ 0.377 , 0.803 ]
4 1,050 0.43 0.43 [ 0.308 , 0.552 ]
5 136 0.27 0.27 [ -0.068 , 0.608 ]
6 2,925 0.89 0.89 [ 0.814 , 0.966 ]
7 45,222 0.35 0.35 [ 0.331 , 0.369 ]

For each study above, we can carry out the test for H0 : θ = 0 versus H1 : θ 6= 0 as well
as construct a confidence interval for θ based on the above discussion. Thus, for study 1,
using the standardized mean difference g (Hedges’ g) = 0.72, and assuming n1 = n2 = 38,
we get

Z =
g[

n1+n2

n1 n2
+ g2

2 (n1+n2−2)

]1/2
=

0.72

0.2369
= 3.039 (2.15)

and hence rejectH0 with α = 0.05. Moreover, based on (2.14), the 95% confidence interval
for θ is obtained as [0.256, 1.184]. It may be noted that the conclusions based on g∗ = 0.71
are the same. All the 95% confidence intervals for the seven studies are summarized in
the last column of Table 2.1.

When the analysis is to be carry out on the original metric, the difference of µ1 and
µ2, sometimes called absolute difference between means, is the appropriate measure. The
difference between means may be easier to interpret than the dimensionless standardized
mean difference. The difference of the sample means, X̄1 − X̄2, is an unbiased of the
parameter of interest in this situation with variance σ2

1/n1 + σ2
2/n2. By plugging in the

sample variances, the estimated variance of X̄1 − X̄2 is S2
1/n1 + S2

2/n2.

12



2.2 Effect Sizes based on Proportions

An effect size θ based on proportions is derived as follows. Denote the population pro-
portions of the two groups (experimental and control) by π1 and π2. One measure θ1 of
the effect size θ is then given by

θ1 = π1 − π2 (2.16)

which is simply the difference between the two population proportions.
A second measure θ2 of θ, based on Fisher’s variance-stabilizing transformation (of a
sample proportion) is defined as

θ2 = sin−1√π1 − sin−1√π2. (2.17)

A third measure θ3 of θ, commonly known as the rate ratio, also called relative risk or
risk ratio, is given by

θ3 =
π1

π2

. (2.18)

The measures θ1 and θ2 are such that the value 0 indicates no difference, while for the
measure θ3, the value 1 indicates no difference. Often θ∗3 = ln θ3, which is the natural
logarithm of θ3, is used so that the same value 0 indicates no difference in all the three
cases. The above measures of θ can be easily estimated. Suppose a random sample of
size n1 from the first population yields a count of X1 for the attribute under study while
a random sample of size n2 from the second population yields a count of X2. Then,
if p1 = X1/n1 and p2 = X2/n2 denote the two sample proportions, estimates of θ are
obtained as

θ̂1 = p1 − p2

θ̂2 = sin−1√p1 − sin−1√p2

θ̂∗3 = ln
p1

p2

(2.19)

with the respective variances as

σ2(θ̂1) = var(θ̂1) =
π1 (1− π1)

n1

+
π2 (1− π2)

n2

σ2(θ̂2) = var(θ̂2) =
1

4 n1

+
1

4 n2

σ2(θ̂∗3) = var(θ̂∗3) =
1− π1

n1 π1

+
1− π2

n2 π2

. (2.20)
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As before, large sample tests for H0 : θ = 0 versus H1 : θ 6= 0 are typically based on
the standardized normal statistics

Z =
θ̂

σ̂(θ̂)
(2.21)

where σ̂(θ̂) is the estimated standard error of θ̂, and H0 is rejected if |Z| exceeds zα/2, the
upper α/2 cut-off point of the standard normal distribution. Of course, if the alternative
is one-sided, namely, H2 : θ > 0, then H0 is rejected if Z exceeds zα, the upper α cut-off
point of the standard normal distribution. Again, if one is interested in constructing
confidence intervals for θ, it is evident that, in large samples, the individual confidence
intervals are given by

1− α = P
[
θ̂ − zα/2 σ̂(θ̂) ≤ θ ≤ θ̂ + zα/2 σ̂(θ̂)

]
. (2.22)

Example 2.2. Consider a comparative study in which the experimental treatment is
applied to a random sample of n1 = 80 subjects and the control treatment is applied to
a random sample of n2 = 70 subjects. If the unimproved proportions are p1 = 0.60 and
p2 = 0.80, the value of θ̂1 is -0.20 and its estimated standard error is

σ̂(θ̂1) =

(
0.60× 0.40

80
+

0.80× 0.20

70

)1/2

= 0.0727. (2.23)

An approximate 95% confidence interval for θ1 is θ̂1 ± 1.96 · σ̂(θ̂1), which turns out to be
the interval −0.20±1.96×0.0727, or the interval from −0.34 to −0.06. Incidentally, since
this interval does not contain 0, we reject the null hypothesis H0 : θ1 = 0.

For the same data, an estimate of θ2 is given by θ̂2 = 0.8861− 1.1071 = −0.2211 with
var(θ̂2) = 0.006696, resulting in Z = −2.702. We therefore reject H0 : θ2 = 0. A 95%
confidence interval for θ2 is easily obtained as [θ̂2−1.96σ(θ̂2) = −0.501 , θ̂2 +1.96σ(θ̂2) =
−0.074].

Finally, again for the same data, the estimated rate ratio is θ̂3 = 0.60/0.80 = 0.75,
so group 1 is estimated to be at a risk that is 25 percent less than group 2’s risk. To
construct a confidence interval for θ3, one first obtains the value θ̂∗3 = ln θ̂3 = −0.2877
and then obtains the value of its estimated standard error (see (2.19))

σ̂(θ̂∗3) =

(
0.40

80× 0.60
+

0.20

70× 0.80

)1/2

= (0.0119)1/2 = 0.1091. (2.24)

An approximate 95% confidence interval for θ∗3 has as its lower limit

ln(θ∗3L) = −0.2877− 1.96× 0.1091 = −0.5015 (2.25)
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and as its upper limit

ln(θ∗3U) = −0.2877 + 1.96× 0.1091 = −0.0739. (2.26)

The resulting interval for θ3 then extends from exp(−0.5015) = 0.61 to exp(−0.0739) =
0.93.

2.3 Effect Size based on ϕ Coefficient and Odds Ratio

This section is patterned after Fleiss (1994). Consider a cross-sectional study in which
measurements are made on a pair of binary random variables, X and Y , and their
association is of primary interest. Examples include studies of attitudes or opinions
(agree/disagree), case-control studies in epidemiology (exposed/not exposed), and inter-
vention studies (improved/not improved).

Table 2.2 presents notation for the underlying parameters and Table 2.3 presents
notation for the observed frequencies in the 2×2 table cross-classifying subjects’ categories
on the two variables X and Y , the levels of both of which are labelled as 0 or 1.

Table 2.2. Probabilities associated with two binary characteristics
Y

X Positive Negative Total
Positive Π11 Π12 Π1.

Negative Π21 Π22 Π2.

Total Π.1 Π.2 1

Table 2.3. Observed frequencies on two binary characteristics
Y

X Positive Negative Total
Positive n11 n12 n1.

Negative n21 n22 n2.

Total n.1 n.2 n..

Then one measure of association between X and Y can be described as the product
moment correlation coefficient between the two numerically coded variables, and is equal
to

ϕ =
Π11Π22 − Π12Π21√

Π1.Π2.Π.1Π.2

. (2.27)

Based on the data shown in Table 2.3, the maximum likelihood estimator of ϕ is equal to
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ϕ̂ =
n11n22 − n12n21√

n1.n2.n.1n.2

, (2.28)

which is closely related to the classical chi-square statistic for testing for association in a
fourfold table: χ2 = n..ϕ̂2. The large sample estimated standard error of ϕ̂ is given by
(Bishop, Fienberg, and Holland (1975, pp. 381-382))

σ̂(φ̂) = (2.29)

1√
n..

(
1− ϕ̂2 + ϕ̂(1 + ϕ̂2

2
) (p1.−p2.)(p.1−p.2)√

p1.p.1p2.p.2
− 3

4
ϕ̂2
[ (p1.−p2.)2

p1.p2.
+ (p.1−p.2)2

p.1p.2

])1/2

.

A second measure of the association between X and Y is provided by the odds ratio
(sometimes referred to as the cross-product ratio) defined as

ω =
Π11Π22

Π12Π21

. (2.30)

If the observed multinomial frequencies are as displayed in Table 2.3, the maximum like-
lihood estimator of ω is

ω̂ =
n11n22

n12n21

. (2.31)

The motivation for using ω as a measure of association between two binary variables
stems from the following observation. Suppose that the study calls for n1. units to be
sampled from the population which are positive on X, and for n2. units to be sampled
from the population which are negative on X. Then Π11/Π1. represents the conditional
probability that Y is positive given that X is positive, namely, P (Y+ | X+), and hence
the odds for Y being positive, conditional on X being positive, are equal to

odds(Y + |X+) = P (Y + |X+)/P (Y − |X+) = (Π11/Π1.)/(Π12/Π1.) = Π11/Π12. (2.32)

Analogously, the odds for Y being positive, conditional on X being negative, are equal to

odds(Y + |X−) = P (Y + |X−)/P (Y − |X−) = (Π21/Π2.)/(Π22/Π2.) = Π21/Π22. (2.33)

The odds ratio ω is simply defined as the ratio of these two odds values, leading to

ω =
odds(Y + |X+)

odds(Y + |X−)
=

Π11/Π12

Π21/Π22

=
Π11Π22

Π12Π21

. (2.34)
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A value of 1 for ω represents no association between X and Y while values more than
1 (less than 1) mean positive (negative) association. In practice it is customary to use
ω∗ = lnω, the natural logarithm of the odds ratio, and its sample analogue ω̂∗ = lnω̂,
rather than the odds ratio directly. The large sample standard error of ω̂∗ (Woolf, 1955)
is given by the equation

σ̂(ω̂∗) =

(
1

n11

+
1

n12

+
1

n21

+
1

n22

)1/2

(2.35)

which can be readily used to test hypotheses for ω and also to construct a confidence
interval for ω.
Example 2.3. Consider a hypothetical study with the data as shown in the Table 2.4.

Table 2.4. Hypothetical Frequencies in a Fourfold Table
Y

X Positive Negative Total
Positive 135 15 150

Negative 40 10 50
Total 175 25 200

The value of ϕ̂ for the above frequencies is easily computed as

ϕ̂ =
135× 10− 15× 40√
150× 50× 175× 25

= 0.130931, (2.36)

which represents a modest association. Its estimated standard error, based on the formula
(2.29), is obtained as

σ̂(ϕ̂) =
1√
200

(1.245388)1/2 = 0.079. (2.37)

Similarly, we compute ω̂ = 2.25 and hence ω̂∗ = ln ω̂ = 0.811 with σ̂(ω∗) = 0.4462.
We can test the null hypothesis of no association, i.e., H0 : ϕ = 0 versus H1 : ϕ 6= 0

based on

Z =
ϕ̂

σ̂(ϕ̂)
= 1.66 (2.38)

which leads to acceptance of H0 with α = 0.05. Also, a 95% confidence interval for ϕ is
obtained as

LB = ϕ̂− 1.96 σ̂(ϕ̂) = −0.024, UB = ϕ̂+ 1.96 σ̂(ϕ̂) = 0.286. (2.39)
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Likewise, we can also test the null hypothesis of no association, i.e., H0 : ω∗ = 0 versus
H1 : ω∗ 6= 0 based on

Z =
ω̂∗

σ̂(ω̂∗)
= 1.82 (2.40)

which leads to acceptance of H0 with α = 0.05. Also, a 95% confidence interval for ω∗ is
obtained as

LB = ω̂∗ − 1.96 σ̂(ω̂∗) = −0.063, UB = ω̂∗ + 1.96 σ̂(ω̂∗) = 1.685 (2.41)

which yields [0.939 , 5.395] as the confidence interval for ω.

2.4 Effect Size based on Correlations

Finally, an effect size based on correlation is directly taken as the value of the correlation
ρ itself, or its well known ζ-value, based on Fisher’s variance-stabilizing transformation
(of r), given by

ζ =
1

2

[
ln

1 + ρ

1− ρ

]
. (2.42)

These measures are readily estimated by the sample correlation r (for ρ), or its trans-
formed version z (for ζ) given by

z =
1

2

[
ln

1 + r

1− r

]
(2.43)

with respective approximate variances as (see Rao, 1973)

var(r) ∼ (1− ρ2)2/(n− 1)

var(z) ∼ 1/(n− 3). (2.44)

Large sample tests for H0 : ρ = 0 versus H1 : ρ 6= 0 are typically based on the
standardized normal statistics

Z1 =
r
√
n− 1

(1− r2)

Z2 = z
√
n− 3 (2.45)

and H0 is rejected if |Z1| (or |Z2|) exceeds zα/2, the upper α/2 cut-off point of the standard
normal distribution. Of course, if the alternative is one-sided, namely, H2 : ρ > 0, then

18



H0 is rejected if Z1 or Z2 exceeds zα, the upper α cut-off point of the standard normal
distribution. Again, if one is interested in constructing confidence intervals for ρ, it is
evident that, in large samples, the individual confidence intervals based on r for ρ and z
for ζ are given by

1− α = P

[
r −

zα/2 (1− r2)√
n− 1

≤ ρ ≤ r +
zα/2 (1− r2)√

n− 1

]
1− α = P

[
z −

zα/2√
n− 3

≤ ζ ≤ z +
zα/2√
n− 3

]
(2.46)

Clearly, the second equation above can be used to provide a confidence interval for ρ using
the relation between ρ and ζ.
Example 2.4. Let us consider the results of the seven studies reported below in Table
2.5.

Table 2.5. Studies of the Relationship between an Observation Measure of Teacher
Indirectness and Student Achievement

No. of Correlation 95% CI 95 % CI 95 % CI
Study teachers coefficient on ρ on ζ on ρ

r (re-transformed)
1 15 -0.073 [-0.594 , 0.448] [-0.639 , 0.493] [-0.564 , 0.456]
2 16 0.308 [-0.150 , 0.766] [-0.225 , 0.862] [-0.222 , 0.697]
3 15 0.481 [ 0.078 , 0.884] [-0.042 , 1.090] [-0.041 , 0.797]
4 16 0.428 [ 0.015 , 0.841] [-0.086 , 1.001] [-0.086 , 0.762]
5 15 0.180 [-0.327 , 0.687] [-0.384 , 0.748] [-0.366 , 0.634]
6 17 0.290 [-0.159 , 0.739] [-0.225 , 0.822] [-0.222 , 0.676]
7 15 0.400 [-0.040 , 0.840] [-0.142 , 0.989] [-0.141 , 0.757]

For the first study, we can test H0 : ρ = 0 versus H1 : ρ 6= 0 based on both Z1 and Z2.
A direct computation gives

Z1 = −0.275, z = −0.073, Z2 = −0.253. (2.47)

Taking α = 0.05, which means zα/2 = 1.96, we accept H0. To construct a confidence
interval for ρ with confidence level 0.95, we can use (2.46). The first equation gives
[−0.594 , 0.448] as the confidence interval for ρ. On the other hand, the second equation
yields [−0.639 , 0.493] as the confidence interval for ζ. Using (2.42), we convert this to the
interval for ρ as [−0.564 , 0.456]. A similar analysis can be carried out for all the other
studies. The results are given in Table 2.5 above.
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3 Combination of Tests

3.1 Introduction

Methodology for combining findings from repeated research studies did in fact begin with
the idea of combining independent tests back in the 1930’s (Tippett, 1931; Fisher, 1932;
Pearson, 1933). Here we provide a comprehensive review of the so-called omnibus or
nonparametric statistical methods for testing the significance of combined results.

All the methods of combining tests depend on what is known as a P-value. A key point
is that the observed P values derived from continuous test statistics follow a uniform
distribution under the null hypothesis regardless of the form of the test statistic, the
underlying testing problem, and the nature of the parent population from which samples
are drawn.

Quite generally, suppose X1, · · · , Xn is a random sample from a certain population
indexed by the parameter θ, and T (X1, · · · , Xn) is a test statistic for testing H0 : θ = θ0

against H1 : θ > θ0, where θ0 is a null value, and suppose also that H0 is rejected for large
values of T (x1, · · · , xn). Then if the (continuous) null distribution of T (X1, · · · , Xn) is
denoted by g(t), the (one-sided) P value based on T (X1, · · · , Xn) is defined as

P =

∫ ∞

T (x1,··· ,xn)

g(t)dt = P [T (X1, · · · , Xn) > T (x1, · · · , xn)|H0] (3.1)

which stands for the probability of observing as extreme a value of the statistic T (X1, · · · , Xn)
as the observed one T (x1, · · · , xn) under the null hypothesis. Here x1, · · · , xn denote the
observed realization of the Xi’s. Since the null hypothesis H0 is rejected for large values
of T (x1, · · · , xn), this is equivalent to rejecting H0 for small values of P .

In most meta analysis applications, the P values are computed from the approximate
normal distribution of the relevant test statistics. Thus, if T (X1, · · · , Xn) is approximately
normally distributed with mean µ(θ) and variance σ2(θ, n), the P value is computed as

P = P [T (X1, · · · , Xn) > T (x1, · · · , xn)|H0]

= P

[
N(0, 1) >

T (x1, · · · , xn)− µ(θ0)

σ(θ0, n)

]
. (3.2)

General principle:
Consider k different studies in which test problems H0i versus H1i are considered, i =
1, . . . , k.
A combined test procedure tests the global null hypothesis

H0 : All H0i true i = 1, . . . , k
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versus the alternative
H1 : Some of the H1i true

Note: The problem of selecting a test for H0 is complicated by the fact that there are
many different ways in which the omnibus null hypothesis H0 can be false.

Two general properties of a combined test procedure:

• admissibility
A combined test procedure is said to be admissible if it provides a (not necessarily
the only) most powerful test against some alternative hypothesis for combining some
collection of tests.

• monotonicity
A combined test procedure is said to be monotone if the combined test procedure
rejects the null hypothesis H0 for one set of P values and it must also reject the
hypothesis for any set of componentwise smaller P values.

Birnbaum (1954): every monotone combined test procedure is admissible and therefore
optimal for some testing situation.

3.2 Description of Combined Tests

Two broad classes of combined tests based on the P values:

• uniform distribution methods, e.g. Tippett’s method and Wilkinson’s method

• probability transformation methods, e.g. Stouffer’s method (inverse normal method),
a modified (weighted) Stouffer’s method, Fisher’s method, and logit method

Each of the methods described below satisfies the monotonicity principle and is there-
fore optimal for some testing situation.
Minimum P Method
Tippett’s (1931) minimum P test rejects the null hypothesis H0 if any of the k P values

is less than α∗, where α∗ = 1− (1− α)
1
k . In other words, we reject H0 if

min(P1, · · · ,Pk) = P[1] < α∗ = 1− (1− α)
1
k . (3.3)

Example 3.1
Consider the P values: 0.015, 0.077, 0.025, 0.045, 0.079. The minimum P value is
P[1]=0.015. With α = 0.05, the cut-off point is α∗ = 1 − (1 − 0.05)

1
5 =1 - 0.9898=

0.0102. Since P[1] = 0.015 > α∗ =0.0102, the minimum P test fails to reject H0 for this
set of data.
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Wilkinson’s method
This method, due to Wilkinson (1951), rejects H0 if the rth smallest P value, P[r], is small,
i.e., less than some c for some fixed r. Since under H0, P[r] follows a beta distribution
with the parameters r and k − r + 1, it is easy to determine the cut-off point c for this
test from the following equation:

α =

∫ c

0

ur−1(1− u)k−r

B(r, k − r + 1)
du (3.4)

where B(., .) is the usual beta function.
Example 3.2
Consider the same set of probabilities 0.015, 0.077, 0.025, 0.045, 0.079. Taking r = 2, a
direct computation shows c = 0.077. Since P[2] = 0.025, we reject H0. Similarly, we can
get c = 0.1892 for r = 3 and c = 0.3425 for r = 4, and since P[3] = 0.045 and P[4] = 0.077,
we reject H0 in all these cases.
Stouffer’s method
This method is due to Stouffer and his colleagues (Stouffer et al. 1949), also called inverse
normal method. It is based on the fact that the z value based on the P value, defined
as

z = Φ−1(P ) (3.5)

is a standard normal variable under the null hypothesis H0, where Φ(.) is the standard
normal cdf . Thus, when the P values P1, · · · , Pk are converted to the z values z1, · · · , zk,
we have iid standard normal variables under H0. The combined significance test is essen-
tially based on the sum of these z values, which has a normal distribution under the null
hypothesis with mean 0 and variance k. The test statistic

Z =
k∑

i=1

z(Pi)/
√
k (3.6)

is thus a standard normal variable under H0, and hence can be compared with the critical
values in the standard normal table. Since small P values correspond to small (in fact,
negative) z values, the combined test rejects H0 when Z is less than −zα, or, equivalently,
|Z| > zα.
Remark Some authors suggest to compute the z scores from the P values by using the
formula

z = Φ−1(1− P ). (3.7)

If this is done, the resulting Z value, say Z∗, will be large for small values of P , implying
thereby that H0 is rejected when Z∗ is large.
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Example 3.3 We can compute the value of the sum of z’s test for our small data set
given above in the above examples. First, we obtain the standard normal deviates for the
five P values, namely,

z(0.015) = −2.1701, z(0.077) = −1.4257, z(0.025) = −1.9601,
z(0.045) = −1.6961, z(0.079) = −1.4257

The z values are summed, giving
∑5

i=1 z(Pi) = −8.6637. The sum is divided by the
square root of k = 5, leading to the normal test statistic Z = −3.8745. |Z| is compared
with the critical value zα for a one-tailed test at α=0.05, which is 1.645. Thus, the sum
of z’s test also rejects H0 for this data set.
Fisher’s method
This method, which is a special case of the inverse chi-square transform, was described
by Fisher (1932), and is widely used in meta analysis. The method is based on the fact
that the variable −2 lnP is distributed as a chi-square variable with 2 degrees of freedom
under the null hypothesis whenever P has a uniform distribution. The sum of k of these
values is therefore a chi-square variable with 2k degrees of freedom under H0. The test
thus rejects H0 when −2

∑k
i=1 lnPi exceeds the 100(1−α)% critical value of the chi-square

distribution with 2k degrees of freedom.
Example 3.4
We compute the sum of logs statistic for the sample data set given above. First, we
compute the natural logarithm of each P value:

ln(0.015) = −4.1997, ln(0.077) = −2.5639, ln(0.025) = −3.6888,
ln(0.045) = −3.1011, ln(0.079) = −2.5383.

These values are summed and multiplied by -2. The value of the test statistic is −2 ×
(−16.0919) = 32.1839. We compare this value with α = 0.05 upper-tail critical value,
which is 18.307 for the chi-square distribution with 10 degrees of freedom. Therefore, we
reject H0 using Fisher’s procedure.
Logit Method
George (1977) proposed this method using the statistic

G = −
k∑

i=1

ln (Pi/(1− Pi))
[
kπ2(5k + 2)/3(5k + 4)

]−1/2
(3.8)

as another combined significance technique. The argument is that the logit (i.e., ln(P/(1−
P )) is distributed as a logistic variable under H0, and further that the distribution of the
sum of the logits, suitably normalized, is close to the t distribution. There are usually two
approximations of the null distribution of G which can be used. First, we can approximate
the null distribution of G with the t distribution based on (5k+4) degrees of freedom. The
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test based on this approximation rejects H0 if G exceeds the 100(1−α)% critical value of
the t distribution with (5k + 4) degrees of freedom. Another approximation is based on
the observation that, under H0, ln(Pi/(1−Pi)) could be viewed as approximately normal
with a zero mean and variance of π2/3. The test based on this approximation therefore
rejects H0 when

G∗ =
[
−

k∑
i=1

ln(Pi/(1− Pi))
] [

3/kπ2
]1/2

(3.9)

exceeds zα.
Example 3.5 We apply the logit test for the same data set as above. We first compute
the natural logarithm of (P/(1− P )) for each P value. The values are

ln(0.015/0.985) = −4.1846, ln(0.077/0.923) = −2.4838,
ln(0.025/0.075) = −3.6636, ln(0.045/0.955) = −3.0550,
ln(0.079/0.921) = −2.4560.

These values are summed, which gives
∑5

i=1 ln(Pi/(1 − Pi)) = −15.843. The sum is

multiplied by - [5π2(27)/(3× 29)]
−1/2

or −0.2555. The resultant test statistic is 4.048,
which is compared with the 100(1 − α) percentile point of the t distribution with 29
degrees of freedom. The critical value being 1.699 for α = 0.05, we reject H0 on the basis
of the logit method.

3.3 Comparisons of Methods, Criticism and Recommendations

There is no general recommendation for the choice of the combination method. All the
combination methods are optimal for some testing situations. Hedges and Olkin (1985)
summarize some results on the performance of the above combination methods consid-
ering criteria as admissibility, monotonicity, and Bahadur-efficiency. They conclude that
Fisher’s test is perhaps the best one to use if there is no indication of particular alterna-
tives.

Marden (1991) introduces the notions sensitivity and sturdiness to compare the per-
formance of combination test procedures. Based on five combination methods, namely
minimum P , maximum P (Wilkinson’s test with largest P -value), sum of P ’s, sum of
logs, and sum of z’s, again Fisher’s test turns out best.
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Example 3.6
The following example is taken from Draper et al. (1992).

Table 3.1. Number of patients and mortality rate from all causes, for six trials com-
paring the use of aspirin and placebo by patients following a heart attack

Aspirin Placebo Comparison
No. of Mort. No. of Mort. Diff SE

Study Pat. Rate Pat. Rate (%) Diff Zi Pi

(%) (%)
UK-1 615 7.97 624 10.74 2.77 1.65 1.68 0.047
CDPA 758 5.80 771 8.30 2.50 1.31 1.91 0.028
GAMS 317 8.52 309 10.36 1.84 2.34 0.79 0.216
UK-2 832 12.26 850 14.82 2.56 1.67 1.54 0.062
PARIS 810 10.49 406 12.81 2.31 1.98 1.17 0.129
AMIS 2267 10.85 2257 9.70 -1.15 0.90 -1.27 0.898

The first five trials are in remarkable agreement with each other. However, the last
study (AMIS) is by far the largest, and its large P value runs counter to the small values
from the other five studies.

Let us first combine only the P values of the first five studies and use Tippett’s
(Minimum P ) and Fisher’s method. The smallest P value is 0.028 and, with α = 0.05,

the cut-off point is α∗ = 1− (1− 0.05)
1
5 = 1− 0.9898 = 0.0102. Consequently, we cannot

reject the null hypothesis. The corresponding P value of Tippett’s method is 0.1324.
Using Fisher’s method, the value of the test statistic is 25.988 and, with α = 0.05, the
cut-off point of the χ2-distribution with 10 degrees of freedom is 18.307. We reject the
null hypothesis based on Fisher’s method. The corresponding P value is 0.0038. The two
methods disagree markedly with respect to statistical significance.

Including the AMIS trial, the smallest P value is again 0.028 and the cut-off point
is now 1 − (1 − 0.05)

1
6 = 0.0085. The value of Fisher’s test statistic is 26.204 and, with

α = 0.05, the cut-off point of the χ2-distribution with 12 degrees of freedom is 21.026.
Again, the two methods disagree markedly with respect to statistical significance. Still
more important, the corresponding P values of Tippett’s and Fisher’s method, 0.1567
and 0.01, do not differ so much from the results for the first five studies although the
combined sample size is increased from 6292 to 10816, that is, by 72% and dramatically
different results were observed.

Combining P values can lead to incorrect conclusions because

• acceptance or rejection can depend more on the choice of the statistic than on the
data,

• the information in a highly informative experiment can be masked, and thereby
largely disregarded.
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Recommendations:
A P value itself is not as informative as the estimate and standard error on which it is
based. If this more complete summary information about a study is available, it makes
good sense to use it and avoid P values altogether. However, methods that combine P
values have their place when such precise information is unavailable.
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4 Methods of Combining Effect Sizes

Here we describe the standard methods of combining effect sizes from various independent
studies for both point estimation as well as confidence interval estimation. We refer to
Rosenthal (1994) for further reading.

The general principle is the following. Consider k independent studies with the ith
study resulting in the estimated effect size Ti, which is an estimate of the population effect
size θi, and suppose σ̂2(Ti) is the estimated variance of Ti, i = 1, · · · , k. Usually, Ti is based
on a random sample of size ni from the ith population or study, and, in large samples,
Ti has an approximate normal distribution with mean θi and variance σ2(Ti) = σ2

(θi;ni)
.

In most cases the variance σ2
(θi;ni)

indeed depends on θi so that it is unknown, and σ̂2(Ti)

represents an estimate of σ2
(θi;ni)

. In some cases, Ti may be stochastically independent of

σ̂2(Ti).
We assume that

θ1 = · · · = θk = θ (4.1)

where θ denotes the common population effect size. Then a combined estimate of θ is
given by a weighted combination of the Ti’s, namely,

θ̂ =

∑k
i=1wiTi∑k
i=1wi

(4.2)

where wi is a nonnegative weight assigned to the ith study. This very general method
of linearly combining Ti’s to derive an estimate of a common mean effect dates back to
Cochran (1937). Clearly, for any choice of the nonstochastic weights wi’s, θ̂ is an unbiased
estimate of θ, and the weights which make var(θ̂) the smallest are given by

wi = 1/σ2
(θi;ni)

, i = 1, · · · , k. (4.3)

However, the above optimum weights are typically unknown since the variances σ2
(θi;ni)

will usually be unknown, and hence cannot be used. When σ2
(θi;ni)

is estimated and thus

replaced by σ̂2(Ti), this results in the special weighted combination

θ̃ =

∑k
i=1 Ti/σ̂

2(Ti)∑k
i=1 1/σ̂2(Ti)

(4.4)

with the estimated var(θ̃) as

σ̂2(θ̃) = v̂ar(θ̃) =
1∑k

i=1 1/σ̂2(Ti)
. (4.5)
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More generally, we can also attach a quality index qi to the ith study along with the
nonnegative weights wi’s, thus yielding an unbiased estimate of θ given by

θ̂∗ =

∑k
i=1 qi wi Ti∑k

i=1 qi wi

(4.6)

with its estimated variance as

σ̂2(θ̂∗) = v̂ar(θ̂∗) =

∑k
i=1 q

2
i w

2
i σ̂

2(Ti)(∑k
i=1 qi wi

)2 . (4.7)

In any event, when a combined estimate of θ, say T , is thus derived along with its
estimated standard error given by σ̂(T ), a confidence interval for θ with confidence level
(1− α) is approximated by

LB = T − zα/2 σ̂(T ), UB = T + zα/2 σ̂(T ) (4.8)

where zα/2 is the upper α/2 cut-off point obtained from a standard normal table. More-
over, if the above confidence interval does not contain 0, we reject the null hypothesis
H0 : θ = 0 at level α in favor of the alternative H1 : θ 6= 0. Equivalently, we may test the
null hypothesis H0 : θ = 0 at level α against the alternative H1 : θ 6= 0 by rejecting H0 if

|Z| = |T |
σ̂(T )

> zα/2. (4.9)

Finally, based on the data from k studies, we can also test the validity of the as-
sumption (4.1) by using a chi-square test. Using θ̃, this test is based on the large sample
chi-square statistic (Cochran, 1937)

χ2 =
k∑

i=1

(Ti − θ̃)2

σ̂2(Ti)
=

k∑
i=1

T 2
i

σ̂2(Ti)
− (
∑k

i=1 Ti/σ̂
2(Ti))

2∑k
i=1 1/σ̂2(Ti)

, (4.10)

and we reject H0 if χ2 > χ2
k−1,α.

We now discuss a few examples to illustrate the applications of the above methods.
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Example 4.1. We refer to the data set below dealing with validity correlation studies.

Table 4.1. Validity Studies Correlation Student Ratings of the Instructor
with Student Achievement

Study n r Study n r
1 10 0.68 11 36 -0.11
2 20 0.56 12 75 0.27
3 13 0.23 13 33 0.26
4 22 0.64 14 121 0.40
5 28 0.49 15 37 0.49
6 12 -0.04 16 14 0.51
7 12 0.49 17 40 0.40
8 36 0.33 18 16 0.34
9 19 0.58 19 14 0.42
10 12 0.18 20 20 0.16

For this data set, using ri as Ti and recalling that v̂ar(ri) = σ̂2(Ti) = (1− r2
i )

2/(ni −
1), we obtain

∑20
i=1 Ti/σ̂

2(Ti) = 337.002,
∑20

i=1 1/σ̂2(Ti) = 847.185,
∑20

i=1 T
2
i /σ̂

2(Ti) =
159.687. This leads to

θ̃ =

[
20∑
i=1

Ti/σ̂
2(Ti)

]
/

[
20∑
i=1

1/σ̂2(Ti)

]
= 0.3978 (4.11)

and

v̂ar(θ̃) = 1/

[
20∑
i=1

1/σ̂2(Ti)

]
= 0.00118. (4.12)
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Moreover, taking α = 0.05, we get

LB = θ̃ − 1.96

√
v̂ar(θ̃) = 0.3305, UB = θ̃ + 1.96

√
v̂ar(θ̃) = 0.4651. (4.13)

For testing H0 : θ = 0, we compute |Z| = 11.58, which implies we reject H0 at level 0.05.
Finally, the test for homogeneity of the θi’s is carried out by computing χ2 = 25.65, which
when compared with the table value 30.14 of χ2 with 19 df leads to acceptance of the
assumption (4.1).

Using Fisher’s z–transformation for this data set, that is,
zi = 0.5 ln ((1 + ri)/(1− ri)), and recalling that v̂ar(zi) = σ̂2(zi) = 1/(ni − 3), we obtain∑20

i=1 zi/σ̂
2(zi) = 201.3513,

∑20
i=1 1/σ̂2(zi) = 530,

∑20
i=1 z

2
i /σ̂

2(zi) = 97.4695. This leads to

ζ̃ =
[ 20∑

i=1

zi/σ̂
2(zi)

]
/
[ 20∑

i=1

1/σ̂2(zi)
]

= 0.3799 (4.14)

and

v̂ar(ζ̃) = 1/
[ 20∑

i=1

1/σ̂2(zi)
]

= 0.00189. (4.15)

Moreover, taking α = 0.05, we get

LB = ζ̃ − 1.96

√
v̂ar(ζ̃) = 0.2948, UB = ζ̃ + 1.96

√
v̂ar(ζ̃) = 0.4650. (4.16)

For testing H0 : ζ = 0, we compute |Z| = 8.74, which implies we reject H0 at level 0.05.
Finally, the test for homogeneity of the ζi’s is carried out by computing χ2 = 20.97, which
when compared with the table value 30.14 of χ2 with 19 df leads to acceptance of the
assumption (4.1).

Converting results from (4.14) and (4.16), we obtain θ̃ = 0.3626 with 95% confidence
interval [0.2865, 0.4342].

Example 4.2. Here we examine the data reported in Meier (1953) about the percentage
of albumin in plasma protein in human subjects.

Table 4.2. Percentage of albumin in plasma protein

Experiment ni Mean Variance 95% CI
s2

i on mean
A 12 62.3 12.986 [60.0104 , 64.5896]
B 15 60.3 7.840 [58.7494 , 61.8506]
C 7 59.5 33.433 [54.1524 , 64.8476]
D 16 61.5 18.513 [59.2073 , 63.7927]
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For this data set, using the mean as Ti and the variance of Ti as σ̂2(Ti) = s2
i /ni,

we obtain
∑4

i=1 Ti/σ̂
2(Ti) = 238.5492,

∑4
i=1 1/σ̂2(Ti) = 3.9110, and

∑4
i=1 T

2
i /σ̂

2(Ti) =
14553.47. This leads to

θ̃ =

[
4∑

i=1

Ti/σ̂
2(Ti)

] / [ 4∑
i=1

1/σ̂2(Ti)

]
= 60.9949 (4.17)

and

v̂ar(θ̃) = 1
/ [ 4∑

i=1

1/σ̂2(Ti)

]
= 0.2557. (4.18)

Moreover, taking α = 0.05, we get

LB = θ̃ − 1.96

√
v̂ar(θ̃) = 60.0038, UB = θ̃ + 1.96

√
v̂ar(θ̃) = 61.9860. (4.19)

Finally, the test for homogeneity of the θi’s is carried out by computing χ2 = 3.1862,
which when compared with the table value 7.815 of χ2 with 3 df leads to acceptance of
the assumption (4.1).

Example 4.3. This data are quoted from Eberhardt et al. (1989) and deal with the
problem of estimation of mean Selenium in non-fat milk powder by combining the results
of four methods.

Table 4.3. Selenium in non-fat milk powder

Methods ni Mean Variance 95% CI
s2

i on mean
Atomic absorption spectrometry 8 105.0 85.711 [ 97.2601 , 112.7399]
Neutron activation:
1). Instrumental 12 109.75 20.748 [106.8559 , 112.6441]
2). Radiochemical 14 109.5 2.729 [108.5462 , 110.4538]
Isotope dilution mass spectrometry 8 113.25 33.640 [108.4011 , 118.0989]

For this data set, using the mean as Ti and the variance as σ̂2(Ti) = s2
i /ni, we obtain∑4

i=1 Ti/σ̂
2(Ti) = 661.9528,

∑4
i=1 1/σ̂2(Ti) = 6.0396, and

∑4
i=1 T

2
i /σ̂

2(Ti) = 72556.6.
This leads to

θ̃ =

[
4∑

i=1

Ti/σ̂
2(Ti)

] / [ 4∑
i=1

1/σ̂2(Ti)

]
= 109.6021 (4.20)
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and

v̂ar(θ̃) = 1/[
4∑

i=1

1/σ̂2(Ti)] = 0.1656. (4.21)

Moreover, taking α = 0.05, we get

LB = θ̃ − 1.96

√
v̂ar(θ̃) = 108.8045, UB = θ̃ + 1.96

√
v̂ar(θ̃) = 110.3996. (4.22)

Finally, the test for homogeneity of the θi’s is carried out by computing χ2 = 5.2076,
which when compared with the table value 7.815 of χ2 with 3 df leads to acceptance of
the assumption (4.1).
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5 Inference about a Common Mean of Normal Pop-

ulations

In this lecture we consider a very special kind of a meta analysis problem, namely, sta-
tistical inference about the common mean of several univariate normal populations with
unknown and possibly unequal variances, and provide a review of this rich literature.

One of the oldest and interesting problems in statistical meta analysis is inference
about a common mean of several univariate normal populations with unknown and possi-
bly unequal variances. The motivation of this problem comes from a balanced incomplete
block design (BIBD) with uncorrelated random block effects and fixed treatment effects.
In this set up, one has two estimates—namely, the intra-block estimate τ̂ and the inter-
block estimate τ̃ of the vector τ of treatment contrasts. Under the usual assumption
of normality and independence, τ̂ and τ̃ are independent, following normal distributions
with a common mean vector τ but unknown and unequal intra-block and inter-block vari-
ances (see Montgomery (1991), p:184-186). The problem thus is to derive an estimate
of τ on the basis of τ̂ and τ̃ , and also to provide some tests for hypotheses concerning
this common vector of treatment contrasts. This, of course, is a multivariate version of
the standard univariate common mean problem which is the subject of discussion of this
chapter. The special case of two populations with equal sample sizes is treated with some
details.

Another feature of this meta analysis problem which makes it distinct is that it does
not correspond to the usual set up of combining data from different studies taking place at
different sources which are not controlled by the statistician. Rather, here the experiments
are designed to provide duplicate information about a parameter. Our two examples
presented later in this lecture will make this point clear.

This lecture is organized as follows. After some preliminary discussion about the model
and the inference problem in this section, we consider in section 5.1 the problem of point
estimation of the common mean in details. An asymptotic comparison of some selected
estimates of the common mean in the case of two normal populations with equal sample
sizes is provided in section 5.2. This section also contains a discussion about the Bayes
estimate of µ under Jeffrey’s invariant prior. The related problem of test and confidence
interval of the common mean is taken up in section 5.3. Two illustrative examples showing
computations of our proposed methods are mentioned in section 5.4. We end this lecture
with an Appendix containing some technical details.

To be specific, let us assume that in general there are k independent univariate normal
populations where the ith population follows N(µ, σ2

i ) distribution, µ ∈ <, σ2
i > 0, 1 ≤

i ≤ k. Let Xij, j = 1, 2, . . . , ni (ni ≥ 2) be iid observations from the ith population,
1 ≤ i ≤ k. Define X̄i and S2

i as
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X̄i =
1

ni

ni∑
j=1

Xij and S2
i =

1

(ni − 1)

ni∑
j=1

(Xij − X̄i)
2, 1 ≤ i ≤ k. (5.1)

Note that (X̄i, S
2
i , 1 ≤ i ≤ k) is minimal sufficient for (µ, σ2

1, · · · , σ2
k) even though it is

not complete. Observe that

X̄i ∼ N(µ,
σ2

i

ni

), (ni − 1)S2
i ∼ σ2

i χ
2
ni−1, 1 ≤ i ≤ k (5.2)

and they are all mutually independent.
Estimation of the common mean µ in the above context has drawn the attention

of many researchers over the last four decades from both classical as well as decision
theoretic point of view. We now provide a brief historical perspective of the problem of
point estimation of µ.

If the population variances (σ2
1, · · · , σ2

k) are completely known, then the maximum
likelihood estimator (MLE) of µ is given as

µ̂(σ2
1, · · · , σ2

k) =
k∑

i=1

ni

σ2
i

X̄i

/
k∑

i=1

ni

σ2
i

. (5.3)

The above estimator is also the unique minimum variance unbiased estimator (UMVUE)
under normality as well as the best linear unbiased estimator (BLUE) without normality
for estimating µ. Note that in the two populations case and for equal sample sizes ( i.e.,
k = 2 and n1 = n2 = n ) we only need to know τ = σ2

2/σ
2
1 (apart from X̄1 and X̄2 ) to

obtain µ̂(σ2
1, σ

2
2).

If the population variances are completely unknown, the estimation of the common
mean µ becomes nontrivial and more interesting. One can try to find the MLEs of
µ, σ2

1, · · · , σ2
k by solving the following system of equations:

µ̂
k∑

i=1

ni

σ̂2
i

=
k∑

i=1

ni

σ̂2
i

X̄i and σ̂2
i =

1

ni

ni∑
j=1

(Xij − µ̂)2, 1 ≤ i ≤ k. (5.4)

Clearly the MLE of µ does not have a closed form. However, one can obtain an estimator
of µ from the expression (5.3) by replacing σ2

i by σ̂2
i = S2

i . The estimator of µ thus
obtained is the well known Graybill-Deal estimator given by

µ̂GD =
k∑

i=1

ni

S2
i

X̄i

/
k∑

i=1

ni

S2
i

. (5.5)
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Using the mutual independence of X̄i’s and Si’s, it is readily verified that µ̂GD is an
unbiased estimator of µ.

Even though Graybill and Deal (1959) pioneered the research on common mean es-
timation, it is probably due to Zacks (1966, 1970) that many researchers paid attention
to this age old problem, especially from a decision theoretic point of view. Zacks (1966,
1970) was motivated by the applications and in his own words — “ · · · The best of my
papers were motivated by consulting problems. · · · In 1963, I was approached by a soil
engineer. He wanted to estimate the common mean of two populations and he didn’t
know anything about the variances. But, a priori from his theory he said that the means
should be same, and here are the two samples from two different soils. So I thought about
this problem a little bit and I started to investigate. I realized that there is room for
innovation · · · ” (see ‘Research-How to do it : A panel discussion’ by Kempthorne et al.
(1991)).

A good amount of work has been done dealing with the properties of µ̂GD or its
variations in relation to other estimators. In the next section we review this literature
from both classical as well as decision theoretic point of view.

5.1 Results on common mean estimation

Broadly speaking, the research on common mean estimation can be categorized as:

(i) a small sample comparison of µ̂GD with other estimators;
(ii) properties of µ̂GD.

We address the above two categories separately.

5.1.1 Small sample comparison of µ̂GD with other estimators

Note that the estimator µ̂GD is unbiased for µ. But since µ̂GD uses sufficient statistics, it
is expected that this estimator should have smaller variance than the individual sample
means. Obviously

V (X̄i) =
σ2

i

ni

, 1 ≤ i ≤ k;

and a standard conditional argument yields

V (µ̂GD) = E {V (µ̂GD|S1, · · · , Sk)}+ V {E(µ̂GD|S1, · · · , Sk)}

= E

{ k∑
i=1

niσ
2
i

S4
i

}/{
k∑

i=1

ni

S2
i

}2
 . (5.6)
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The exact variance expression of µ̂GD (the expectation in (5.6)) is not easy to get.
However Khatri and Shah (1974) derived this exact variance for k = 2 in an infinite
series form involving hypergeometric functions. Unfortunately, this infinite series form has
little use when one wants to compare V (µ̂GD) against individual sample mean variances
(σ2

i /ni, 1 ≤ i ≤ k). For the two populations case (k = 2), Graybill and Deal (1959) were
the first to derive necessary and sufficient conditions such that

V (µ̂GD) ≤ σ2
i

ni

, 1 ≤ i ≤ k and for all σ2
1, · · · , σ2

k. (5.7)

The following result is due to Graybill and Deal (1959).
Proposition 5.1. For k = 2, the inequality (5.7) holds if and only if ni ≥ 11, i = 1, 2.

The implication of the above result is far reaching. If either n1 or n2 is less than 11,
then µ̂GD does not have a uniformly smaller variance than X̄1 or X̄2 ( i.e., X̄1 or X̄2 can
sometimes be better than µ̂GD in terms of variance). This was later extended by Norwood
and Hinkelmann (1977) for k populations, which is stated below.
Proposition 5.2. The inequality (5.7) holds if and only if
(a) ni ≥ 11 ∀ i; or
(b) ni = 10 for some i and nj ≥ 19 ∀ j 6= i.

It is possible to generalize the Proposition 5.2 further by considering a more general
common mean estimator of µ of the form

µ̂c =

{
k∑

i=1

cini

S2
i

X̄i

}/{
k∑

i=1

cini

S2
i

}
(5.8)

where c = (c1, · · · , ck) is a vector of nonnegative real constants. Obviously c = (1, · · · , 1)
produces the estimator µ̂GD. The following result which is an extension of Proposition
5.2 is due to Khatri and Shah (1974) (for k = 2) and Shinozaki (1978) (for general k).
Proposition 5.3. The estimator µ̂c in (5.8) has a uniformly smaller variance than each
X̄i if and only if

(a)
cj
ci
≤ 2

(ni − 1)(nj − 5)

(ni + 1)(nj − 1)
∀ i 6= j;

(b) ni ≥ 8 ∀ i; and

(c) (ni − 7)(nj − 7) ≥ 16 ∀i 6= j.

Even though the estimators in (5.8) are more general than µ̂GD, for all practical
purposes µ̂GD seems to be the most natural choice in this class. This is more obvious
when the sample sizes are all equal, i.e., when n1 = · · · = nk = n (say), because then the
Proposition 5.3 implies that V (µ̂GD) ≤ σ2

i /n ∀ i if and only if n ≥ 11.
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A question which arises naturally is : ‘Is it possible to improve over X̄i (1 ≤ i ≤ k)
for smaller sample sizes by using estimators other than µ̂GD ?’ Investigation on unbiased
estimators other than µ̂GD was stimulated by the works of Cohen and Sackrowitz (1974),
and Brown and Cohen (1974).

Cohen and Sackrowitz (1974) considered the simple case of k = 2 and n1 = n2 = n.
Define T = S2

2/S
2
1 and

Gn(T ) = 2F1(1, (3− n)/2; (n− 1)/2;T ) for 0 ≤ T ≤ 1;

= ((n− 3)/(n− 1))T−1
2F1(1, (5− n)/2; (n+ 1)/2;T−1) for T > 1.

(5.9)

where 2F1 is a hypergeometric function
Proposition 5.4. For k = 2 and n1 = n2 = n, consider the common mean estimator

µ̂(an) = (1− anGn(T ))X̄1 + anGn(T )X̄2 (5.10)

where an = (n−3)2/((n+1)(n−1)) for n odd; = (n−4)/(n+2) for n even. The estimator
µ̂(an) is unbiased and minimax for all n ≥ 5. Also, the estimator µ̂(1) (i.e., replace an by
1) is better than both X̄1 and X̄2 for n ≥ 10.

As n → ∞, Gn(T ) → (1 + T )−1 and an → 1. Therefore, the weights given to the
sample means in (5.10) are converging strongly to the optimal weights in the case where
the variances are known. Hence, for large values of n, the estimator µ̂(an) is essentially
the same as the estimator µ̂GD. Note that µ̂(an) is better than X̄1 for n ≥ 5, whereas µ̂GD

is not better than either X̄1 or X̄2 for n < 11. For n = 10, µ̂(1) has a smaller variance
than X̄i(i = 1, 2) and this is clearly an advantage over µ̂GD. Cohen and Sackrowitz (1974)
also provided some other type of unbiased estimators which are better than X̄1 only for
n ≥ 5.

Brown and Cohen (1974) considered the case of unequal sample sizes for k = 2 and
obtained the following result.
Proposition 5.5. Assume k = 2 and n1, n2 ≥ 2. The estimator

µ̂a = X̄1 + a(X̄2 − X̄1)

(
S2

1

n1

)/{
S2

1

n1

+
(n2 − 1)S2

2

n2(n2 + 2)
+

(X̄1 − X̄2)
2

(n2 + 2)

}
(5.11)

is unbiased and has a smaller variance than X̄1 provided n2 ≥ 3 and 0 < a ≤ a(n1, n2)
where a(n1, n2) = 2(n2 + 2)/[nE{max(V −1, V −2)}], where V has F distribution with
(n2 + 2) and (n1 − 1) dfs.
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Exact values of a(n1, n2) are given in Brown and Cohen (1974) for selected values of
(n1, n2). It was also shown that when n2 = 2 the estimator µ̂a in (5.11) is not better
than X̄1 uniformly for any value of a. Brown and Cohen (1974) also considered a slight
variation of (5.11) of the form

µ̂a = X̄1 + a(X̄2 − X̄1)

(
S1

n1

)/{
S1

n1

+
S2

n2

}
(5.12)

and showed that µ̂a has a smaller variance than X̄1 for n1 ≥ 2 and n2 ≥ 6 whenever
0 < a < a(n1, n2 − 3).

Unification of all the results presented above appears in an excellent paper by Bhat-
tacharya (1980).

For the two populations equal sample size case, Zacks (1966) considered two quite
different classes of estimators. Note that in a decision theoretic set up under the loss
function (µ̂ − µ)2/max(σ2

1, σ
2
2), the grand mean X̄ = (X̄1 + X̄2)/2 is admissible as well

as minimax (a more general result is due to Kubokawa (1990)). Zacks (1966) combined
µ̂GD and X̄ to generate the following two classes of randomized estimators:

µ̂(τo) = I(T, τo)X̄ + {1− I(T, τo)} µ̂GD (5.13)

and

µ̃(τo) = I(T, τo)X̄ + J1(T, τo)X̄1 + J2(T, τo)X̄2 (5.14)

where

I(T, τo) =

{
1 if τ−1

o ≤ T ≤ τo
0 otherwise;

J1(T, τo) =

{
1 if T > τ−1

o

0 otherwise;

J2(T, τo) =

{
1 if T < τ−1

o

0 otherwise;

and τo ∈ [0,∞) is a known constant. The values of τo both in µ̂(τo) and in µ̃(τo) are
the critical values of the F−tests of significance (to compare the variances), according
to which one decides whether to apply the estimators X̄, µ̂GD, X̄1 or X̄2. Zacks (1966)
provided variance and efficiency expressions of µ̂(τo) and µ̃(τo). Somewhat similar classes
of estimators have been considered by Mehta and Gurland (1969), but these estimators
have very little practical importance.

We now direct our discussion to the second aspect of the problem.
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5.1.2 Properties of µ̂GD

Earlier we have seen the variance expression of the unbiased estimator µ̂GD (see (5.6)).
The exact probability distribution of µ̂GD is somewhat complicated. However, for k = 2
and n1 = n2 = n, Nair (1980) gave an approximate cdf of µ̂GD. But for general k
if we can find an unbiased estimator V̂ (µ̂GD) of V (µ̂GD) then the studentized version

(µ̂GD − µ)/

√
V̂ (µ̂GD) follows N(0, 1) asymptotically (i.e., as min1≤i≤k ni → ∞ ). This

can be used for testing as well as interval estimation of µ.
Finding an unbiased estimator V̂ (µ̂GD) of V (µ̂GD) is not an easy task. From the

expression (5.6), it is enough to have real valued functions ψi = ψi(S
2
1 , · · · , S2

k), 1 ≤ i ≤ k
such that

E(ψi) = σ2
iE

{S2
i

k∑
j=1

nj

S2
j

}−2


so that an unbiased estimator of V (µ̂GD) is obtained as

V̂ (µ̂GD) =
k∑

i=1

niψi. (5.15)

Making use of Haff’s (1979) Wishart identity for the univariate case, Sinha (1985)
derived the expression for ψi with the following form

ψi = lim
m→∞

ψi,m , where

ψi,m =
m−1∑
l=0

S
2(l+1)
i 2l(l + 1)!Al

(−i)

(ni + 1)[l](ni + A(−i)S2
i )

l+2
, m ≥ l (5.16)

with A(−i) =
∑

j 6=i nj/S
2
j and (ni + 1)[l] = (ni + 1) · · · (ni + 2l − 1) for l ≥ 1; = 1 for

l = 0, i = 1, 2, · · · , k. The following result which approximates V̂ (µ̂GD) is due to Sinha
(1985).
Proposition 5.6. Let n = min1≤i≤k(ni). Then using ψi,m as in (5.16),∣∣∣∣∣E

(
k∑

i=1

niψi,m

)
− V (µ̂GD)

∣∣∣∣∣ = O(n−(m+1)).

Using the above result, we get (µ̂GD − µ)/
√∑k

i=1 niψi,m ∼ N(0, 1) as n→∞. A first

order approximation to V̂ (µ̂GD), say V̂(1)(µ̂GD), is obtained as (by taking m = 1)

V̂(1)(µ̂GD) =

(
k∑

i=1

ni

S2
i

)−1 [
1 + 4

k∑
i=1

ni

(n1 + 1)S2
i

/{
k∑

i=1

ni

S2
i

− n2
i /S

4
i

(
∑k

i=1 ni/S2
i )

2

}]
(5.17)

39



which is comparable to the approximation

V̂ (µ̂GD) ≈

(
k∑

i=1

ni

S2
i

)−1 [
1 + 4

k∑
i=1

ni

(n1 − 1)S2
i

/{
k∑

i=1

ni

S2
i

− n2
i /S

4
i

(
∑k

i=1 ni/S2
i )

2

}]
(5.18)

due to Meier (1953).
Decision theoretic estimation of the common mean has been addressed by several

authors. Zacks (1966) pointed out for k = 2 and n1 = n2 that while X̄1 is minimax under
the loss function (µ̂ − µ)2/σ2

1, a minimax estimator for the loss (µ̂ − µ)2/max(σ2
1, σ

2
1) is

not X̄1 but X̄ = (X̄1 + X̄2)/2. Kubokawa (1990) extended this result for general k and
showed the minimaxity as well as admissibility of the grand mean X̄ =

∑k
i=1 X̄i/k under

the loss function (µ̂ − µ)2/(max1≤i≤k σ2
i ). Zacks (1970) also derived Bayes and fiducial

equivariant estimators for k = 2 and gave their variance expressions.
It may be mentioned that, under the standard squared error loss function (µ̂−µ)2, the

exact admissibility (or otherwise) of µ̂GD is still an open problem. Minimax estimation
under the loss (µ̂ − µ)2 is not meaningful since estimators have unbounded risks under
this loss.

Sinha and Mouqadem (1982) considered the special case k = 2 and n1 = n2 = n and
obtained some restricted admissibility results for µ̂GD. Note that µ̂GD can be written as
(with k = 2 and n1 = n2 = n)

µ̂GD = X̄1 + (X̄2 − X̄2)

(
S2

1

S2
1 + S2

2

)
(5.19)

which is affine equivariant (i.e., equivariant under the group of transformations
(X̄1, X̄2, S

2
1 , S

2
2) → (aX̄1 + b, aX̄2 + b, a2S2

1 , a
2S2

2), a > 0, b ∈ <). Let D = (X̄2 − X̄1) and
define the following four classes of estimators

Co =
{
µ̂ | µ̂ = X̄1 +Dφo, 0 ≤ φo(S

2
2/S

2
1) ≤ 1

}
; (5.20)

C1 =
{
µ̂ | µ̂ = X̄1 +Dφ1, 0 ≤ φ1(S

2
1 , S

2
2) ≤ 1

}
; (5.21)

C2 =
{
µ̂ | µ̂ = X̄1 +Dφ2, 0 ≤ φ2(S

2
1/D

2, S2
2/D

2) ≤ 1
}

; (5.22)

C =
{
µ̂ | µ̂ = X̄1 +Dφ, 0 ≤ φ(S2

1 , S
2
2 , D

2) ≤ 1
}
. (5.23)

Clearly, Co ⊂ C1 ⊂ C and Co ⊂ C2 ⊂ C. The classes Co and C2 are equivariant under
affine transformations whereas the estimators in C1 and C are equivariant under location
transformations only. The following result is due to Sinha and Mouqadem (1982).
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Proposition 5.7. (a) The estimator µ̂GD is admissible in Co and C2.
(b) The estimator µ̂GD is extended admissible in C for n ≥ 5, i.e., there does not exist
any µ̂ such that E(µ̂− µ)2 ≤ V (µ̂GD)− ε for all σ2

1, σ
2
2 and for any ε > 0

(c) An estimator of the form

µ̂ = X̄1 +D

(
S2

1 + c1
S2

1 + S2
2 + c1 + c2

)
is admissible in C1 for any c1, c2 > 0.

Extended admissibility of µ̂GD in C is a strong indication of the true admissibility of
µ̂GD in C, although this is still open. Incidentally, any estimator µ̂ ∈ C has variance given
by

V (µ̂) =
σ2

1σ
2
2

n(σ2
1 + σ2

2)
+ E

{
D2

(
φ− σ2

1

σ2
1 + σ2

2

)2
}
. (5.24)

If we impose the condition thatD is independent of φ, then µ̂ ∈ C becomes an unbiased
estimator of µ with variance

V (µ̂) =
σ2

1σ
2
2

n(σ2
1 + σ2

2)
+

(σ2
1 + σ2

2)

n
E

{(
φ− σ2

1

σ2
1 + σ2

2

)2
}
. (5.25)

Therefore, in this context performance of an unbiased estimator µ̂ ∈ C can be judged
by the performance of an estimator φ of σ2

1/(σ
2
1 + σ2

2) which is a rather interesting obser-
vation. It is clear from the previous discussion that quite generally we can characterize
the unbiased estimators of µ as

µ̂(h1, h2) = X̄1 +Dh1(D)φ
(
S2

1 , S
2
2 , h2(D)

)
(5.26)

where hi(D), i = 1, 2, are any two even functions. Variance of µ̂(h1, h2) is given as

V (µ̂(h1, h2)) =
σ2

1σ
2
2

n(σ2
1 + σ2

2)
+ E

[
D2

{
h1φ−

σ2
1

σ2
1 + σ2

2

}2
]
. (5.27)

Even though the admissibility of µ̂GD seems a near certainty, it is inadmissible if we
have some prior knowledge about the unknown variances. Consider the simple case of
k = 2 and n1 = n2 = n. If it is found out (after data collection) that σ2

1 ≤ σ2
2 (which

can be checked through a suitable hypothesis testing) then one can construct a better
estimator of µ as shown by Sinha (1979).
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Proposition 5.8. Assume σ2
1 ≤ σ2

2. For k = 2 and n1 = n2 = n, define

µ̂∗ = X̄1 + (X̄2 − X̄1) min

{
1

2
,

S2
1

S2
1 + S2

2

}
.

Then (a) µ̂∗ is an unbiased estimator of µ; and (b) V (µ̂∗) ≤ V (µ̂GD), ∀σ2
1 ≤ σ2

2.
For unequal sample sizes n1 and n2 one can have a similar result provided σ2

1/n1 ≤
σ2

2/n2.

5.2 Asymptotic comparison of some estimates of common mean
for k = 2

In this section we present some recent results due to Mitra and Sinha (2007) on an
asymptotic comparison of some selected estimates of the common mean µ for k = 2 and
n1 = n2 = n.

Let Cu be the general class of unbiased estimates of µ, defined as Cu = {µ̂φ : µ̂ =
x̄+Dφ(s2

1, s
2
2, D

2)} whereD = ȳ−x̄. Note that E[D|D2] = 0 [Khuri, A.I., Mathew, T. and
Sinha, B.K.(1998), Lemma 7.5.3, page 194-195], which implies that all estimates of µ in Cu

are unbiased. We also consider a subclass of Cu defined as C0 = {µ̂φ0 : µ̂ = x̄+Dφ0(s
2
1, s

2
2)}.

Here we assume that both φ and φ0 are smooth in the sense that they admit enough order
derivatives with respect to their arguments.

Four popular estimates of µ in this context are given below.

µ̂1 =

x̄
s2
1

+ ȳ
s2
2

1
s2
1

+ 1
s2
2

µ̂2 = x̄+D
s2
1 +D2

s2
1 + s2

2 +D2
[Sinha-Mouqadem, 1982]

µ̂3 = x̄+Dmin(0.5,
s2
1

s2
1 + s2

2

) [Sinha, 1979]

µ̂4 = x̄+D
s1

s1 + s2

[Sinha-Mouqadem, 1982] .

Our comparison of the above estimates is essentially based on an expansion of their
large sample variances in n−1. In order for an estimate to be first order efficient (FOE),
we expect the leading term of its variance (i.e., coefficient of n−1) to be equal to the
Rao-Cramer lower bound (Rao, 1973) which can be obtained by inverting the Fisher
information matrix. The coefficient of n−2 in the large sample variance of an unbiased
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estimate determines the nature of its second order efficiency (SOE). The following result
is established in Mitra and Sinha (2007).
Theorem 5.1. In the class C0, µ̂1 is unique FOE. In the extended class Cu, µ̂1 is FOE
(though not unique) and the condition of FOE determines second order terms in the
expansion of var(µ̂φ).

As a byproduct of the proof of the above theorem, it is observed in Mitra and Sinha
(2007) that the estimate µ̂4 is not FOE. It is also proved there that the estimate µ̂3 with

φ = min(0.5,
s2
1

s2
1+s2

2
), though lacks smoothness, is both FOE and SOE. Thus, its small

sample dominance over the Graybill-Deal estimate, which holds whenever σ2
1 ≤ σ2

2, is not
really true in large samples.

We now discuss the Bayes estimation of the common mean µ under Jeffrey’s nonin-
formative prior [Berger (1980), page 87], π(.), on the parameters θ = (µ, σ2

1, σ
2
2). Under

this formulation, π(θ) is given by: π(θ) =
√
det I(θ) where I(θ) is the Fisher information

matrix.
Note that for a bivariate normal distribution,

I(µ, σ2
1, σ

2
2) =


n(σ2

1+σ2
2)

σ2
1σ2

2
0 0

0 n
2σ4

1
0

0 0 n
2σ4

2

 .

Hence, based on Fisher information matrix, such a prior is given by p(µ, σ2
1, σ

2
2) ∝

(
√
σ2

1 + σ2
2)/(σ

2
1σ

2
2)

3
2 where −∞ < µ <∞, σ2

1, σ
2
2 > 0.

Combining this prior with the likelihood, and writing µ0 =
(

x̄
σ2
1

+ ȳ
σ2
2

)
/
(

1
σ2
1

+ 1
σ2
2

)
, the

posterior distribution of the parameters (µ, σ2
1, σ

2
2) is given by,

p(µ, σ2
1, σ

2
2|data) ∝ (σ2

1σ
2
2)−n+3

2

√
σ2

1 + σ2
2 exp

[
−n(x̄−µ)2

2σ2
1

− n(ȳ−µ)2

2σ2
2

− (n−1)s2
1

2σ2
1
− (n−1)s2

2

2σ2
2

]
= (σ2

1)
−n+3

2 (σ2
2)
−n+3

2

√
σ2

1 + σ2
2 exp

[
− nD2

2(σ2
1+σ2

2)

]
. exp

[
−n

2
( 1

(σ2
1

+ 1
σ2
2
)(µ− µ0)

2
]

. exp
[
− (n−1)s2

1

2σ2
1
− (n−1)s2

2

2σ2
2

]
The joint posterior of (µ, σ2

1, σ
2
2) can be viewed as:

1. Conditionally given (σ2
1, σ

2
2), the posterior of µ is N(µ0,

σ2
1σ2

2

n(σ2
1+σ2

2)
)

2. Joint marginal posterior of σ2
1, σ

2
2 is given by

p(σ2
1, σ

2
2|data) ∝ (σ2

1)
−(n

2
+1)(σ2

2)
−(n

2
+1)exp

[
− nD2

2(σ2
1+σ2

2)
− (n−1)s2

1

σ2
1

− (n−1)s2
2

σ2
2

]
.
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As a Bayes estimate of µ, we choose the posterior mean which is given by

µ̂B = E(µ|data)
= E[E(µ|σ2

1, σ
2
2, data)]

= x̄E[
θ

1 + θ
|data] + ȳE[

1

1 + θ
|data] where θ =

σ2
2

σ2
1

.

Hence computation of µ̂B boils down to evaluating E[ 1
1+θ
|data]. To compute this term

we need to find the posterior density of θ.
Upon making a transformation from (σ2

1, σ
2
2) 7→ (σ2

1, θ) in (ii), we get the following.

p(σ2
1, θ) ∝ θ−(n

2
+1)(σ2

1)
−(n+2)exp

[
−nD2

1+θ
− (n− 1)s2

1 −
(n−1)s2

2

θ

]
.

Now integrating the above expression with respect to σ2
1 we get unnormalized posterior

density of θ as

p(θ|data) ∝ θ
n
2 (θ + 1)n+1

(aθ2 + bθ + c)n+1

where θ > 0 and a = (n− 1)s2
1, b = (n− 1)s2

1 + (n− 1)s2
2 + nD2, c = (n− 1)s2

2.
This leads to

E[
1

1 + θ
|data] =

∫∞
0

θ
n
2 (θ+1)n

(aθ2+bθ+c)n+1 dθ∫∞
0

θ
n
2 (θ+1)n+1

(aθ2+bθ+c)n+1 dθ
(5.28)

The above integral is computed by using importance sampling method by choosing
g(θ) = exp(−θ) (Gelman et al. (2004)). It is obvious that the Bayes estimate of µ is
unbiased. It is also proved in Mitra and Sinha (2007) that µ̂B is both FOE and SOE.

We end this section with a reference to Mitra and Sinha (2007) who reported the results
of an extensive simulation study to compare bias and variance of five unbiased estimates
of µ: µ̂1, µ̂2, µ̂3, µ̂4, µ̂B for n = 5, 10, 15 and σ2

1 = 1 and σ2
2 = 0.2(0.2)2. Without any

loss of generality, µ = 0 is chosen for the simulation purpose. These simulation studies
reveal that the Graybill-Deal estimate µ̂1 and the Sinha-Mouqadem estimate µ̂2 perform
similarly and these two are better than the others. However, quite surprisingly, it turns
out that the performance of the Bayes estimate is not satisfactory from the point of view
of variance.
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5.3 Exact and approximate confidence intervals for µ

In this section we address the problem of constructing exact and approximate confidence
intervals for µ. Our discussion is based on combinations of relevant component t or
F statistics and also Fisher’s P-values, as discussed in Lecture 3. We also provide a
comparison of various methods based on their expected lengths of confidence intervals for
µ. It should be noted that tests for µ are not separately discussed here because of the
well known connection between tests and confidence intervals.

The problem of constructing exact and approximate confidence intervals for the com-
mon mean µ of several normal populations with unequal and unknown variances arises
in various contexts in statistical applications whenever two or more sources are involved
with collecting data on the same basic characteristic of interest. We refer to Meier (1953),
Eberhardt et al. (1989), and Skinner (1991) for some applications. However, although
a lot of work has been done on point estimation of µ, as mentioned above, much less
attention has been given to the problem of providing a meaningful confidence interval
for µ. Several papers provide approximate confidence intervals for µ, centered at µ̂GD,
which are not quite useful because of the nature of underlying assumptions (see Meier,
1953; Eberhardt et al., 1989). In one particular context of interblock analysis of a bal-
anced incomplete block design, similar approximate confidence intervals centered at some
combined estimator are known (see Brown and Cohen, 1974).

Our review of the literature given below includes an old work by Fairweather (1972)
and a relatively recent work by Jordan and Krishnamoorthy (1996), which are based on
inverting weighted linear combinations of Student’s t statistics and F statistics, respec-
tively, which are used to test hypothesis about µ. However, determination of the exact
cut-off points of these test statistics can be done only numerically, and it seems to us that
the full thrust of meta analysis is not quite accomplished in these procedures. We mention
below some exact confidence intervals for µ based on inverting exact tests for µ, which are
constructed by combining the relevant P -values in a meaningful way (Yu, Sun and Sinha,
2002). We also provide a comparison among them on the basis of their expected lengths.
An approximate confidence interval for µ based on an unbiased estimator of var(µ̂GD)
(see Sinha, 1985) is also given.

5.3.1 Approximate confidence intervals for µ

Using the Graybill-Deal estimate and its estimated variance given earlier, an approxi-
mate 100(1 − α)% confidence interval for µ can be constructed on the basis of a suit-
able normalization of µ̂GD, and can be expressed as [µ̂GD − zα/2

√
{v̂ar(µ̂GD)}, µ̂GD +

zα/2

√
{v̂ar(µ̂GD)}], where zα/2 is the standard normal upper α/2 point. In practice, how-

ever, one can only use a first few terms from v̂ar(µ̂GD), depending on the sample sizes (see
(5.17) and (5.18)). For better accuracy, one can use the fact that (Sinha, 1985) truncation
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of v̂ar(µ̂GD) at (m − 1)th term results in error not exceeding n
−(m+1)
min (see Proposition

5.6).

5.3.2 Exact confidence intervals for µ

We now focus our attention to the construction of exact confidence intervals for µ. Since

ti =

√
ni(X̄i − µ)

si

∼ tni−1 (5.29)

or, equivalently,

Fi =
ni(X̄i − µ)2

s2
i

∼ F1,ni−1 (5.30)

are standard test statistics for testing hypotheses about µ based on the ith sample, suitable
linear combinations of |ti|’s or Fi’s or other functions thereof can be used as a pivot
to construct exact confidence intervals for µ. This is precisely what is accomplished
in Fairweather (1972), Cohen and Sackrowitz (1984), and Jordan and Krishnamoorthy
(1996).

a) Confidence interval for µ based on ti’s

Cohen and Sackrowitz (1984) suggested to use Mt = max1≤i≤k{|ti|} as a test statistic
for testing hypotheses about µ. We can use Mt to construct a confidence interval for µ
once the cut-off point of the distribution of Mt is known, which is independent of any
parameter. Thus, if cα/2 satisfies the condition

1− α = P [Mt ≤ cα/2]

=
k∏

i=1

P [|ti| ≤ cα/2], (5.31)

an exact confidence interval for µ with confidence level 1− α is given by[
max
1≤i≤k

{
X̄i −

cα/2si√
ni

}
, min
1≤i≤k

{
X̄i +

cα/2si√
ni

}]
. (5.32)

Determination of the cut-off point cα/2 is not easy in applications, and simulation may be
necessary. An alternative approach is to use the confidence interval[

max
1≤i≤k

{
X̄i −

c
(i)
α/2si
√
ni

}
, min
1≤i≤k

{
X̄i +

c
(i)
α/2si
√
ni

}]
(5.33)
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where c
(i)
α/2 satisfies P [|ti| ≤ c

(i)
α/2] = (1 − α)1/k. This latter interval clearly also has an

exact coverage probability 1− α.
Fairweather (1972) suggested using a weighted linear combination of the ti’s, namely,

Wt =
k∑

i=1

uiti, ui =
(var(ti))

−1∑k
j=1(var(tj))

−1
(5.34)

which is also a pivot. If bα/2 denotes the cut-off point of the distribution of Wt, satisfying
the equation

1− α = P [|Wt| ≤ bα/2], (5.35)

then the confidence interval for µ is obtained as

[∑k
i=1

√
niuiX̄i/si∑k

i=1

√
niui/si

− b∑k
i=1

√
niui/si

,

∑k
i=1

√
niuiX̄i/si∑k

i=1

√
niui/si

+
b∑k

i=1

√
niui/si

]
(5.36)

It may be noted that

var(tν) =
ν

ν − 2
, ν > 2. (5.37)

b) Confidence interval for µ based on Fi’s

Jordan and Krishnamoorthy (1996) suggested using a linear combination of the Fi’s
such as Wf =

∑k
i=1wiFi for positive weights wi’s, which is again a pivot. Hence, if we

can compute aα/2 such that

P [Wf ≤ aα/2] = 1− α, (5.38)

then, after simplification, an exact confidence interval for µ with confidence level 1−α is
given by [

LB =
k∑

i=1

piX̄i −∆, UB =
k∑

i=1

piX̄i + ∆

]
(5.39)

where

pi =
wini/s

2
i∑k

j=1wjnj/s2
j

(5.40)

and
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∆2 =
aα/2∑k

i=1wini/s2
i

− {
k∑

i=1

piX̄
2
i − (

k∑
i=1

piX̄i)
2}. (5.41)

Jordan and Krishnamoorthy (1996) used wi as inversely proportional to var(Fi) = 2m2
i (mi−

1)/[(mi − 2)2(mi − 4)] where mi = ni − 1, resulting in wi as

wi =
[(mi − 2)2(mi − 4)]/[m2

i (mi − 1)]∑k
j=1[(mj − 2)2(mj − 4)]/[m2

j(mj − 1)]
. (5.42)

Of course, it is assumed that ni > 5 for all the k studies.

c) Confidence interval for µ based on Pi’s

Since Fi, defined in (5.31), can be used for testing hypotheses about µ, we define the
ith P value, Pi, as

Pi =

∫ ∞

Fi

hi(x)dx (5.43)

where hi(x) denotes the pdf of the F distribution with 1 and (ni−1) df . Recalling the fact
that P1, · · ·Pk are iid uniformly distributed random variables, we can combine them using
any of the methods described earlier in Lecture 3. In particular, we use below Tippett’s
method, Fisher’s method, inverse normal method and logit method.

(1) Tippett’s method [Tippett (1931)]

As already explained, if P[1] is the minimum of P1, P2, · · · , Pk, then Tippett’s method
rejects the hypothesis about µ if P[1] < c1 = 1 − (1 − α)1/k. By inverting this rejection
region, we have a confidence interval for µ with confidence coefficient 1− α, given by

C.I. = {µ : P[1] ≥ c1} (5.44)

= {µ : Pi ≥ c1, i = 1, · · · , k}

= {µ :

∫ ∞

ni(x̄i−µ)2/s2
i

fi(x)dx ≥ 1− (1− α)1/k, i = 1, · · · , k}.

(2) Fisher’s method [Fisher (1932)]

Since Fisher’s method rejects hypotheses about µ when −2
∑k

i=1 lnPi > χ2
2k,α, the

confidence interval for µ obtained by inverting the acceptance region of this test is given
by
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C.I. = {µ : −2
k∑

i=1

logPi ≤ χ2
2k,α} (5.45)

= {µ :
k∏

i=1

Pi ≥ e−2χ2
2k,α}

= {µ :
k∏

i=1

∫ ∞

ni(x̄i−µ)2/s2
i

fi(x)dx ≥ e−2χ2
2k,α}

(3) Inverse normal method [Stouffer et al., 1949]

Since this method rejects hypotheses about µ when
Pk

i=1 Φ−1(Pi)√
k

< −zα at level α, the

(1−α) level confidence interval for µ obtained by inverting this acceptance region is given
by

C.I. = {µ :

k∑
i=1

Φ−1(Pi)

√
k

≥ −zα}. (5.46)

(4) Logit method [George, 1977]

This method rejects H0 if
∑k

i=1 log(
Pi

1− Pi

) < c where c is a predetermined constant.

It was mentioned earlier that the distribution of

G∗ = [−
k∑

i=1

log(
Pi

1− Pi

)][
3

kπ2
]1/2 (5.47)

can be approximated by a standard normal distribution (see Lecture 3). Therefore a
(1− α) level confidence interval for µ can be obtained from

C.I. = {µ : G∗ < zα}. (5.48)

It is an interesting research problem to settle if the confidence regions for µ obtained
from the above four methods are actually genuine intervals. The appendix at the end of
this section makes an attempt to establish the same for Fisher’s method on the basis of
an expansion technique.
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5.4 Two examples

In this section we provide two examples to illustrate the methods described above.
Example 5.1. Here we examine the data reported in Meier (1953) and analyzed in
Jordan and Krishnamoorthy (1996) about the percentage of albumin in plasma protein
in human subjects. We would like to combine the results of four experiments in order to
construct a confidence interval for the common mean µ. The data appear in Table 5.1.

Table 5.1. Percentage of albumin in plasma protein

Experiment ni Mean Variance

A 12 62.3 12.986

B 15 60.3 7.840

C 7 59.5 33.433

D 16 61.5 18.513

We have applied all the techniques described in this section, and computed the two-
sided confidence intervals with α = 0.05. These are given below. It is rather interesting to
observe that most of the confidence intervals are centered at around the same value, and
the one based on F turns out to be the best in the sense of having the smallest observed
length.
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Table 5.2. Interval estimates for µ

Intervals Critical values Weights Interval

C & S c=3.043 60.82 ± 1.68

t c
′
i s=2.9702,2.8543, 60.78 ± 1.58

3.5055,2.8272.

F b
.
= 1.102 µ

′
is=0.2550,0.2671, 61.04± 1.15

0.2708, 0.2701.

J & K a
.
= 3.191 p

′
is =0.2100,0.5245, 61.00 ± 1.44

0.0181,0.2474.

Fisher b
′
is =1.0190,1.0756, 60.9992± 1.4245

0.8210, 1.0898.

p
′
is =0.2289,0.5003,

0.0418,0.2290.

Normal b
′
is =0.2862,0.2987, 60.9986 ± 1.3147

0.2410,0.3019.

p
′
is =0.2305,0.4982,

0.0440,0.2274.

Logit b
′
is =0.6678,0.6996, 60.9988 ± 1.3478

0.5546,0.7076.

p
′
is =0.2300,0.4988,

0.0433,0.2279.
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Example 5.2. This is quoted from Eberhardt et al. (1989) and deals with the problem
of estimation of mean Selenium in non-fat milk powder by combining the results of four
methods. Data appear in the table below.

Table 5.3. Selenium in non-fat milk powder

Methods ni Mean Variance

Atomic absorption spectrometry 8 105.0 85.711

Neutron activation:

1). Instrumental 12 109.75 20.748

2). Radiochemical 14 109.5 2.729

Isotope dilution mass spectrometry 8 113.25 33.640

Here again we have applied all the techniques described in this section, and computed
the two-sided confidence intervals for the common mean µ with α = 0.05. These are given
below. It is rather interesting to observe that most of the confidence intervals are centered
at around the same value, namely, 109.5, and the one based on the normal method turns
out to be the best in the sense of having the smallest observed length.
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Table 5.4. Interval estimates for µ
Intervals Critical values Weights Interval

C & S c=3.128 109.5 ± 1.38

t c
′
i s=3.321,2.970, 109.5 ± 1.27

2.886,3.321.

F b
.
= 1.118 µ

′
is=0.2309,0.2645, 109.7± 1.11

0.2736, 0.2309.

J & K a
.
= 3.341 p

′
is =0.0068,0.0777, 109.6 ± 1.08

0.8908,0.0247.

Fisher b
′
is =0.8795,1.0190, 109.5890± 1.0876

=1.0594,0.8795.

p
′
is =0.0130,0.0933,

0.8606,0.0331.

Normal b
′
is =0.2546,0.2862, 109.5915 ± 0.9269

0.2952,0.2546.

p
′
is =0.0135,0.0938,

0.8584,0.0343.

Logit b
′
is =0.5884,0.6678, 109.5907 ± 1.2526

0.6905,0.5884.

p
′
is =0.0133,0.0937,

0.8591,0.0339.
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5.5 Appendix: Theory of Fisher’s Method

Let Tn(µ) = −2
∑k

i=1 lnPi(µ) ∼ χ2(2k) under H0, where Pi(µ) is the P value defined by

Pi(µ) = P (F1,ni−1 > ci(µ)) (5.49)

with

ci(µ) =
ni(x̄i − µ)2

s2
i

. (5.50)

Hence, the 100(1− α)% confidence interval for µ is

{µ : Tn(µ) ≤ χ2
α(2k)}. (5.51)

Now we approximate Tn by T̃n which is

T̃n(µ) = Tn(µ̂) +
k∑

i=1

bi(ci − ĉi) (5.52)

where

µ̂ =

∑k
i=1 nix̄i/s

2
i∑k

i=1 ni/s2
i

the Graybill-Deal estimator, (5.53)

ĉi = ci(µ̂), (5.54)

and bi is chosen such that Tn(µ) ≈ T̃n(µ).
Suppose there exists an µ0 such that

ci ≡ c∗i = F
exp(−χ2

α(2k)
2k

)
(1, ni − 1) (5.55)

and define ε(µ) = Tn(µ)− T̃n(µ). Then, we have,

ε(µ) = Tn(µ)− T̃n(µ)−
k∑

i=1

bi(ci − ĉi)

≈ Tn(µ)|ci=c∗i
− Tn(µ̂)−

k∑
i=1

bi(c
∗
i − ĉi) +

k∑
i=1

(
d Tn

d ci
− bi)|ci=c∗i

(ci − c∗i ). (5.56)

If we put

bi =
d Tn

d ci
|ci=c∗i

= −2
P ′

i (ci)

Pi(ci)
|ci=c∗i

, (5.57)

then
ε(µ̂) = 0 and ε(µ|ci=c∗i

) ≈ 0 (1st order). (5.58)
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Since

P ′
i (ci) =

d

d ci
P (F1,ni−1 > ci)

=
d

d ci

∫ ∞

ci

( 1
ni−1

)
1
2

Beta(1
2
, ni−1

2
)
· u−

1
2

(1 + u
ni−1

)
ni
2

d u

= −
Γ(ni

2
)

Γ(1
2
)Γ(ni−1

2
)
· ( 1

ni − 1
)

1
2 · c−

1
2

i · (1 +
ci

ni − 1
)−

ni
2 (5.59)

and

Pi(c
∗
i ) = P (F1,ni−1 > c∗i ) = exp(−χ

2
α(2k)

2k
). (5.60)

Therefore,

bi =
2Γ(ni

2
)

Γ(1
2
)Γ(ni−1

2
)
(

1

ni − 1
)

1
2 · c−

1
2

i · (1 +
ci

ni − 1
)−

ni
2 · exp(−χ

2
α(2k)

2k
). (5.61)

Hence,

Tn(µ) ≤ χ2
α(2k)

=⇒ T̃n(µ) ≤ χ2
α(2k)

=⇒
∑k

i=1 bici ≤ χ2
α(2k)− Tn(µ̂) +

k∑
i=1

biĉi ≡ a, says. (5.62)

As a result, the 100(1− α)% confidence interval for µ is

µ ∈
k∑

i=1

qix̄i ±

 a∑k
i=1 bini/s2

i

+

(
k∑

i=1

qix̄i

)2

−
k∑

i=1

qix̄
2
i

 1
2

, (5.63)

where

qi =
bini/s

2
i∑k

j=1 bjnj/s2
j

. (5.64)
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6 Tests of Homogeneity in Meta Analysis

As has been mentioned earlier, meta analysis of results from different experiments or
studies is quite common these days. However, as has been emphasized, it is equally
important to make sure that the underlying effect sizes are indeed homogeneous before
performing any meta analysis or pooling of evidence or data so that an inference on a
common effect makes sense.

In this lecture we discuss at length the problem of testing homogeneity of means in
a one-way fixed effects model. We assume throughout that the observations are drawn
from k independent univariate normal populations with means µ1, ..., µk and variances
σ2

1, σ
2
2,..., σ

2
k, and the problem is to test the homogeneity hypothesis with respect to

means, given by H0 : µ1 = · · · = µk against a general alternative. Once H0 is accepted,
we feel quite comfortable in pooling all the data sets in order to make suitable inference
about the common unknown mean µ. Later on we will discuss the dual problem of testing
homogeneity of means in a one-way random effects model which indeed also has a long
and rich history.

The problem of testing the homogeneity of means in a one-way ANOVA is one of the
oldest problems in statistics with applications in many diverse fields (Cochran, 1937).
Under the classical ANOVA assumption of normality, independence and homogeneous
error variances (σ2

1 = σ2
2 = ... = σ2

k), one uses the standard likelihood ratio F -test
which is also known to be the optimum from an invariance point of view. However,
when one or more of these basic assumptions are violated, the F-test ceases to be any
good, let alone be optimum! This is especially true in the case of non-homogeneous error
variances which is often the situation in meta analysis. In the literature (Cochran, 1937;
Welch, 1951), several tests of H0 have been proposed and compared in the presence of
heterogeneity of error variances. All these tests are approximate and work quite well
in large samples. The main goal of this lecture, mostly based on Hartung, Argac and
Makambi (2002), is to present a systematic development of these tests along with results
of some simulation studies to compare them. An exact solution based on a relatively new
notion of generalized P -values will also be presented. However, a complete understanding
of this solution requires a good notion of generalized P -values. It should be noted that, for
k = 2, the testing problem under consideration boils down to the famous Behrens-Fisher
problem!
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6.1 Model and Test Statistics

Let Xij be the observation on the jth subject of the ith population/study, i = 1, . . . , k
and j = 1, . . . , ni. Then the standard one-way ANOVA model is given by

Xij = µi + eij = µ+ τi + eij; i = 1, . . . , k, j = 1, . . . , ni. (6.1)

where µ is the common mean for all the k populations, τi is the effect of population i with∑k
i=1 τi = 0, and eij are error terms which are assumed to be mutually independent and

normally distributed with

E(eij) = 0, Var(eij) = σ2
i , i = 1, . . . , k, j = 1, . . . , ni. (6.2)

Under the above set up, we are interested in testing the hypothesis H0 : µ1 = · · · = µk.
To test this hypothesis, we propose the following test statistics.

a) ANOVA F Test
San, given by

San =
N − k

k − 1
·

k∑
i=1

ni(X̄i. − X̄..)
2

k∑
i=1

(ni − 1)S2
i

, (6.3)

with N =
∑k

i=1 ni, X̄i. =
∑ni

j=1 Xij/ni, X̄.. =
∑k

i=1 niX̄i./N , and S2
i =

∑ni

j=1(Xij −
X̄i.)/(ni − 1).

This test was originally meant to test for equality of population means under vari-
ance homogeneity, and has an F distribution with k−1 and N−k degrees of freedom
under the null hypothesis. The test rejects H0 at level α if San > Fk−1,N−k;1−α.

This ANOVA F-test has the weakness of not being robust with respect to hetero-
geneity in the intra-population error variances (Brown and Forsythe, 1974).

b) Cochran’s Test
This test suggested by Cochran in 1937 is based on

Sch =
k∑

i=1

wi

(
X̄i. −

k∑
j=1

hj X̄j.

)2

, (6.4)

where wi = ni/S
2
i , hi = wi/

∑k
i=1wi. Under H0, the Cochran statistic is distributed

approximately as a χ2-variable with k−1 degrees of freedom. The test rejects H0 at
level α if Sch > χ2

k−1;1−α. Cochran’s test is often used as the standard test for testing
homogeneity in meta analysis. This test has been already introduced in Chapter 4,
see (4.10), as the general large sample test of homogeneity.
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c) Welch Test
The Welch test is given

Swe =

k∑
i=1

wi

(
X̄i. −

k∑
j=1

hj X̄j.

)2

(k − 1) + 2 k−2
k+1

k∑
i=1

1
ni−1

(1− hi)
2

, (6.5)

where wi = ni/S
2
i , hi = wi/

∑k
i=1wi, is an extension of testing the equality of

two means to more than two means (see Welch, 1951) in the presence of variance
heterogeneity within populations. The Welch test is a modification of Cochran’s
test. Under H0, the statistic Swe has an approximate F distribution with k− 1 and
νg degrees of freedom, where

νg =
(k2 − 1)/3

k∑
i=1

1
ni−1

(1− hi)
2

. (6.6)

This test rejects H0 at level α if Swe > Fk−1,νg ;1−α.

d) Brown-Forsythe (B-F) Test
This test, also known as the modified F test, is based on

Sb−f =

k∑
i=1

ni (X̄i. − X̄..)2

k∑
i=1

(1− ni/N) S2
i

. (6.7)

When H0 is true, Sb−f is distributed approximately as an F variable with k− 1 and
ν degrees of freedom where

ν =

( k∑
i=1

(1− ni/N) S2
i

)2

k∑
i=1

(1− ni/N)2 S4
i /(ni − 1)

. (6.8)

The test rejects H0 at level α if Sb−f > Fk−1,ν;1−α. Using a simulation study, Brown
and Forsythe (1974) demonstrated that their statistic is robust under heterogeneity
of variances. If the population variances are close to being homogenous, the B-F
test is closer to the ANOVA F-test than Welch’ test.
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e) Mehrotra (Modified Brown-Forsythe) Test
The test statistic

Sb−f(m) =

k∑
i=1

ni(X̄i. − X̄..)
2

k∑
i=1

(1− ni/N)S2
i

(6.9)

was proposed by Mehrotra (1997) in an attempt to correct a ”flaw” in the B-F-
test. Under H0, Sb−f(m) is distributed approximately as an F variable with ν1 and
ν degrees of freedom where

ν1 =

(
k∑

i=1

(1− ni/N)S2
i )

2

k∑
i=1

S4
i +

( k∑
i=1

ni S2
i /N

)2

− 2
k∑

i=1

ni S4
i /N

(6.10)

and ν is defined in B-F test. The test rejects H0 at level α if Sb−f(m) > Fν1,ν;1−α.

f) Approximate ANOVA F Test
The test statistic

SaF =
N − k

k − 1

k∑
i=1

ni (X̄i. − X̄..)
2

k∑
i=1

(ni − 1) S2
i

, (6.11)

was proposed by Asiribo and Gurland (1990). UnderH0, the statistic SaF is dis-
tributed approximately as an F -variable with ν1 and ν2 degrees of freedom where
ν1 is defined under Mehrotra test above and

ν2 =

( k∑
i=1

(ni − 1) S2
i

)2

k∑
i=1

(ni − 1) S4
i

. (6.12)

The test rejects H0 at level α if SaF > ĉ · Fν1,ν2;1−α, where

ĉ =
N − k

N(k − 1)

k∑
i=1

(N − ni) S
2
i

k∑
i=1

(ni − 1) S2
i

. (6.13)
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We notice that the numerator degrees of freedom for SaF and Sb−f(m) are equal.
Further, for ni = n, i = 1, . . . , k, that is, for balanced data, the test statistic and the
degrees of freedom for both the numerator and denominator of these two statistics
are also equal.

g) Adjusted Welch Test
The Welch test uses weights wi = ni/s

2
i . We know that

E(wi) = E

(
ni

S2
i

)
= ci ·

ni

σ2
i

, (6.14)

where ci = (ni−1)/(ni−3). Therefore, an unbiased estimator of ni/σ
2
i is ni/(ciS

2
i ).

Defining w∗i = ni/(ciS
2
i ), Hartung, Argac, and Makambi (2002) propose a test they

called adjusted Welch test, denoted by Saw, which is given by

Saw =

k∑
i=1

w∗i (X̄i. −
k∑

j=1

h∗jX̄j.)
2

(
(k − 1) + 2 k−2

k+1

k∑
i=1

1
ni−1

(1− h∗i )
)2
, (6.15)

where h∗i = w∗i /
∑k

j=1w
∗
j , i = 1, . . . , k.

Under H0, the adjusted Welch statistic, Saw, is distributed approximately as an
F -variable with k − 1 and ν∗g degrees of freedom, with

ν∗g =
(k2 − 1)/3

k∑
i=1

1
ni−1

(1− h∗i )
2

. (6.16)

The test rejects H0 at level α if Saw > Fk−1,ν∗g ;1−α. When the sample sizes are large,
Saw approaches the Welch test. With small sample sizes, this statistic will help to
correct the overshooting of the Welch test with respect to α.

Extensive simulation studies by Hartung, Argac, and Makambi (2002) for both size and
power under normal and nonnormal populations, under homogeneous and heterogeneous
variances, and under balanced and unbalanced schemes reveal that the modified Brown-
Forsythe test and the approximate F test are relatively least affected by changes from
normal populations with homogeneous variances.
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6.2 An Exact Test of Homogeneity

We conclude this section with a brief discussion of the application of the generalized P-
value for solving the underlying testing problem of homogeneity of means in presence of
heterogeneity variances. This procedure described below will produce an exact test. For
details, we refer to Tsui and Weerahandi (1989), Thursby (1992), and Griffiths and Judge
(1992).

We first discuss the case k = 2, i.e., the Behrens-Fisher problem. Let X = (X̄1. −
X̄2., S

2
1 , S

2
2), x = (x̄1. − x̄2., s

2
1, s

2
2), θ = µ1 − µ2 and η = (σ2

1, σ
2
2). Here S2

1 and S2
2 are the

two sample variances, which are unbiased estimates of σ2
1 and σ2

2, respectively. We then
define T (X;x, θ, η) as

T (X;x, θ, η) = (X̄1. − X̄2.)

(
σ2

1

n1

+
σ2

2

n2

)−1/2(
s2
1 σ

2
1

S2
1 n1

+
s2
2 σ

2
2

S2
2 n2

)1/2

. (6.17)

Note that the observed value of T is t = x̄1. − x̄2., and that E(T ) increases with µ1 − µ2.
Hence the generalized P-value can be defined as

gen.P = P [T ≥ x̄1. − x̄2. |µ1 = µ2] = P

[
Z

(
s2
1

U1 n1

+
s2
2

U2 n2

)1/2

≥ x̄1. − x̄2.

]
(6.18)

where Z is standard normal, U1 ∼ χ2
n1−1, U2 ∼ χ2

n2−1, and all three are independent. The
null hypothesis of equality of two normal means is rejected when the generalized P-value
is small.

For k > 2, we proceed by defining ai = ni/σ
2
i , bi = S2

i ni/s
2
i σ

2
i , and

S2
0 =

k∑
i=1

ai

[
X̄i. −

∑k
i=1 ai X̄i.∑k

i=1 ai

]2

(6.19)

S̃2
0 =

k∑
i=1

bi

[
X̄i. −

∑k
i=1 bi X̄i.∑k

i=1 bi

]2

. (6.20)

Then, obviously under the null hypothesis of equal means, S2
0 has a central χ2 distri-

bution with k− 1 df, and will tend to be large under the alternative hypothesis. We now
define the test variable as T = S2

0/S̃
2
0 and, noting that the observed value of T is one, we

compute the generalized P-value as P = P [T > 1|H0]. Of course, the computation of the
P-value here and in all such problems is carried out, for fixed x, often by simulation.

It is evident from the discussion in this lecture that there are many tests for comparing
normal means with unequal within study variances. Many tests have also been compared
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in terms of size in Thursby (1992) and Gamage and Weerahandi (1998). We also refer
to Weerahandi (1995), Khuri, Mathew and Sinha (1998), and Ananda and Weerahandi
(1997) for a discussion on generalized P-values and their applications.

6.3 An Application

We conclude this section with an example from Weerahandi (1995) where the goal is to
compare four means of corn yields by four hybrids: A, B, C, D. The data and the standard
fixed effects ANOVA table are given below.

Table 6.1. Yield of corn from four hybrids: data, means and standard deviations
Population Data x̄i. si

Hybrid A 7.4, 6.6, 6.7, 6.1, 6.5, 7.2 6.750 0.435
Hybrid B 7.1, 7.3, 6.8, 6.9, 7.0 7.020 0.172
Hybrid C 6.8, 6.3, 6.4, 6.7, 6.5, 6.8 6.583 0.195
Hybrid D 6.4, 6.9, 7.6, 6.8, 7.3 7.000 0.415

Table 6.2. Anova table for comparing the four hybrids
Source of Sum of Mean Sum
variation df Squares of Squares F-statistic
Between 3 0.728 0.2427 1.841
Error 18 2.372 0.1318
Total 21 3.1

The usual P -value based on the assumption of equal population within hybrid vari-
ances (F -statistic = 1.841) is 0.176, thus leading to acceptance of the null hypothesis
of equal means. It is however clear from the values of the sample standard deviations
that the assumption of equal population variances may not be tenable for this data set.
The refined approximate test statistics lead to different conclusions in this example. The
Brown-Forsythe test and its derivatives yield P -values in the order of magnitude as the
usual F -test. Cochran’s test produces a highly significant result. The P -value of the
Welch test and its adjusted version is 0.045 leading to rejection of the homogeneity hy-
pothesis at level α = 0.05. An application of the generalized P -value as explained above
yields 0.048, leading to marginal significance as the Welch test. The results of the various
test procedures are summarized in Table 6.3.
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Table 6.3. Test statistics and P -values
Value of

Test test statistic P -value
ANOVA F-Test 1.840 0.176
Cochran 13.638 0.003
Welch 3.980 0.045
Brown-Forsythe 1.851 0.191
Mehrotra 1.851 0.179
approximate ANOVA F-Test 1.851 0.178
adjusted Welch test 2.180 0.045
generalized P -value 0.048

We also present below the results of three additional examples.

Example 6.2. Here we examine the data reported in Meier (1953) about the percentage
of albumin in plasma protein in human subjects.

Table 6.4. Percentage of albumin in plasma protein

Experiment ni Mean Variance
s2

i

A 12 62.3 12.986
B 15 60.3 7.840
C 7 59.5 33.433
D 16 61.5 18.513

Test statistics and P -values
Value of

Test test statistic P -value
ANOVA F-Test 0.991 0.405
Cochran 3.186 0.364
Welch 0.993 0.417
Brown-Forsythe 0.833 0.491
Mehrotra 0.833 0.522
approximate ANOVA F-Test 0.833 0.516
adjusted Welch test 0.804 0.418
generalized P -value
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Example 6.3. Here we examine the data on selenium in non-fat milk powder.

Table 6.5. Selenium in non-fat milk powder

Methods ni Mean Variance
s2

i

Atomic absorption spectrometry 8 105.0 85.711
Neutron activation:
1). Instrumental 12 109.75 20.748
2). Radiochemical 14 109.5 2.729
Isotope dilution mass spectrometry 8 113.25 33.640

Test statistics and P -values
Value of

Test test statistic P -value
ANOVA F-Test 3.169 0.035
Cochran 5.208 0.157
Welch 1.589 0.235
Brown-Forsythe 2.428 0.104
Mehrotra 2.428 0.107
approximate ANOVA F-Test 2.428 0.100
adjusted Welch test 1.137 0.236
generalized P -value
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Example 6.4. Here we examine the data reported in Weerahandi (Generalized Inference
in Repeated Measures, page 43).

Table 6.6. Strength of four brands of reinforcing bars
Brand A 21.4, 13.5, 21.1, 13.3, 18.9, 19.2, 18.3
Brand B 27.3, 22.3, 16.9, 11.3, 26.3, 19.8, 16.2, 25.4
Brand C 18.7, 19.1, 16.4, 15.9, 18.7, 20.1, 17.8
Brand D 19.9, 19.3, 18.7, 20.3, 22.8, 20.8, 20.9, 23.6, 21.2

Test statistics and P -values
Value of

Test test statistic P -value
ANOVA F-Test 1.608 0.211
Cochran 14.439 0.002
Welch 4.385 0.023
Brown-Forsythe 1.616 0.232
Mehrotra 1.616 0.231
approximate ANOVA F-Test 1.616 0.233
adjusted Welch test 3.086 0.023
generalized P -value
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7 One-Way Random Effects Model

7.1 Introduction

As discussed in the previous chapter, tests for homogeneity of means or in general effect
sizes are crucial before performing any meta analysis or pooling of data. When tests for
homogeneity lead to acceptance of the null hypothesis, thus supporting the evidence that
the underlying population means or effect sizes can be believed to be the same, one feels
quite comfortable in carrying out the meta analysis in order to draw appropriate inference
about the common mean or effect size. When, however, the tests lead to rejection of the
null hypothesis of homogeneity of means, it is not proper to do meta analysis of data
unless we find out reasons for heterogeneity and make an attempt to explain them. The
lack of homogeneity could be due to several covariates which might behave differently for
different studies or simply because the means themselves might arise from a so called super
population, thus leading to their variability and apparent differences. In this chapter we
discuss at length the latter formulation which is often known as the one-way random
effects model.

There is a vast literature on the topic of one-way random effects model with its root
in meta analysis. Under this model with normality assumption, the treatment means
µ1,...., µk corresponding to k different studies or experiments are modelled as arising from
a super normal population with an overall mean µ and an overall variability σ2

a. The
parameters of interest are then the overall mean µ and the inter-study variability σ2

a in
terms of their estimation, tests and confidence intervals.

In the remainder of this chapter we discuss many results pertaining to the above
problems. Recalling that in the context of meta analysis ANOVA models, existence of
heterogeneous within study variances (also known as error variances) is very much a
possibility, we consider the two cases of homogeneous and heterogeneous error variances
separately in sections 7.2 and 7.3, respectively. It turns out that, as expected, statistical
inference about the parameters of interest under the homogeneous error structure can be
carried out much more easily compared to that under a heterogenous error structure. It
is also true that the analysis of a balanced model is much easier than the analysis of an
unbalanced model. Recall that a balanced model refers to the case when we have an equal
number of observations or replications from all the populations.

As will be clear from what follows, this particular topic of research has drawn the
attention of many statisticians from all over the world, and has prompted the emergence
of new statistical methods. Most notably among them is the method based on generalized
P-values which itself has a considerable amount of literature including a few text books.
We will mention in the sequel some results based on the notion of generalized P-values.
For details on generalized P-values, we refer to Khuri, Mathew and Sinha (1998) and
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Weerahandi (1995).
We end this section with a simple description of the model to be analyzed. We consider

the case of the one–way random effects model of ANOVA, i. e.

yij = µ+ ai + eij , i = 1, . . . , k, j = 1, . . . , ni ≥ 1 , (7.1)

where yij denotes the observable variable, µ the fixed, but unknown grand mean, ai the
unobservable random effect with mean 0 and variance σ2

a, and eij the error term with
mean 0 and variance σ2

i . We assume that the random variables a1, . . . , ak, e11, . . . eknk
are

normally distributed and mutually stochastically independent. Furthermore, we denote
by N =

∑k
i=1 ni, the total number of observations.

The basic statistics for the above model are the sample means ȳi. and sample sum of
squares S2

i , defined by

ȳi. =

ni∑
j=1

yij/ni, S
2
i =

ni∑
j=1

(yij − ȳi.)
2, i = 1, · · · , k. (7.2)

Then the overall or grand mean and the two well known sums of squares, namely,
between sum of squares (BSS) and within sum of squares (WSS) are defined as

ȳ.. =
k∑

i=1

niȳi./N, BSS =
k∑

i=1

ni(ȳi. − ȳ..)
2, WSS = S2

1 + · · ·+ S2
k (7.3)

Distributional properties.
Obviously, under the assumption of normality and independence, the distribution of

ȳ.. ∼ N [µ,
∑k

i=1 n
2
i (σ

2
a + σ2

i /ni)/N
2]. When the homogeneity of error variances hold, this

reduces to ȳ.. ∼ N [µ,
∑k

i=1 n
2
i (σ

2
a + σ2/ni)/N

2]. Furthermore, in case of balanced models
and homogeneity of error variances, we get ȳ.. ∼ N [µ, (σ2

a + σ2/n)/k].
For WSS, we readily have

WSS ∼
k∑

i=1

σ2
i χ

2
ni−1 ∼ σ2χ2

N−k, (7.4)

with the latter result holding in case of the homogeneity of error variances.
For BSS, the results are some what complicated except for the balanced case with

homogeneous error variances. Quite generally, since BSS can be written as a quadratic
form in the sample means (corrected for the mean µ, without any loss of generality), we
can conclude that the general distribution of BSS can be written as a linear function of
independent chisquare variables with coefficients depending on the variance components
and the replications. Under homogeneous error variances and a balanced model, we get
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BSS ∼ (σ2 + nσ2
a)χ

2
k−1. (7.5)

Of course, under normality of errors and random effects, independence of BSS and
WSS follows immediately.

The between group mean sum of squares BMS = BSS/(k− 1), denoted as MS1, has
the expected value given by

E(MS1) = γσ2
a + σ2 , γ =

1

k − 1
· N

2 −
∑k

i=1 n
2
i

N
. (7.6)

For later reference, we note from (7.4) that, under the assumption of homogeneity of
error variances, a (1− α) level confidence interval for σ2 is given by

CI(σ2) :

[
(N − k)MS2

χ2
N−k; 1−α/2

;
(N − k)MS2

χ2
N−k; α/2

]
, (7.7)

where MS2 = WSS/(N −K) and χ2
ν; γ denotes the γ–quantile of a χ2–distribution with

ν degrees of freedom.
It should also be mentioned that the approximation of the distribution of MS1 by a

multiple of a χ2–distribution in the general case is satisfactory only if the between group
variance σ2

a is close to 0. This explains why an easy extension of the confidence interval
for σ2

a in the balanced case independently proposed by Tukey (1951) and Williams (1962),
to be discussed later in this chapter, is not possible in the unbalanced case.

7.2 Homogeneous error variances

Under the assumption of homogeneous error variances, i.e., σ2
1 = σ2

2 = .... · · · = σ2
k =

σ2, the above model clearly boils down to the familiar intraclass correlation model with
just three parameters: overall mean µ, between study variance σ2

a and within study or
error variance σ2. For balanced models, i.e., when the treatment replications n1, ....,
nk are the same, there are exactly three sufficient statistics, namely, the overall sample
mean, the between sum of squares and the within sum of squares, and it is easy to
derive the UMVUEs of the three parameters. In case of unbalanced models, there are
many sufficient statistics and an unbiased estimate of the between study variance σ2

a is
not unique! Moreover, applying a fundamental result of Lamotte (1973), it turns out
that all unbiased estimates of σ2

a in both balanced and unbalanced models are bound to
assume negative values, thus making them unacceptable in practice. A lot of research
has been conducted in order to derive nonnegative estimates of σ2

a with good frequentist
properties. Because our emphasis here is more on tests and confidence intervals rather
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than on estimation, we omit these details and refer to the book by Searle, Casella, Mc
Culloch (1992).

7.2.1 Test for σ2
a = 0

Although the one-way random effects model postulates the presence of a random compo-
nent, it is of interest to test if this random component ai is indeed present in the model
(7.1). Since the null hypothesis here corresponds to the equality of means in a standard
ANOVA setup, we can use the regular F-test based on the ratio of between and within
sums of squares, i.e., F = BSS/(k−1)

WSS/(N−k)
. Although this F -test is known to have some op-

timum properties in the balanced case, in the unbalanced case this F-test though valid
ceases to have optimum properties, and a locally best invariant test under a natural group
of transformations was derived by Das and Sinha (1987). The test statistic F ∗, whose
sampling distribution does not follow any known tabulated distribution, is given by

F ∗ =

∑k
i=1 n

2
i (ȳi. − ȳ..)

2

WSS
. (7.8)

7.2.2 Approximate tests for H0 : σ2
a = δ > 0 and confidence intervals for σ2

a

When the F-test for the nullity of the between study variability is rejected, it is of impor-
tance to test for other meaningful positive values of this parameter as well as to construct
its appropriate confidence intervals. Quite surprisingly, this particular problem has been
tackled by many researchers over the last fifty years. It is clear from (7.5) that even in
the case of balanced models, there is no obvious test for a positive value of σ2

a and also it
is not clear how to construct an exact confidence interval for σ2

a. This is the main reason
for a lot of research on this topic. Fortunately, the relatively new notion of a generalized
P -value can be used to solve these problems exactly even in the case of unbalanced models.
We will discuss this solution in section 7.2.3.

In this section however we provide a survey of some main results on the derivation
of approximate confidence intervals for σ2

a mostly from a classical point of view. Once
an appropriate confidence interval is derived, it can be used to test the significance of a
suggested positive value of the parameter σ2

a in the usual way. It should be noted that
most of the procedures discussed below provide approximate solutions to our problem
especially in unbalanced models. In the sequel, we discuss the two cases of balanced and
unbalanced models separately.

Balanced models.
In the case of a balanced design, one method for constructing a confidence interval

for the between group variance σ2
a was proposed by Tukey (1951) and also independently
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by Williams (1962). The Tukey-Williams method is based upon noting the distributional
properties of BSS and WSS, given in (7.4) and (7.5). Since it is easy to construct confi-
dence intervals for σ2 and σ2+nσ2

a, exact (1−α)–confidence intervals for these parameters
can be easily calculated and by solving the intersection of these two confidence intervals,
a confidence interval of the between group variance σ2

a can be obtained which has a confi-
dence coefficient at least (1−2α) due to Bonferroni’s inequality. The results of simulation
studies conducted by Boardman (1974) indicated that the confidence coefficient of the
Tukey-Wiliams interval is nearly 1−α (cf. also Graybill (1976, p. 620)) and Wang (1990)
showed that the confidence coefficient of this interval is even at least 1−α for customary
values of α.

Unbalanced models
Following the Tukey–Williams approach, Thomas and Hultquist (1978) proposed a

confidence interval for the between group variance σ2
a in the unbalanced case. This is

based on a suitable χ2 approximation of the distribution of BSS. However, this approx-
imation is not good if the design is extremely unbalanced or if the ratio of the between
and within group variances is less than 0.25. To overcome this problem, Burdick, Maq-
sood and Graybill (1986) considered a conservative confidence interval for the ratio of
between and within group variance, which was used in Burdick and Eickman (1986) to
construct a confidence interval for the between group variance based on the ideas of the
Tukey–Williams method. In Burdick and Eickman (1986), a comparison of the confidence
coefficients of the Thomas–Hultquist interval and the Burdick–Eickman interval on the
basis of some simulation studies is reported. The results of the simulations studies indi-
cated that the confidence coefficient is near 1− α in most cases. If the approximation to
a χ2–distribution in the Thomas–Hultquist approach is not so good, the resulting confi-
dence interval can be very liberal, while in these situations the Burdick–Eickman intervall
can be very conservative.

Hartung and Knapp (2000) proposed a confidence interval for the between group
variance in the unbalanced design which is constructed from an exact confidence interval
for the ratio of between and within group variance derived from Wald (1940), (see also
Searle, Casella, and McCulloch (1992, p. 78), Burdick and Graybill (1992, p. 186 f.)), and
an exact confidence interval of the error variance.

We describe below all the three procedures mentioned above for constructing an ap-
proximate confidence interval for σ2

a based on the two familiar sums of squares, namely,
between and within sums of squares.

Thomas–Hultquist confidence interval for σ2
a.

Instead of MS1 from (7.6), Thomas and Hultquist (1978) considered the sample vari-
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ance of the group means given by

MS3 =
1

k − 1

k∑
i=1

(
yi. −

1

k

k∑
i=1

yi.

)2

. (7.9)

They showed that it holds approximately

(k − 1)MS3

σ2
a + σ2/ñ

appr.∼ χ2
k−1 , (7.10)

where ñ denotes the harmonic mean of the sample sizes of the k groups.
Combining (7.4) and (7.10), it is then easy to conclude that

σ2

σ2
a + σ2/ñ

· MS3

MS2

appr.∼ Fk−1, N−k , (7.11)

where Fν1, ν2 denotes a F–distributed random variable with ν1 and ν2 degrees of freedom.
From (7.10) and (7.11), (1−α) level confidence intervals for σ2

a + σ2/ñ and σ2
a/σ

2 can
be constructed and adopting the ideas of constructing a confidence interval by Tukey and
Williams to the present situation leads to the following confidence interval for σ2

a:

CITH(σ2
a) :

[
(k − 1)

χ2
k−1; 1−α/2

(
MS3 −

MS2

ñ
Fk−1, N−k; 1−α/2

)
;

(k − 1)

χ2
k−1; α/2

(
MS3 −

MS2

ñ
Fk−1, N−k; α/2

)]
. (7.12)

Due to Bonferroni’s inequality the confidence coefficient of (7.12) is at least (1− 2α),
but one may hope that the actual confidence coefficient is nearly (1 − α). However, as
mentioned earlier, Thomas and Hultquist (1978) reported that the χ2–approximation in
(7.10) is not good for extremely unbalanced designs where the ratio η = σ2

a/σ
2
e is less than

0.25. Thus, in such situations the confidence interval (7.12) can be a liberal one, i. e. the
confidence coefficient substantially lies below (1− α).

Burdick–Eickman confidence interval for σ2
a.

Burdick, Maqsood and Graybill (1986) suggested a confidence interval for the ratio
η = σ2

a/σ
2 which overcomes the problem with small ratios in the Thomas–Hultquist

procedure and has a confidence coefficient of at least 1− α. This interval is given by

CI(η) :

[
MS3

MS2

· 1

Fk−1, N−k; 1−α/2

− 1

nmin

;
MS3

MS2

· 1

Fk−1, N−k; 1−α/2

− 1

nmax

]
(7.13)
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with nmin = min{n1, . . . , nk} and nmax = max{n1, . . . , nk}.
The difference between (7.12) and (7.13) lies in subtracting 1/ñ in both bounds instead

of 1/nmin and 1/nmax, respectively, in (7.13).
Using (7.13) and the confidence interval for σ2

a + σ2/ñ from (7.10), Burdick and Eick-
man (1986) investigated the confidence interval for σ2

a constructed by the Tukey-Williams
method.

This interval is given by

CIBE(σ2
a) :

[(
ñL

1 + ñL

)
· (k − 1)MS3

χ2
k−1; 1−α/2

;

(
ñU

1 + ñU

)
· (k − 1)MS3

χ2
k−1; 1−α/2

]
, (7.14)

with

L = max

{
0,

MS3

MS2

· 1

Fk−1, N−k; 1−α/2

− 1

nmin

}
and

U = max

{
0,

MS3

MS2

· 1

Fk−1, N−k; α/2

− 1

nmax

}
.

Hartung-Knapp confidence interval for σ2
a.

Instead of approximative confidence intervals for η as in the Thomas–Hultquist and
Burdick–Eickman approach, Hartung and Knapp (2000) considered the exact confidence
interval for η given in Wald (1940) to construct a confidence interval for σ2

a.
Following Wald (1940), we observe that

Var(yi.) = σ2
a + σ2/ni = σ2/wi (7.15)

with wi = ni/(1 + ηni), i = 1, . . . , k.
Now, Wald considered the sum of squares

(k − 1)MS4 =
k∑

i=1

wi

(
yi. −

∑k
i=1wiyi.∑k

i=1wi

)2

(7.16)

and proved that

(k − 1)MS4/σ
2 ∼ χ2

k−1 .
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Furthermore, MS4 and MS2 are stochastically independent so that

Fw(η) =
MS4

MS2

∼ Fk−1, n−k . (7.17)

Obviously, (7.17) can be used to construct an exact confidence interval for the ratio η.
Wald showed that (k−1)MS4 is a strictly monotonously decreasing function in η, and

so the bounds of the exact confidence interval are given as the solutions of the following
two equations:

lower bound: Fw(η) = Fk−1, N−k, 1−α/2

upper bound: Fw(η) = Fk−1, N−k, α/2
(7.18)

Since Fw(η) is a strictly monotonously decreasing function in η, the solution of (7.18),
if it exists, is unique. But due to the fact that η is nonnegative, (k − 1)MS4 is bounded
at η = 0, namely it holds that

(k − 1)MS4 ≤
k∑

i=1

ni

(
yi. −

∑k
i=1 niyi.∑k
n=1 ni

)2

. (7.19)

Thus, a nonnegative solution of (7.18) may not exist. If such a solution of one of the
equations in (7.18) does not exist, the corresponding bound in the confidence interval is
set equal to zero. Note that the existence of a nonnegative solution in (7.18) only depends
on the chosen α.

Let us denote by ηL and ηU the solutions of the equations in (7.18). We then propose,
using the confidence bounds from (7.7) for σ2, the following confidence interval for σ2

a:

CI(σ2
a) :

[
(N − k)MS2

χ2
N−k; 1−α

· ηL ;
(N − k)MS2

χ2
N−k; α

· ηU

]
, (7.20)

which has a confidence coefficient of at least (1−2α) according to Bonferroni’s inequality.
But due to the fact that the confidence coefficient of [σ2 · ηL, σ

2 · ηU ] is exactly 1 − α,
the resulting confidence interval (7.20) may be very conservative, i. e. the confidence
coefficient is larger than (1 − α). So, we also consider a confidence interval for σ2

a with
the estimator MS2 for σ2 instead of the bounds of the confidence interval for σ2, i. e.

C̃I(σ2
a) : [MS2 · ηL ; MS2 · ηU ] . (7.21)

Through extensive simulation studies conducted by Hartung and Knapp (2000), the
observations of Burdick and Eickman (1986) are confirmed in the sense that the Thomas–
Hultquist interval may be very liberal for small σ2

a, i. e. the confidence coefficient lies con-
siderably below 1−α. In these situations, the Burdick–Eickman interval has a confidence
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coefficient which is always larger than 1 − α, but the interval can be very conservative.
If σ2

a becomes larger, both intervals are very similar. The confidence interval CI deduced
from Wald’s confidence interval for the ratio η with the bounds of the confidence interval
of the error variance as estimates for the error variance has always a confidence coefficient
at least as great as 1− α, but this interval can be very conservative for large σ2

a. A good

compromise for the whole range of σ2
a is the confidence interval C̃I from (7.21), which has

a confidence coefficient at least as great as 1 − α for small σ2
a, and for growing σ2

a the
confidence interval only becomes moderately conservative.

7.2.3 Exact test and confidence interval for σ2
a based on a generalized P -value

approach

.
In this section we describe the relatively new notion of a generalized P -value and its

applications to our problem. The original ideas are due to Tsui and Weerahandi (1989)
and Weerahandi (1993).

We start with a general description of the notion of a generalized P -value. If X
is a random variable whose distribution depends on the scalar parameter θ of interest
and a set of nuisance parameters η, and the problem is to test H0 : θ ≤ θ0 versus
H1 : θ > θ0, a generalized P-value approach proceeds by judiciously specifying a test
variable T (X;x, θ, η) which depends on the random variable X, its observed value x, and
the parameters θ and η, satisfying the following three properties:

(i) The sampling distribution of T (X;x, θ, η) derived from that of X, for fixed x, is free
of the nuisance parameter η;
(ii) The observed value of T (X;x, θ, η) whenX = x, i.e., T (x;x, θ, η) is free of the nuisance
parameter η;
(iii) P [T (X;x, θ, η) ≥ t] is nondecreasing in θ, for fixed x and η.

Under the above conditions, a generalized P-value is defined by

genP = P [T (X;x, θ0, η) ≥ t] (7.22)

where t = T (x;x, θ0, η).
In the same spirit as above, Weerahandi (1993) constructed a one-sided confidence

bound for θ based on a test variable T1(X;x, θ, η) satisfying the above three properties
and also the added constraint that the observed value of T1 is T1(x;x, θ, η) = θ. Let t1(x)
satisfy the condition:

P [T1 ≤ t1(x)] = 1− α. (7.23)
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Then t1(x) can be regarded as a (1− α) level upper confidence limit for θ.

We now turn our attention to the applications of this concept to our specific problem.

a) An exact test for H0 : σ2
a = δ > 0 in the balanced case. This testing problem

is commonly known in the literature as a non-standard testing problem in the sense
that there are no obvious pivots or exact tests for testing this null hypothesis based on
the two sums of squares: BSS and WSS. Recall that, in the balanced case, this fact
follows from the canonical form of the model based on two independent sums of squares,
BSS ∼ (σ2 + nσ2

a).χ
2
(k−1) and WSS ∼ σ2.χ2

k(n−1). While it is obvious that an exact test

for σ2
a = 0 or even for σ2

a/σ
2 = δ can be easily constructed simply by taking the ratio of

BSS and WSS, the same is not true for the null hypothesis H0 : σ2
a = δ for some δ > 0.

We now describe a test for this hypothesis in the balanced case based on a generalized
P-value.

In our context, taking X = (BSS,WSS), x = (bss, wss), the observed values of X,
θ = σ2

a and η = σ2, we define

T (BSS,WSS; bss, wss, σ2
a, σ

2) =
nσ2

a + wss(σ2/WSS)

bss[(nσ2
a + σ2)/BSS]

(7.24)

It is easy to verify that T defined above satisfies the conditions (i), (ii), (iii), and hence
the generalized P-value for testing H0 : σ2

a = δ or H0 : σ2
a ≤ δ versus H1 : σ2

a > δ is given
by

genP = P [T ≥ 1] = P [
nδ + wss/Ue

bss/Ua

≥ 1] (7.25)

where Ua = BSS/(σ2 + nσ2
a) ∼ χ2

(k−1) and Ue = WSS/σ2 ∼ χ2
k(n−1). The test procedure

rejects H0 if the generalized P-value is small. We should point out that the computation
of the generalized P-values in this and similar other problems is facilitated by the software
package XPro Software Package (1994) developed by X-Techniques, Inc.

b) One-sided confidence bound for σ2
a in the balanced case. We define

T1 = T (BSS,WSS; bss, wss, σ2
a, σ

2) =
1

n
[
bss(nσ2

a + σ2)

BSS
− wssσ2

WSS
] =

1

n
[
bss

Ua

− wss

Ue

]

(7.26)
It is then easy to verify that the sampling distribution of T1, for fixed x = (bss, wss),

does not depend on σ2, and that the observed value of T1 is indeed σ2
a. Let t1(bss, wss)

satisfy the condition
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P [T1 ≤ t1(bss, wss)] = 1− α. (7.27)

Then t1(bss, wss) can be regarded as a (1− α) level upper confidence limit for σ2
a.

We now provide an example from Verbeke and Molenberghs (1997) to illustrate the
application of this approach.

Example 7.1. This example demonstrating the application of generalized P-value to
find an upper confidence limit of σ2

a is taken from Verbeke and Molenberghs (1997). To
measure the efficiency of an antibiotic after it has been stored for two years, eight batches
of the drug are randomly selected from a population of available batches and a random
sample of size two is taken from each selected batch (balanced design). Data representing
the concentration of the active component are given below.

Batch: 1 2 3 4 5 6 7 8
Obs: 40 33 46 55 63 35 56 34

42 34 47 52 59 38 56 29

Employing the very natural one-way balanced random effects model here and doing
some routine computations, the following ANOVA table is obtained. It is evident from the
ANOVA table that a batch to batch variability is very much in existence in this problem,
implying σ2

a > 0.

ANOVA table
Sum of Mean Expected
squares d.f. squares mean squares

Batches BSS = 1708 7 BMS = 244.1 2σ2
a + σ2

Error WSS = 32.5 8 WMS = 4.062 σ2

In order to derive a 95% upper confidence interval for the parameter σ2
a, it is indeed

possible to use the familiar Satterthwaite approximation which is as follows. The estimate
of σ2

a is σ̂2
a = (BMS−WMS)/2. Consider the approximation νσ̂2

a/σ
2
a ∼ χ2

ν and equating
the second moments yield ν̂ = (BMS −WMS)2/(BMS2/7 + WMS2/8) = 1.69. This
leads to the interval σ2

a ≤ ν̂σ̂2
a/χ

2
0.05;ν̂ = 3707.50, which is just useless for this problem.

On the other hand, the application of a generalized confidence interval to this problem,
as developed here, based on T1 = (1708/Ua−32.5/Ue)/2 yields σ2

a ≤ 392.27, which is much
more informative than the previous bound.

c) An exact test for H0 : σ2
a = δ > 0 and a confidence bound for σ2

a in the
unbalanced case.

For testing H0 : σ2
a = δ > 0 versus the alternative H1 : σ2

a > δ, a potential generalized
test variable can be defined as follows.
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Define ρ = σ2
a/σ

2, wi(ρ) = ni/(1 + ρni),
Ȳw(ρ) =

∑k
i=1wi(ρ)Ȳi./

∑k
i=1wi(ρ) ∼ N [µ, σ2/

∑k
i=1wi(ρ)]. Let

SwB(ρ) =
k∑

i=1

wi(ρ)(Ȳi. − Ȳw(ρ))2 ∼ σ2χ2
k−1. (7.28)

Define W1 = WSS/σ2 ∼ χ2
N−k and W2 = SwB(ρ)/σ2 ∼ χ2

k−1 which are independent.
Finally, let

T (SwB(ρ),WSS; swB, wss, σ
2
a, σ

2) =
wssSwB(ρ)

WSSswB(σ2
aWSS
σ2wss

)

=
W2wss

W1swB(σ2
aW1

wss
)

(7.29)

It is easily seen from the second equality above that the distribution of the test variable
T (SwB(ρ),WSS; swB, wss, σ

2
a, σ

2) depends only on the parameter of interest, namely, σ2
a,

and is independent of the nuisance parameter σ2! It also follows from the first equality
above that the observed value of T (SwB(ρ),WSS; swB, wss, σ

2
a, σ

2) is one. Hence, the
generalized P-value for testing H0 : σ2

a = δ > 0 versus the alternative H1 : σ2
a > δ is given

by

P = Pr[T (SwB(ρ),WSS; swB, wss, σ
2
a, σ

2) ≥ 1|σ2
a = δ]

= Pr[W2 ≥
W1

wss
swB(

W2δ

wss
)] (7.30)

The generalized confidence bounds for σ2
a can be obtained by solving the equations:

Pr[W2 ≥ W1

wss
swB(W2δ1

wss
)] = α

2

Pr[W2 ≥ W1

wss
swB(W2δ2

wss
)] = 1− α

2

in which case [δ2, δ1] is the 100(1− α)% generalized confidence interval for σ2
a.

The above P value and the confidence bounds can be conveniently computed using
the XPro software package.

7.2.4 Tests and confidence intervals for µ

In this subsection we discuss some tests and confidence intervals for the overall mean
parameter µ. Clearly, an unbiased estimate of µ is given by the overall sample mean ȳ =∑
ȳi/k whose distribution is normal with mean µ and variance η2 =

∑
(σ2

a + σ2/ni)/k
2.
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In the balanced case when n1 = · · · = nk = n, ȳi’s are iid with a common mean µ and a
common variance σ2

a + σ2/n so that a t-test can be carried out to test hypotheses about
µ and also the usual t-statistic can be used to derive confidence limits for µ.
In the unbalanced case, however, only some approximate tests and confidence intervals
for µ can be developed. We can easily estimate the common within study variance σ2

by just combining the within sample variances MS2 with a combined df N − k. As for
the other variance component, namely, the between study variance σ2

a, since the usual
ANOVA estimate can assume negative values, many modifications of it are available in
the literature. A normal approximation is then used for the distribution of the so-called
studentized variable t = (ȳ−µ)/σ̂(ȳ) to obtain approximate tests and confidence intervals
for µ. Details can be found in Rukhin and Vangel (1998), Rukhin, Biggerstaff and Vangel
(2000).

An exact test for µ in the unbalanced case is described in Iyer et al. (2004), using
the notion of the generalized P-value. However, the solution is rather complicated and
we omit the details.

7.3 Heterogeneous error variances

In this section we discuss the problem of drawing appropriate inferences about the overall
mean µ and the between study variability σ2

a under the more realistic scenario of hetero-
geneous error or within study variances. It is obvious that one can estimate an within
study variance σ2

i from replicated observations from the ith study. However, the asso-
ciated inference problems here are quite hard and some satisfactory solutions have been
offered only recently.

7.3.1 Tests for H0 : σ2
a = 0

It is of course clear that testing the nullity of the between study variance H0 : σ2
a = 0 is

easy to carry out because, under the null hypothesis, one has the usual fixed effects model
with heterogeneous error or within study variances. Thus, all the test procedures described
in lecture 6 are applicable here. Argac, Makambi, and Hartung (2001) performed some
simulation in the context of this problem in an attempt to compare the proposed tests in
terms of power and recommend the use of adjusted Welch test in most cases.

7.3.2 Tests for H0 : σ2
a = δ > 0

In many situations it is known a priori that some positive level of between study variability
may be present and it is desired to prescribe a test for a designated positive value for this
parameter. Due to the heterogeneous error variances, it is clear that the testing problem
here is quite difficult. In the following, we provide below two solutions to this problem.
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Hartung, Makambi, and Argac (2001) propose a test statistic they call extended
ANOVA test statistic, and this is given by

F ∗
A =

k∑
i=1

hi

(
ȳi. −

k∑
j=1

hj ȳj.

)2

/(k − 1)

δ
k∑

i=1

h2
i +

k∑
i=1

h2
i S

2
i /ni

(7.31)

with hi = wi/
∑k

j=1wj, wi = 1/τ̃ 2
i , and τ̃ 2

i = δ + S2
i /ni. Under the null hypothesis

H0 : σ2
a = δ, the test statistic F ∗

A is approximately F -distributed with (k − 1) and ν̂A

degrees of freedom, where

ν̂A =

( k∑
i=1

h2
i τ̃

2
i

)2

k∑
i=1

h4
i S

4
i / (n2

i (ni + 1))

− 2. (7.32)

So, we reject H0 : σ2
a = δ at level α, if F ∗ > Fm−1,ν̂R;1−α.

Hartung and Argac (2002) derive an extension of the Welch test. Their test statistic
is given by

F ∗
W =

k∑
i=1

wi

(
ȳi. −

k∑
j=1

hj ȳj.

)2

(k − 1) + 2(k − 2)(k − 1)−1
k∑

i=1

(1− hi)2/ν̂i

(7.33)

with hi = wi/
∑k

j=1wj, wi = 1/(δ+S2
i /ni), and ν̂i = 2(δ+S2

i /ni)
2/{2S2

i /(n
2
i (ni+1)). The

test statistics F ∗
W is approximately F -distributed under the null hypothesis with (k − 1)

and ν̂W degrees of freedom, where

ν̂W =
k2 − 1

3
k∑

i=1

(1− hi)2/ν̂i

. (7.34)

The null hypothesis is rejected at level α if F ∗
W > Fk−1,ν̂W ;1−α.

In section 7.4, appropriate confidence intervals of σ2
a will be presented, which in turn

can also be used to test the significance of a designated positive value of this parameter.

7.3.3 Nonnegative estimation of σ2
a

In this subsection we discuss various procedures to derive nonnegative estimates of the
central parameter of interest, namely, σ2

a. The estimators are either based on quadratic
forms in y or on likelihood methods.
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Rao, Kaplan, and Cochran (1981) discuss extensively the parameter estimation in the
one-way random-effects models. We present here three estimators of σ2

a from this paper
that are generally eligible for use in meta analysis.

With the between and within classes sum of squares, the unbiased ANOVA type
estimator of σ2

a has the form

σ̂2
a =

(
n

n2 −
∑k

i=1 n
2
i

)(
k∑

i=1

ni(ȳi. − ȳ..)
2 −

k∑
i=1

(
1− ni

n

)
S2

i

)
(7.35)

Based on the unweighted sum of squares, the unbiased ANOVA-type estimator of the
between group variance is given by

σ̂2
a =

1

k − 1

k∑
i=1

(ȳi − ȳ∗)2 − 1

k

k∑
i=1

S2
i

ni

(7.36)

with ȳ∗ =
∑k

i=1 ȳi/k the mean of the group means.
Both estimators, (7.35) and (7.36), are unbiased estimators of σ2

a. However, both
estimators can yield negative values. Based on the Rao’s (1972) MINQUE principle
without the condition of unbiasedness, Rao, Kaplan, and Cochran (1981) provide an
always nonnegative estimator of σ2

a as

σ̂2
a =

1

k

k∑
i=1

`2i (ȳi. − ¯̄y..)
2 , (7.37)

where `i = ni/(ni + 1) and ¯̄y... = (
∑k

i=1 `iȳi.)/(
∑k

i=1 `i).
In the biomedical literature, an estimator proposed by DerSimonian and Laird (1986)

is widely used. Based on Cochran’s homogeneity statistic and using the method of moment
approach in the one-way random effects model assuming known within-group variances
σ2

i , they derive the estimator

σ̂2
a =

∑k
i=1wi(ȳi. − ỹ..)

2 − (k − 1)∑k
i=1wi −

∑k
i=1w

2
i /
∑k

i=1wi

(7.38)

where ỹ.. =
∑k

i=1wiȳi./
∑k

i=1wi, and in the present model, wi = ni/σ
2
i . The estimator

(7.38) is an unbiased estimator of σ2
a given known σ2

i . In practice, estimates of the within-
group variances have to be plugged in and then, the estimator is no longer unbiased.
Moreover, like the unbiased ANOVA-type estimators (7.35) and (7.36), the DerSimonian-
Laird estimator can yield negative estimates with positive probability.
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Using the general approach of nonnegative minimum biased invariant quadratic es-
timation of variance components proposed by Hartung (1981), Heine (1993) derives the
nonnegative minimum biased estimator of σ2

a in the present model. If N − 2ni ≥ 0,
i = 1, . . . , k, this estimator reads

σ̂2
a =

n2( k∑̀
=1

n2
` + 1

) k∑̀
=1

n`(N − n`)
∏
`′ 6=`

(N − 2n`′)

k∑
i=1

n2
i

∏
`′ 6=`

(N − 2n`′)(ȳi. − ȳ..)
2 (7.39)

Maximum likelihood estimation in the present model has been already discussed by
Cochran (1954). Rukhin, Biggerstaff, and Vangel (2000) provide the estimation equa-
tions of the maximum likelihood (ML) and the restricted maximum likelihood estimator
(REML) estimator of σ2

a.
In the one-way random effects model, all the data are available. Sometimes, only

summary statistics are available and then we obtain the following model which can be seen
as a special case of the one-way random effects model. Let (ȳ1., S

2
1), (ȳ2., S

2
2), . . . , (ȳk., S

2
k)

be independent observations representing summary estimates ȳi. of some parameter µ of
interest from k independent sources, together with estimates S2

i /ni of the variances of ȳi.,
and ni denotes the corresponding sample size.

The random effects meta analysis model is given as

ȳi. = µ+ ai + ei, i = 1, . . . , k, (7.40)

where ai are normally distributed random variables with mean zero and variance σ2
a,

representing the between-group variance, and ei are normally distributed random variables
with mean zero and variance σ2

i /ni. In model (7.40), we assume that the variances σ2
i are

reasonably well estimated by the S2
i within the independent groups. So, we assume the

σ2
i are known and simply replace them by their estimates s2

i .
Taking the σ2

i as known, the estimating equations of the maximum likelihood estima-
tors of µ and σ2

a are given by

µ =

∑k
i=1wi(σ

2
a) ȳi.∑k

i=1wi(σ2
a)

, (7.41)

k∑
i=1

w2
i (σ

2
a) (ȳi. − µ)2 =

k∑
i=1

wi(σ
2
a) (7.42)

where wi(σ
2
a) = (σ2

a +s2
i /ni)

−1. A convenient form of equation (7.42) for iterative solution
is given by

σ2
a =

∑k
i=1w

2
i (σ

2
a)[(ȳi. − µ)2 − s2

i /ni]∑k
i=1w

2
i (σ

2
a)

(7.43)
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The restricted likelihood estimate of σ2
a is found numerically by iterating

σ2
a =

∑k
i=1w

2
i (σ

2
a)[(ȳi. − µ̂(σ2

a))
2 − s2

i /ni]∑k
i=1w

2
i (σ

2
a)

+
1∑k

i=1wi(σ2
a)

(7.44)

7.3.4 Confidence intervals for σ2
a

We now present some very latest work due to Hartung and Knapp (2005) on the confidence
interval of σ2

a. This is based on a suitable quadratic form of the group means and exploiting
solutions of some non-linear equations along with a convexity argument. The appproach
is on a quadratic form of the group means which can be used for estimating the variance
of the weighted least squares estimator (WLSE) of the overall mean without bias. For
known variance components this quadratic form is exactly distributed as a multiple of a
χ2–distributed random variable, see Hartung (1999) and section 7.4.

To begin, let us recall again the one–way random effects model with unequal or het-
erogeneous error variances, which is given by

yij = µ+ ai + eij , i = 1, . . . , k > 1 ; j = 1, . . . , ni > 1 , (7.45)

where, as before, yij denotes the observable random variable, µ the overall mean, and
ai and eij are unobservable mutually stochastically independent random variables which
are normally distributed with mean 0 and variance σ2

a ≥ 0 and σ2
i > 0, i = 1, . . . , k,

respectively. Furthermore, let N =
∑k

i=1 ni denote the total number of observations.
It is obvious that within each group the arithmetic mean of the observations, ȳi. =∑ni

j=1 yij/ni, is an unbiased estimator of µ with variance σ2
a + σ2

i /ni in model (7.45) and
the weighted least squares estimator (WLSE) of the overall mean is given by

µ̂ =
k∑

i=1

wi ȳi.

wΣ

(7.46)

with wi = (σ2
a +σ2

i /ni)
−1, wΣ =

∑k
i=1wi. The WLSE µ̂ is normally distributed with mean

µ and variance 1/wΣ.
As the estimate of the within group variance σ2

i we always consider the unbiased
estimator

σ̂2
i =

ni∑
j=1

(yij − ȳi.)
2/(ni − 1) , (7.47)

and in model (7.45) it holds that (ni − 1) σ̂2
i /σ

2
i is χ2–distributed with (ni − 1) degrees

of freedom and, furthermore, the estimator σ̂2
i is stochastically independent of the group

mean ȳi..
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The approach of Hartung and Knapp (2005) is based on the quadratic form Q of the
group means, defined by

Q =
k∑

i=1

wi (ȳi. − µ̂)2 (7.48)

which is χ2–distributed with (k − 1) degrees of freedom. We note that the quadratic
form Q given above contains the usually unknown true variance components σ2

a and σ2
i ,

i = 1, . . . , k. Let us first replace the within–group variances σ2
i by their unbiased estimates

σ̂2
i from (7.47). So, we obtain the quadratic form

Q̃(σ2
a) =

k∑
i=1

w̃i

(
ȳi. − ˆ̂µ

)2

(7.49)

with w̃i = (σ2
a + σ̂i

2/ni)
−1, ˆ̂µ =

∑k
i=1 w̃i ȳi./w̃Σ, w̃Σ =

∑k
i=1 w̃i. Since σ̂2

i are unbiased
estimators of σ2

i and stochastically independent of the group means ȳi. in model (7.45),
it follows that the weights w̃i are consistent estimators of the weights wi. By considering
the first two moments of Q̃(σ2

a) we suggest, as a first step, approximating the distribution

of Q̃(σ2
a) by a χ2–distribution with (k− 1) degrees of freedom. The derivation of the first

two moments of Q̃(σ2
a) as well as a discussion of the approximation is given Hartung and

Knapp (2005).

Hartung and Knapp (2005) show that Q̃(σ2
a) is a monotone decreasing function in σ2

a

and, thus, propose a (1− α)–confidence region for the among–group variance defined by

C1(σ
2
a) =

{
σ2

a ≥ 0
∣∣ χ2

k−1;α/2 ≤ Q̃(σ2
a) ≤ χ2

k−1;1−α/2

}
(7.50)

where χ2
ν;κ denotes the κ–quantile of the χ2–distribution with ν degrees of freedom.

Since Q̃(σ2
a) is a monotone decreasing function in σ2

a ≥ 0 the function Q̃(σ2
a) has

its maximal value at Q̃(0). For Q̃(0) < χ2
k−1;α/2 we define C1(σ

2
a) = {0}, otherwise

the confidence region C1(σ
2
a) is a real interval. Note that the validity of the inequality

Q̃(0) < χ2
k−1;α/2 only depends on the choice of α.

To determine the bounds of the confidence interval one has to solve the two equations
for σ2

a, namely

lower bound: Q̃(σ2
a) = χ2

k−1;1−α/2

upper bound: Q̃(σ2
a) = χ2

k−1;α/2

(7.51)

This can be easily done, for instance, by using the bisection method.
Likelihood based confidence intervals have been proposed by Hardy and Thompson

(1996) and Biggerstaff and Tweedie (1997). We omit the details here.
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7.4 Inference about µ

In the last section of this lection, we present some results on estimation, tests and confi-
dence intervals of the overall mean µ.

Let us recall that for the one-way random effects model, µ̂i = ȳi ∼ N(µ, σ2
a + σ2

i /ni).
Then the standard estimator of µ is given by

µ̂ =

∑k
i=1

1
ŵi
· µ̂i∑k

i=1 1/ŵi

, (7.52)

where ŵi = σ̂2
a + σ̂2

i /ni, i = 1, . . . , k. Therefore, we have the commonly used test statistic

Z =
µ̂

(
∑K

i=1 1/ŵi)−1/2

approx∼ N(0, 1) (7.53)

In the above, the within study variances σ2
i are estimated by their sample counterparts,

and the between study variance σ2
a is usually estimated by the so-called DerSimonian and

Laird (1986) estimate. As is well known, in small samples, which is mostly the case in
applications, this test suffers from the same weaknesses as its fixed effects counterpart.
Namely, the test is anticonservative, that means it yields too many unjustified significant
results.

Several modifications of the above normal test have been suggested in the literature
(Hartung, 1999; Hartung and Knapp; 2001a ,b; Sidik and Jonkman, 2002; Hartung,
Böckenhoff and Knapp, 2003). We should mention that most of the modifications are
very similar. We present below some results from Hartung and Knapp (2001a, b).

The basic results for the improved test are that the quadratic form

Q =
k∑

i=1

wi (ȳi. − µ̂)2 (7.54)

is a χ2-distributed random variable stochastically independent of µ̂ and that

v̂ar(µ̂) =
1

k − 1

Q∑k
i=1wi

(7.55)

is an unbiased estimator of the variance of µ̂. Consequently, under H0 : µ = 0,

T =
µ̂

v̂ar(µ̂)
(7.56)

is a t–distributed random variable with k − 1 degrees of freedom. The test statistic T
depends on the unknown variance components which have to be replaced by appropriate
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estimates in practice. By substituting the variance components by their estimates, the
resulting test statistic is then approximately t–distributed with k − 1 degrees of freedom

Hartung and Knapp (2001a, b) conducted an extensive simulation study to compare
the attained type I error rates for the commonly used test statistic Z from 7.53 and the
proposed modified test statistic according (7.56). It turns out that the proposed test
greatly improves the attained type I error rate. Moreover, the good performance of the
proposed test does not depend on the choice of the the between group variance estimator.

An exact test for µ in the present model is described in Iyer et al. (2004), using the
notion of the generalized P-value. However, the solution is rather complicated and we
omit the details.

85



8 Publication Bias and Vote Counting Procedures

In this lecture we discuss two new concepts in statistical meta analysis: publication bias
and vote counting procedures. Both are relevant when we have incomplete information
about either the existing literature on the subject of our study or about details of the
studies which are available.

8.1 Publication Bias

As mentioned in the introduction, if a meta-analyst is restricted only to the published
studies, then there is a risk that it will lead to biased conclusions because there may be
many nonsignificant studies which are often unpublished and hence are ignored, and it is
quite possible that their combined effect, significant and nonsignificant studies together,
may change the overall conclusion. Publication bias thus results from ignoring unavailable
nonsignificant studies and this is the familiar file-drawer problem.

A general principle is that one ought to perform a preliminary analysis to assess the
chances that publication bias could be playing a role in the selection of studies before the
component studies are assembled for the meta analysis purpose. This assessment can be
done informally by using what is known as a funnel graph, which is merely a plot of the
sample size (sometimes the standard error) versus the effect size of the k studies (Light
and Pillemer, 1984). If no bias is present, this plot would look like a funnel, with the
spout pointing up. This is because there will be a broad spread of points for the highly
variable small studies (due to a small sample size) at the bottom and decreasing spread
as the sample size increases, with the indication that publication bias is unlikely to be a
factor for this meta analysis.

Referring to the Data Set 1 and the resulting graph, Figure 8.1, we observe a funnel
graph consistent with the pattern mentioned above. On the other hand, for the Data Set
2 and the associated graph, Figure 8.2, the contrast is clear. The large studies at the top
(with small standard errors) are clustered around the null value while the small studies
at the bottom (with large standard errors) show a positive effect, suggesting that there
could be a number of small studies with positive effects, which might remain unpublished.
We refer to Begg (1994) for details.
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Figure 8.1. Funnel plot for validity correlation studies (data set 1)
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Figure 8.2. Funnel plot for teacher expectancy studies (data set 2)
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There are two general strategies to deal with publication bias: sampling methods
and analytic methods. Sampling methods are designed to eliminate publication bias as
far as possible by directly addressing the manner in which the studies are selected for
inclusion in the meta analysis, and attempting by all reasonable means to get hold of
relevant unpublished studies on the topic. This method, which has been advocated by
Peto and his colleagues at Oxford (see Collins et al., 1987), strongly suggests following
up on published abstracts on the particular topic and contacting leading researchers in
the field for leads on relevant studies being conducted worldwide with the hope that such
an attempt would reveal many or some hitherto unpublished nonsignificant articles. The
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criticism of this method is that accuracy of some of these sought-after studies may be
questionable and also the quality of some of these studies may not be acceptable.

The second method, the well known file-drawer method (Rosenthal, 1979), is designed
to provide a simple qualification on a summary P value from a meta analysis. Assume that
the meta analysis of k available studies leads to a significant result, i.e., the combination
of k P values by one of the methods described earlier leads to rejection of H0. Recall the
method of computation of the P values described in Lecture 3, and also that small P values
lead to a significance of the null hypothesis, i.e., rejection of H0. We are then wondering
if a set of k0 nonsignificant studies, which remain unpublished and hence unknown to us,
would have made a difference in the overall conclusion, i.e., would have made rejection of
H0 on the basis of all the k + k0 studies impossible. The file-drawer method provides a
technique to get some idea about k0. Once such a value of k0 is determined, we then use
our judgement to see if so many nonsignificant studies on the particular problem under
consideration could exist!

Suppose we have used Stouffer’s (1949) normal method to combine the k P values.
This method suggests that we first convert the individual P values, P1, · · · , Pk of the k
published studies to normal Z scores, Z1, · · · , Zk, defined by

Zi = Φ−1(Pi), i = 1, · · · , k (8.1)

and then use the overall Z defined by

Z =
1√
k

k∑
i=1

Zi (8.2)

to test the significance of H0. Since Z behaves like N(0, 1) under H0 and H0 is rejected
for small values of Z, the assumed rejection of H0 at the significance level α essentially
implies that Z < −zα, or, |Z| > zα. To determine a plausible value of k0, we assume that
the average observed effect of the k0 unpublished (or unavailable) studies is 0, i.e., the
sum of the Z scores corresponding to these k0 studies is 0. Under this assumption, even
if these k0 studies were available, the value of the combined sum of all the Zi’s remains
the same as before (i.e.,

∑k
i=1 Zi =

∑k+k0

i=1 Zi). Therefore, this combined sum would have
led to the acceptance of H0, thus reversing our original conclusion, if

1√
k + k0

|
k∑

i=1

Zi| < zα, (8.3)
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which happens if

k0 > −k + (
k∑

i=1

Zi)
2/(zα)2. (8.4)

The above equation provides us with an idea about the number k0 of unpublished studies
with nonsignificant conclusions which, when combined with the results of k published
studies, would have made a difference in the overall conclusion. The rationale behind the
method is that, considering the relevant research domain, if k0 is judged to be sufficiently
large, it is unlikely that so many unpublished studies exist, and hence we can conclude
that the significance of the observed studies is not affected by publication bias.

Example 8.1. We can apply this method to the Data Set 2 dealing with Teacher-
Expectancy Studies. The individual z scores are computed by dividing the effect sizes
by the corresponding standard errors, details of which appear in Lecture 3. This leads to∑19

i=1 Zi = 10.615, which yields Z = 2.435, a significant value at the 5% level. Using the
formula given above, we find that k0 ≥ 22. This means if there are at least 22 unpublished
nonsignificant studies, then the conclusion obtained by ignoring them would have been
wrong. The plausibility of the existence of so many unpublished studies is of course a
judgement call, and would depend on the search technique used by the meta-analyst.

Example 8.2. We can also apply this method to the Data Set 1 dealing with Validity
Correlation Studies. In this case the individual z scores are computed from P values,
which in turn are obtained from the t values. This leads to

∑20
i=1 Zi = 36.632, which

yields Z = 8.191, a highly significant value at the 5% level. Again, using the formula
given above, we find that k0 ≥ 476. This means if there are at least 476 unpublished
nonsignificant studies, then the conclusion obtained by ignoring them would have been
wrong. The plausibility of the existence of so many unpublished nonsignificant studies
seems very remote, and we can therefore conclude that publication bias is unlikely to
make a difference in this problem.

Remark 8.1 If the meta analysis of k available studies leads to a nonsignificant conclu-
sion, then of course the issue of publication bias does not arise!

The advantage of the file-drawer method is that it is very simple and easily inter-
pretable. A disadvantage is the assumption that the results of the missing studies are
centered on the null hypothesis.

More sophisticated methods for adjusting the meta analysis for publication bias have
been developed using weighted distribution theory (Patil and Rao, 1977) and a Bayesian
data-augmentation approach (Givens et al., 1997). These methods lead to a much more
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complicated analysis, and are omitted. We also refer to Iyengar and Greenhouse (1988)
for some related results.

8.2 Vote Counting Procedures

We now describe the method of vote counting procedures which is used when we have
scanty information from the studies to be combined for statistical meta analysis. The
nature of data from primary research sources which are available to a meta-analyst gener-
ally falls into three broad categories: (i) complete information (e.g., raw data, summary
statistics) that can be used to calculate relevant effect size estimates such as means, pro-
portions, correlations, test statistic values, (ii) results of hypothesis tests for population
effect sizes about statistically significant or nonsignificant relations, and (iii) information
about the direction of relevant outcomes (i.e., conclusions of significant tests) without
their actual values (i.e., without the actual values of the test statistics).

Vote-counting procedures are useful for the second and third types of data, i.e., when
complete information about the results of primary studies are not available in the sense
that effect size estimates cannot be calculated. In such situations often the information
from a primary source is in the form of a report of the decision obtained from a significance
test (i.e., significant positive relation or nonsignificant positive relation), or in the form of
a direction (positive or negative) of the effect without regard to its statistical significance.
In other words, all is known is whether a test statistic exceeds a certain critical value
at a given significance level (such as α∗ = 0.05), or if an estimated effect size is positive
or negative, which amounts to the observation that the test statistic exceeds the special
critical value at significance level α∗ = 0.5. Actual values of the test statistics are not
available.

To fix ideas, recall that often a meta-analyst is interested in determining whether a
relation exists between an independent variable and a dependent variable for each study,
i.e., whether the effect size is zero for each study. Let T1, · · · , Tk be independent estimates
from k studies of the corresponding population effect sizes θ1, · · · , θk (i.e., difference of
two means, difference/ratio of two proportions, difference of two correlations or z values).
Under the assumption that the population effect sizes are equal, i.e., θ1 = · · · = θk = θ,
the appropriate null and alternative hypotheses are: H0 : θ = 0 (no relation) against
H1 : θ > 0 (relation exists). The test rejects H0 if an estimate T of the common effect
size θ, when standardized, exceeds the one-sided critical value ψα. Typically, in large
samples, one invokes the large sample approximation of the distribution of T , resulting
in the normal distribution of T , and we can then use ψα = zα, the cut-off point from
a standard normal distribution. On the other hand, if a 100(1 − α)% level confidence
interval for θ is desired, it is usually provided by T − ψα/2SE(T ) ≤ θ ≤ T + ψα/2SE(T )

90



where SE(T ) is the (estimated, if necessary) standard error of T . Quite generally, the
standard error S(θ) of T will be a function of θ and can be estimated by SE(T ), and a
normal approximation can be used in large samples. We refer to Lecture 4 for details.

When the individual estimates T1, · · · , Tk as well as their (estimated) standard errors
SE(T1), · · · , SE(Tk) are available, the solutions to these testing and confidence interval
problems are trivial (as discussed in previous lectures). However, the essential feature
of vote-counting procedure is that the values of T1, · · · , Tk are not observed, and hence
none of the estimated standard errors of the Ti’s is also available. What is known to us
is not the exact values of the Ti’s, but just the number of them which are positive or how
many of them exceed the one-sided critical value ψα∗ . The question then arises if we can
test H0 : θ = 0, or estimate the common effect size θ based on just this very incomplete
information.

The sign test, which is the oldest of all nonparametric tests, can be used to test the
hypothesis that the effect sizes from a collection of k independent studies are all zero
when only the signs of estimated effect sizes from the primary sources are known. If
the population effect sizes are all zero, the probability of getting a positive result for
the estimated effect size is 0.5. If, on the other hand, the treatment has an effect, the
probability of getting a positive result for the estimated effect size is greater than 0.5.
Hence, the appropriate null and alternative hypotheses can be described as

H0 : π = 0.5 vs. H1 : π > 0.5 (8.5)

where π is the probability of a positive effect size in the population. The test can be
carried out in the usual fashion based on a Binomial distribution, and rejects H0 if X/k
exceeds the desired level of significance where X is the number of studies out of a total
of k studies with positive estimated effect sizes.

Example 8.3. Suppose that a meta-analyst finds exactly 10 positive results in 15 inde-
pendent studies. The estimate of π is p = 10/15 = 0.67, and the corresponding tail area
from the binomial table is 0.1509. Thus, we would fail to reject H0 at the 0.05 overall
significance level or even at the 0.10 overall significance level. On the other hand, if ex-
actly 12 of the 15 studies had positive results, the tail area would become 0.0176, and we
would reject H0 at the 0.05 overall level of significance.

The main criticism against the sign test is that it does not take into account the sample
sizes of the different studies, which are likely to be unequal, and also it does not provide
an estimate of the underlying common effect size θ, nor does it provide a confidence
interval for the common effect size. Under the simplifying assumption that each study in
a collection of k independent studies has an identical sample size n, we now describe a
procedure to establish a point estimate as well as a confidence interval for the common
effect size θ based on a knowledge of the number of positive results. If a study involves
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an experimental (E) as well as a control (C) group, we assume that the sample sizes for
each such group are the same, i.e., nE

i = nC
i = n for all k studies. In case k studies have

different sample sizes, we may use an average value, namely,

n̄ = [

√
n1 + · · ·+

√
nk

k
]2. (8.6)

Based on a knowledge of the signs of Ti’s, an unbiased estimate of π is given by p = X/k
where X is the number of positive Ti’s. It is also well known that a 100(1 − α)% level
approximate confidence interval for π (based on the normal approximation) is given by

πL = p− zα/2

√
p(1− p)

k
≤ π ≤ p+ zα/2

√
p(1− p)

k
= πU (8.7)

where zα/2 is the two-sided critical value of the standard normal distribution. A second
method uses the fact that

z2 =
k(p− π)2

π(1− π)
(8.8)

has an approximate chi-square distribution with 1 df , which leads to the two-sided interval

πL =
(2p+ b)−

√
b2 + 4bp(1− p)

2(1 + b)
≤ π ≤

(2p+ b) +
√
b2 + 4bp(1− p)

2(1 + b)
= πU (8.9)

where b = χ2
α(1)/k and χ2

α(1) is the upper 100α% point of the chi-square distribution
with 1 df .

Once a two-sided confidence interval [πL, πU ] has been obtained for π, a two-sided
confidence interval for θ can be constructed by using the relation

π = Pr[T > ψα]

= Pr[(T − θ)/Sθ > (ψα − θ)/Sθ]

∼ 1− Φ[(ψα − θ)/Sθ] (8.10)

where Φ(.) is the standard normal cdf . Solving the above equation yields

θ = ψα − S(θ)Φ−1(1− π) (8.11)

which provides a relation between the effect size θ and the population proportion π of a
positive effect size. A point estimate of θ is then obtained by replacing π by p = X/k in
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the above equation and solving for θ. To obtain a two-sided confidence interval for θ, we
substitute πL and πU for π, and solve for the two bounds for θ.
Example 8.4. Let us consider the case when an effect size is measured by the standard-
ized mean difference given by

θi =
µE

i − µC
i

σi

, i = 1, · · · , k (8.12)

where µE
i is the population mean for the experimental group in the ith study, µC

i is the
population mean for the control group in the ith study, and σi is the population standard
deviation in the ith study, which is assumed to be the same for the experimental and the
control groups. The corresponding estimates Ti’s are given by (Hedges’s g)

Ti =
ȳE

i − ȳC
i

si

, i = 1, · · · , k (8.13)

where ȳE
i is the sample mean for the experimental group in the ith study, ȳC

i is the sample
mean for the control group in the ith study, and si is the pooled within group sample
standard deviation in the ith study. In large samples, the approximate variance Si(θi) of
Ti is given by

var(Ti) = Si(θi) ∼
2

n
+
θ2

i

4n
(8.14)

where n denotes the common sample size for all the studies. The equation (7.11) in this
case then reduces to

θ = ψα − [
2

n
+
θ2

4n
]Φ−1(1− π) (8.15)

For the Data Set 2, n is approximated as 84, and the estimate of π based on the
proportion of positive results is p = 11/19 = 0.579. Solving for θ, using ψα = 0, we obtain
θ̂ = 0.032, which is the proposed point estimate of the population effect size. To obtain
95% confidence interval for θ, we note that the same for π based on the equation (8.7)
is [0.357, 0.801] and that based on the equation (8.9) is [0.363, 0.769], which is slightly
narrower. Using these latter values in (8.15), we find that the 95% confidence interval
for θ is given by [−0.056, 0.121]. Since this confidence interval contains the value 0, we
conclude that we can accept the null hypothesis that the population effect size is 0 for all
the studies.

For the same Data Set 2, we can also obtain a point estimate and a confidence
interval for θ based on the proportion of significant positive results. Since 3 of the 19
studies result in statistically significant values at α = 0.05, with the corresponding value
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of ψα = 1.64, our estimate of π is p = 3/19 = 0.158, and this results in the point estimate
of θ as θ̂ = 0.013. Again, the confidence interval for π based on the normal theory is
obtained as [−0.006, 0.322], and the same based on the chi-square distribution is given
by [0.055, 0.376]. Using the latter bounds and the equation (8.15), we obtain the 95%
confidence bounds for θ as [0.032, 0.212]. Since this interval does not contain 0, we can
conclude that the common effect size θ is significantly greater than 0.

Example 8.5. We next consider the situation when both the variables X and Y are
continuous, and a measure of effect size is provided by the correlation coefficient ρ. Typ-
ically, the population correlation coefficients ρ1, · · · , ρk of the k studies are estimated by
the sample correlation coefficients r1, · · · , rk, which represent the θi’s and the Ti’s, respec-
tively. It is well known that, in large samples, var(ri) ∼ (1− ρ2

i )
2/(n− 1) where n is the

sample size. We thus have all the ingredients to apply the formula (8.11) to any specific
problem.

As an example, we consider the Data Set 1 and suppose we wish to obtain a point
estimate and a confidence interval for ρ, the assumed common population correlation,
based on the proportion of positive results. Obviously, here p = 18/20 = 0.9, and, using
(8.6), n̄ = 26. Taking ψα = 0, we then get ρ̂ = 0.264 as the point estimate of ρ. The 95%
approximate two-sided confidence interval for ρ based on the normal theory is given by
[0.769, 1.031] while that based on the chi-square theory is obtained as [0.699, 0.972]. Using
the latter, the confidence bounds for ρ turn out as [0.107, 0.381]. Because this interval
does not contain the value 0, we can conclude that there is a positive correlation between
student ratings of the instructor and the student achievement.

For the same Data Set 1, we can proceed to obtain point estimate and confidence
bounds for ρ based on only significantly positive results. Taking α = 0.05, so that ψα =
1.64, and noting that p = 12/20 = 0.6, we obtain the point estimate of ρ as ρ̂ = 0.372.
Similarly, using the chi-square-based confidence interval for π, namely, [0.387, 0.781], the
bounds for ρ are obtained as [0.271, 0.464], leading to the same conclusion.
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9 Combination of Polls

The basic motivation of this lecture, which is taken from Dasgupta and Sinha (2006),
essentially arises from an attempt to understand various poll results conducted by several
competing agencies and to meaningfully combine such results. As an example, consider
the 1996 USA presidential election poll results, which are reproduced below and reported
in leading newspapers back then, regarding several presidential candidates.

Table 9.1. Gallup Poll Results
August 18-20, 1996

President Robert Others
Clinton Dole

ABC-W.Post 44 40 16
Newsweek 44 42 14
CNN-Gallup 48 41 11
CBS-NY Times 50 39 11

It is clear that depending on which poll one looks at, the conclusion in terms of margin
of variation can be different, sometimes widely. Similar phenomena exist in various other
contexts such as results of a series of studies comparing different brands of cereals, TV
ratings, ratings of athletes by different judges, and so on. In studies of this type, one
is bound to observe different levels of margin of variation between two suitably selected
leading candidates, and one often wonders how much variation between polls would be
considered as normal, i.e., can be attributed to chance! Clearly, such a question does not
arise had there been only one study, and in such a situation one could apply standard sta-
tistical techniques to estimate the margin of difference as well as test relevant hypotheses
about the margin of difference. In the presence of several independent studies all with a
common goal, what is needed is a data fusion or data synthesis technique, which can be
used to meaningfully combine results of all the studies in order to come up with efficient
inference regarding parameters of interest. It is the purpose of this chapter to describe
appropriate statistical methods to deal with the above problems.

A general mathematical formulation of the problem involving k candidates and m polls
(judges) is given in section 2. This section also provides a solution to the problem posed
earlier, namely, how much variation between two selected candidates can be expected as
normal.

The major issue of combining polls is addressed in section 3 which has a few sub-
sections. Subsection 3.1 is devoted to estimation of the difference θ between the true
proportions P1 and P2 of two selected candidates. Subsection 3.2 deals with providing a

95



confidence interval for θ, and lastly subsection 3.3 is concerned with a test for the signifi-
cance of θ. All throughout, whenever applicable, we have discussed relevant asymptotics
with applications.

We have also discussed the special case of two candidates (i.e., k = 2) and noted that
often this leads to amazingly simple results.

9.1 Formulation of the problem

Assume that m independent polls are conducted to study the effectiveness of k candidates,
and the following results are obtained.

Table 9.2. General Set Up

Study Subject 1 Subject 2 . . . Subject k Total
1 X11 X12 . . . X1k n1

2 X21 X22 . . . X2k n2

· . . . . . . . . . . . . . . .
· . . . . . . . . . . . . . . .
· . . . . . . . . . . . . . . .
m Xm1 Xm2 . . . Xmk nm

Total X.1 X.2 . . . X.k N
Denoting by Xij the number of votes received by the jth candidate (subject) in

the ith poll (study), so that
∑k

j=1Xij = ni, i = 1, · · · ,m, it follows readily that
(Xi1, · · · , Xik) follows a multinomial distribution with the parameters ni and (Pi1, · · · , Pik)
with

∑k
j=1 Pij = 1 for all i. The underlying probability structure is thus essentiallym inde-

pendent multinomials each with k classes and possibly unequal sample sizes n1, · · · , nm.
Here Pij denotes the chance that a response in the ith study belongs to the jth sub-
ject. Clearly, an unbiased estimate of Pij is provided by pij = Xij/ni, i = 1, · · · ,m,
j = 1, · · · , k. Moreover, it is well known that

E(pij) = Pij

var(pij) =
Pij(1− Pij)

ni

cov(pij, pij′) = −PijPij′

ni

, j 6= j′. (9.1)

Although there are k candidates, quite often we are interested in only two of them,
namely, the two leading candidates such as a sitting candidate and a close runner-up.
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Assuming without any loss of generality that we are interested in the candidates 1 and
2, poll i reports an unbiased estimate of the difference between Pi1 and Pi2 as pi1 − pi2 =
Yi, say, for i = 1, · · · ,m. Obviously, Y1, · · · , Ym are independent, but not identically
distributed random variables. A measure of variation among the polls can then be taken
as Zm = Y(m) − Y(1) where Y(m) = max(Y1, · · · , Ym) and Y(1) = min(Y1, · · · , Ym).

We now address the question of how much variation one should expect as normal.
Obviously, any such measure would require us to compute at least the mean and the
variance of Zm. An exact computation of these quantities seems to be extremely compli-
cated, and we therefore take recourse to asymptotics, which is quite reasonable since the
sample sizes of the m polls are typically large in practical applications. We also assume
that P1j = · · ·Pmj = Pj, j = 1, · · · , k, the unknown true values in the entire population.
This is justified because the voters usually have a definite opinion about the candidates
no matter who is conducting the gallup poll, thus making meta analysis viable and useful.
Using (9.1), we then get

E(Yi) = P1 − P2, var(Yi) = [P1 + P2 − (P1 − P2)
2]/ni. (9.2)

Hence, under the assumption of a large sample size, we get

√
ni[Yi − (P1 − P2)] ∼ N [0, P1 + P2 − (P1 − P2)

2]. (9.3)

Let us write θ = P1 − P2 and σ2
i = P1+P2−(P1−P2)2

ni
. In view of independence and uniform

integrability of the Yi’s, for m fixed, we readily get

E(Y(m)) ∼ E(Wm), E(Y(1)) ∼ E(W1) (9.4)

where Wm is a random variable with the cdf

Fm(w) =
m∏

i=1

Φ(
w − θ

σi

) (9.5)

and W1 is a random variable having the cdf

F1(w) = 1−
m∏

i=1

Φ̄(
w − θ

σi

) (9.6)

where Φ(.) is the standard normal cdf and Φ̄(.) = 1− Φ(.). Moreover,

V ar(Y(m)) ∼ V ar(Wm), V ar(Y(1)) ∼ V ar(W1), Cov(Y(m), Y(1)) ∼ Cov(Wm,W1).
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By arguing probabilistically, the above expectations, namely, E(Wm) and E(W1), can be
computed without much difficulty for m up to 4, and are given below.

E(Wm|m = 2) = P1 − P2 + [(
1

2π
){P1 + P2 − (P1 − P2)

2}( 1

n1

+
1

n2

)]1/2

E(W1|m = 2) = P1 − P2 − [(
1

2π
){P1 + P2 − (P1 − P2)

2}( 1

n1

+
1

n2

)]1/2

E(Wm|m = 3) = P1 − P2 + [(
1

8π
){P1 + P2 − (P1 − P2)

2}]1/2

×([
1

n1

+
1

n2

]1/2 + [
1

n1

+
1

n3

]1/2 + [
1

n2

+
1

n3

]1/2)

E(W1|m = 3) = P1 − P2 − [(
1

8π
){P1 + P2 − (P1 − P2)

2}]1/2

×([
1

n1

+
1

n2

]1/2 + [
1

n1

+
1

n3

]1/2 + [
1

n2

+
1

n3

]1/2)

E(Wm|m = 4) = P1 − P2 + [(
1

2π
){P1 + P2 − (P1 − P2)

2}]1/2

×
∑

i

∑
j 6=i

∑
k<l k,l 6=j,i

√
nj

ni(ni + nj)
{1

4
+

1

2π
sin−1

√
nknl

(ni + nk)(ni + nl)
}

E(W1|m = 4) = P1 − P2 − [(
1

2π
){P1 + P2 − (P1 − P2)

2}]1/2

×
∑

i

∑
j 6=i

∑
k<l k,l 6=j,i

√
nj

ni(ni + nj)
{1

4
+

1

2π
sin−1

√
nknl

(ni + nk)(ni + nl)
}

(9.7)

Returning to the original problem, for large sample sizes, we then get the following.
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E[Y(m) − Y(1)|m = 2] ∼ [(
2

π
){P1 + P2 − (P1 − P2)

2}( 1

n1

+
1

n2

)]1/2

E[Y(m) − Y(1)|m = 3] ∼ [(
1

2π
){P1 + P2 − (P1 − P2)

2}]1/2

×([
1

n1

+
1

n2

]1/2 + [
1

n1

+
1

n3

]1/2 + [
1

n2

+
1

n3

]1/2)

E[Y(m) − Y(1)|m = 4] ∼ [
2

π
{P1 + P2 − (P1 − P2)

2}]1/2

×
∑

i

∑
j 6=i

∑
k<l k,l 6=j,i

√
nj

ni(ni + nj)
{1

4
+

1

2π
sin−1

√
nknl

(ni + nk)(ni + nl)
}

(9.8)

The following table provides the values of E[Y(m)−Y(1)] for m = 2, 3, 4 and for various
values of P1 and P2 when ni’s are equal.

Table 9.3. Values of E[Y(m) − Y(1)]

m n P1 = .40, P2 = .35 P1 = .50, P2 = .40 P1 = .60, P2 = .30
2 n1 = n2 =500 0.04514 0.04754 0.04399

n1 = n2 =600 0.04120 0.04340 0.04016
n1 = n2 =700 0.03815 0.04018 0.03718

3 n1 = n2 = n3 =500 0.06770 0.07131 0.06599
n1 = n2 = n3 =600 0.06180 0.06510 0.06024
n1 = n2 = n3 =700 0.05722 0.06027 0.05577

4 n1 = n2 = n3 = n4 =500 0.09027 0.09508 0.08798
n1 = n2 = n3 = n4 =600 0.08241 0.08679 0.08032
n1 = n2 = n3 = n4 =700 0.07629 0.08036 0.07436

Example 9.1. Returning to the data in Table 9.1, we find that m = 4, n1 = n2 = n3 =
n4 = 100, Y1 = 4%, Y2 = 2%, Y3 = 7%, Y4 = 11% so that Y(4) = 11% and Y(1) = 2%,
giving Y(4) − Y(1) = 9%. To check if this amount of variation between polls is normal, we
note from (9.9) that E[Y(4) − Y(1)] ∼ 0.2133 when P1 + P2 = .9, P1 − P2 = .08. Thus we
can conclude that, under this scenario, what we have observed can be treated as below
normal. Again, if P1 +P2 = .9 and P1−P2 = .4, then E[Y(4)−Y(1)] ∼ 0.1941 which again
suggests that the observed difference can be regarded as below normal. On the other
hand, if P1 = 0.95 and P2 = 0.05, then E[Y(4)− Y(1)] ∼ 0.098, implying that the observed
difference can be taken as normal.
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Remark 9.1. Assume k = 2 so that P1 +P2 = 1. In this case, it is interesting to observe
that E(Y(m) − Y(1)) is a maximum when P1 = P2, and the above formulae simplify to the
following:

E[Y(m) − Y(1)|m = 2] = [(
2

π
)(

1

n1

+
1

n2

)]1/2

E[Y(m) − Y(1)|m = 3] = [(
1

2π
)]1/2([

1

n1

+
1

n2

]1/2 + [
1

n1

+
1

n3

]1/2 + [
1

n2

+
1

n3

]1/2)

E[Y(m) − Y(1)|m = 4] =

[
2

π
]1/2
∑

i

∑
j 6=i

∑
k<l k,l 6=j,i

√
nj

ni(ni + nj)
{1

4
+

1

2π
sin−1

√
nknl

(ni + nk)(ni + nl)
}

(9.9)

9.2 Meta analysis of polls

We now describe various meta analysis procedures to estimate θ, provide confidence in-
terval for θ, and to test hypotheses about θ.

9.2.1 Estimation of θ

In this section we discuss the important issue of how to combine the results of independent
polls to arrive at some meaningful conclusions. To fix ideas, referring to Table 9.2, we
address the problem of combining independent estimates pi1−pi2 of θ = P1−P2 based on a
sample of size ni, for i = 1, · · · ,m. As already noted, we have assumed that the differences
Pi1 − Pi2 are the same for all i, and the parameter θ stands for the common population
difference. Basically, there are two standard ways of combining the (pi1 − pi2)’s to arrive
at a pooled estimate of θ. The first, popularly known as Commentators’s estimate, is
given by

θ̂C =
m∑

i=1

(pi1 − pi2)/m (9.10)

while the second, which is essentially the uniformly minimum variance unbiased estimate
(UMVUE) and also the maximum likelihood estimate (MLE) based on all the data, is
given by
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θ̂MLE =
m∑

i=1

ni(pi1 − pi2)/(
m∑

i=1

ni). (9.11)

It may be noted that the two estimates θ̂C and θ̂MLE coincide when the sample sizes are
all equal. Also, the computation of θ̂C does not directly require knowledge of the sample
sizes and so can be readily used. Using (12.2) and independence of the m studies, we get

E(θ̂C) = θ, var(θ̂C) =
(P1 + P2 − θ2)(

∑m
i=1 1/ni)

m2
(9.12)

E(θ̂MLE) = θ, var(θ̂MLE) =
P1 + P2 − θ2∑m

i=1 ni

. (9.13)

It is therefore easy to verify that the efficiency (E) of θ̂C with respect to θ̂MLE, as measured
by the ratio of their variances, is given by

E =
m2

(
∑m

i=1 ni)(
∑m

i=1 1/ni)
, (9.14)

which is always < 1 by the well known AM/HM inequality. Hence the MLE θ̂MLE is
always preferred to θ̂C .

For large m, by the strong law of large numbers (SLLN), one can approximate E
by E ∼ 1/[E(n)E(1/n)]. Thus, assuming that ni is uniform over [a, b], we readily get

E = 2(b−a)
(a+b)(lnb−lna)

. In particular, choosing [a, b] = [675, 1200], we get E ∼ 0.97, which is
very high. The following table provides values of E for m = 2, 3, 4 and various values of
ni.

Table 9.5. Values of E
m n E
2 n1 = 500, n2 = 600 0.9917
3 n1 = 400, n2 = 500, n3 = 600 0.9730
4 n1 = 300, n2 = 400, n3 = 500, n4 = 600 0.9357
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9.2.2 Confidence interval for θ

A more challenging and informative answer to provide in this context is a confidence
interval for θ. This can be done on the basis of one of the following two point estimates
of θ:

d̄ = θ̂C =
m∑

i=1

(pi1 − pi2)/m (9.15)

and

d̂ = θ̂MLE =
m∑

i=1

ni(pi1 − pi2)/(
m∑

i=1

ni). (9.16)

The exact distributions of the above two estimates again are quite difficult, and asymp-
totics seem to be the only recourse. One can think of two kinds of asymptotics in this
context: (i) m fixed and each ni tends to ∞, and (ii) each ni is taken as fixed while m
tends to ∞. It turns out, however, that under either type of asymptotics, the same result
holds, and we get (see (9.13) and (9.14))

m(d̄− θ)√
(
∑m

i=1 1/ni)
∼ N [0, P1 + P2 − (P1 − P2)

2] (9.17)

and

(d̂− θ)

√√√√(
m∑

i=1

ni) ∼ N [0, P1 + P2 − (P1 − P2)
2]. (9.18)

It should be noted that the use of d̄ for inference purposes for θ requires that we know
the sample sizes ni’s (just as for the use of d̂) although computation of d̄ does not require
any direct knowledge of the sample sizes. From (9.18) and (9.19), we find that P1 + P2

appears as a nuisance parameter for drawing inference about P1 − P2 unless k = 2 in
which case P1 + P2 = 1. For k = 2, a two-sided confidence interval for θ based on d̂ is
easily obtained from the probability statement:

1− α = P [ |d̂− θ| < zα/2

√
1− θ2∑m

i=1 ni

] (9.19)

where 1 − α is the level of confidence and zα/2 is the upper α/2 cut-off point from
a standard normal distribution. A straightforward computation yields the confidence
bounds of θ as
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LB =
Nd̂− zα/2[N + z2

α/2 −Nd̂2]1/2

N + z2
α/2

UB =
Nd̂+ zα/2[N + z2

α/2 −Nd̂2]1/2

N + z2
α/2

(9.20)

where N =
∑m

i=1 ni. Analogously, for k = 2, a two-sided confidence interval for θ
based on d̄ is obtained from the probability statement:

1− α = P [m|d̄− θ| < zα/2

√√√√(1− θ2)(
m∑

i=1

1/ni) ]. (9.21)

This yields the confidence bounds of θ as

LB =
d̄m2N∗ − zα/2[z

2
α/2 +m2N∗ −m2N∗(d̄)2]1/2

m2N∗ + z2
α/2

UB =
d̄m2N∗ + zα/2[z

2
α/2 +m2N∗ −m2N∗(d̄)2]1/2

m2N∗ + z2
α/2

(9.22)

where N∗ = 1/[
∑m

i=1 1/ni].

Example 9.2. For the polling data in Table 9.1, we compute d̂ = (186− 162)/400 =
0.06. Taking α = 0.05 so that zα/2 = 1.96, we find that LB = −0.038 and UB = 0.157.

Hence, a 95% confidence interval for θ based on d̂ is given by −0.038 < θ < 0.157. Of
course, in this data set, d̂ = d̄, so that the two methods provide identical confidence
intervals. Finally, since this interval contains 0, we accept the null hypothesis H0 : θ = 0.

For k > 2, since P1 +P2 < 1, we get the same inequality as above (given in (9.20) and
(9.22)) with confidence level ≥ 1 − α. Of course, any known upper bound η of P1 + P2

can also be used. Alternatively, instead of replacing P1 + P2 by an upper bound, we can
estimate it based on the data by p1 + p2 where

p1 =

∑m
i=1 nipi1∑m

i=1 ni

, p2 =

∑m
i=1 nipi2∑m

i=1 ni

. (9.23)

Then, in large samples, by Slutsky’s theorem (see Rao, 1973)

m[(d̄− θ)]

[(
∑m

i=1 1/ni)(p1 + p2 − θ2)]1/2
∼ N [0, 1] (9.24)

103



and

(d̂− θ)
√∑m

i=1 ni

(p1 + p2 − θ2)1/2
∼ N [0, 1]. (9.25)

The above two results can be readily used to provide an approximate 100(1 − α)%
confidence interval for θ. These are given below.

LB =
Nd̂− zα/2[(p1 + p2)(N + z2

α/2)−Nd̂2]1/2

N + z2
α/2

UB =
Nd̂+ zα/2[(p1 + p2)(N + z2

α/2)−Nd̂2]1/2

N + z2
α/2

(9.26)

LB =
d̄m2N∗ − zα/2[(p1 + p2)(z

2
α/2 +m2N∗)−m2N∗(d̄)2]1/2

m2N∗ + z2
α/2

UB =
d̄m2N∗ + zα/2[(p1 + p2)(z

2
α/2 +m2N∗)−m2N∗(d̄)2]1/2

m2N∗ + z2
α/2

(9.27)

Obviously, one can also use the variance-stabilizing transformation in the above two
cases.

Example 9.3. For the same data as in Table 9.1, we compute p1 = 186/400 = 0.465
and p2 = 162/400 = 0.405, and hence, using (9.27), we readily obtain the 95% confidence
interval for θ as [−0.031, 0.150].

9.2.3 Hypothesis testing for θ

We now discuss the problem of hypothesis testing about the difference θ = P1−P2 based
on all the data given in Table 9.3. Let us consider the problem of testing

H0 : θ ≤ δ vs H1 : θ > δ (9.28)

where δ ≥ 0 is a given constant. Clearly, for k = 2, this is a trivial problem of testing
hypothesis about a single binomial proportion, and is well known. In the following, we
deal with the case when k > 2.

One can consider two classical tests in this context, namely, an intuitive test which
rejects H0 when p1 − p2, an estimate of θ, is large, and the likelihood ratio test (LRT)
which rejects H0 when
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λ =
supθ≤δP

X.1
1 . · · · .PX.k

k

supunrestrictedP
X.1
1 . · · · .PX.k

k

(9.29)

is small. As to the choice of p1 − p2, we can choose either d̄ or d̂, described in (9.16)
and (9.17), respectively. In any event, the intuitive test can be carried out using standard
asymptotic theory and by suitably standardizing p1− p2 so that the test rejects H0 when
p1 − p2 > c where c satisfies:

α = supθ≤δP [
N∗∗{(p1 − p2)− θ}√

P1 + P2 − θ2
>

N∗∗(c− θ)√
P1 + P2 − θ2

]

= supθ≤δP [N(0, 1) >
N∗∗(c− θ)√
P1 + P2 − θ2

]. (9.30)

where N∗∗ is a suitable normalizing constant. In the above, α is the level of the test.
It can be shown that the supremum of the above probability occurs when P1 = 1+δ

2
,

P2 = 1−δ
2

, so that the above equation reduces to

α = P [N(0, 1) >
N∗∗(c− δ)√

1− δ2
]. (9.31)

Hence, c is readily obtained as

c = δ +
zα(1− δ2)1/2

N∗∗ . (9.32)

It may be noted from (9.18) and (9.19) that when d̄ is used in place of p1 − p2, we
take N∗∗ = m[N∗]1/2, while if d̂ is used in place of p1 − p2, we take N∗∗ = N1/2. Recall
that N =

∑m
i=1 ni and N∗ = 1/[

∑m
i=1 1/ni].

Example 9.4. For the data in Table 9.1, to test H0 : P1−P2 ≤ 0 vs. H1 : P1−P2 > 0
at level 0.05, note from (9.33) that c = 1.64/N∗∗. Using d̂ = 0.06, and N = 400, we get
N∗∗ = 20 so that c = 0.082. We therefore accept the null hypothesis H0.

The LRT, on the other hand, is in general highly nontrivial because of the computa-
tions involved in the numerator of λ, and we do not pursue it here.
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10 Analysis of Binary Data

An important application of meta analysis is the combination of results from comparative
trials with binary outcome, especially in biometry and epidemiology. Often in clinical
trials or observational studies, the outcome can be generally characterized as success and
failure or as positive and negative. The effect measures for binary outcome have been
already introduced in Lecture 2. The meta-analytical methods described in Lecture 4 can
be generally applied to the case of binary data as well as the methods of the one-way
random effects model, see Lecture 7. In the first part of this lecture, we discuss some
additional features of meta analysis of binary data. In the second part, we consider the
natural extension, namely the meta analysis of outcomes with more than two categories
or, in other words, the meta analysis of ordinal data.

10.1 Binary outcome

Recalling from Lecture 2, let π1 and π2 denote the population proportions of two groups,
say experimental and control group. The observed frequencies on the two binary charac-
teristics can be arranged in a (2× 2)-table, see Table 10.1.

Table 10.1. Observed frequencies on two binary characteristics
Group

Outcome Experimental Control Total
Positive n11 n21 n.1

Negative n12 n22 n.2

Total n1. n2. n..

10.1.1 Effects estimates

Three prominent parameters of the difference of two groups with binary outcome, namely
probability difference, relative risk, and odds ratio, and their estimates have already been
introduced in Lecture 2. Standard large-sample meta analysis results are summarized in
Lecture 4. In this section, we discuss some properties of the estimates with emphasis on
sparse data situations. Given zero cells in Table 10.1, some estimates and their variances
cannot be computed.

Probability difference
The probability difference is defined as θ1 = π1 − π2 and can be unbiasedly estimated

by the difference of the observed success probabilities

θ̂1 =
n11

n1.

− n21

n2.

(10.1)
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The unbiased estimate of the variance of (10.1) is

v̂ar(θ̂1) =
n11 n12

n2
1. (n1. − 1)

+
n21 n22

n2
2. (n2. − 1)

(10.2)

Critical data situations only occur in extreme situations, namely when n11 = n21 = 0
or n11 = n1. and n21 = 0 or n11 = 0 and n21 = n2.. In the first case, the estimated
difference is 0, in the second case the estimate is +1, and in the last case −1. But in all
the three cases, the variance estimate is zero. Hence, the inverse of the variance is infinity
and a trial with such an extreme data situation cannot be incorporated in the usual way
in the meta analysis. The two extreme cases with estimates +1 and −1 may be only of
theoretical interest. But the case of n11 = n21 = 0 may be of practical interest. Consider
a controlled clinical trial and the number of adverse events is of interest. Especially for
small sample sizes, the situation might occur that no adverse events were observed in
both treatment groups.

Log–relative risk
Setting θ2 = log(π1/π2), the log–relative risk, then an estimate of θ2 may be

θ̂2 = log

(
n11 / n1.

n21 / n2.

)
(10.3)

However, the estimate (10.3) cannot be computed when n11 = 0 or n21 = 0. Moreover,
there does not exist an unbiased estimate of the log-relative risk. So, different proposals
exist in the literature for estimating this parameter. Pettigrew, Gart, and Thomas (1986)
discuss the proposed estimators with respect to bias and variance, and there is no optimal
solution. The ”optimal” solution always depends on the true, but unknown, success
probabilities.

One widely used estimate is

θ̂2 = log

(
(n11 + 0.5) / (n1. + 0.5)

(n21 + 0.5) / (n2. + 0.5)

)
(10.4)

The variance of (10.4) is estimated without bias except for terms of order O(n−3) by

v̂ar(θ̂2) =
1

n11 + 0.5
− 1

n1. + 0.5
+

1

n21 + 0.5
− 1

n2. + 0.5
(10.5)

This variance estimate is always positive if n11 6= n1. or n21 6= n2.. If n11 6= n1. or
n21 6= n2., then the value 0.5 will not be added to n11 and n21 to ensure the positiveness
of the variance estimate.
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Log–odds ratio
Setting θ3 = log([π1/(1 − π2)]/[π1/(1 − π2)]), the log–odds ratio, then an estimate of

θ3 is

θ̂3 = log

(
n11 / n12

n21 / n22

)
= log

(
mT (nC −mC)

(nT −mT )mC

)
(10.6)

Like in the case of the log–relative risk, the estimate (10.6) cannot be computed when
there are no success or only successes in at least one group.

Again, no unbiased estimate of the log–odds ratio exists and Gart and Zweifel (1967)
investigate several estimates of this parameter with respect to bias and variance.

One estimate, originally proposed by Haldane (1955), is widely used, namely

θ̂3 = log

(
(n11 + 0.5) / (n12 + 0.5)

(n21 + 0.5) / (n22 + 0.5)

)
= log

(
(n11 + 0.5) (n22 + 0.5)

(n12 + 0.5) (n21 + 0.5)

)
(10.7)

The variance of (10.7) is unbiasedly estimated except of terms of order O(n−3) by

v̂ar(θ̂3) =
1

n11 + 0.5
+

1

n12 + 0.5
+

1

n21 + 0.5
+

1

n22 + 0.5
(10.8)

10.1.2 Homogeneity tests

Before combining the results from experiments, a test of homogeneity of treatment effects
should be carried out. In experiments with binary outcome, however, the choice of the
measure of treatment difference may introduce a variability between the study results. For
instance, homogeneity on the risk difference scale does not in generally imply homogeneity
on the log odds scale and vice versa.

The test of homogeneity is usually carried out in the framework of the fixed effects
model testing the equality of the means, but the hypothesis of homogeneity can be equiv-
alently formulated in the random effects model testing that no between-study variance is
present, see Lecture 6 and 7.

The commonly used test of homogeneity in metaanalysis is Cochran’s (1954) test,
see Lecture 4 and 6. The test is based on a weighted least squares statistic and com-
pares the study-specific estimates of the effect measure with an estimate of the common
homogeneous effect measure. For the effect measure log odds ratio, Cochran’s test can
be very conservative. Consequently, this test does not have sufficient power to detect
heterogeneity. However, for the effect measure probability difference, Cochran’s test can
be very liberal so that the null hypothesis of homogeneity is falsely rejected too often.
Based on the random effects meta analysis approach, Hartung and Knapp (2004) suggest
another test of homogeneity which is derived from an unbiased estimator of the variance
of the common effect measure in the random effects model proposed by Hartung (1999),
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see Lecture 7. Hartung and Knapp (2004) discuss both the tests of homogeneity for
the two outcome measures probability difference and log odds ratio and work out some
improvements with respect to level and power of their new test.

In different areas of application there exists further tests of homogeneity for binary
outcome measures. For instance, Lipsitz et al. (1998) consider homogeneity tests for the
risk difference and Liang and Self (1985) for the (logarithmic) odds ratio. We omit the
details here.

10.1.3 Binomial-normal hierarchical models in meta analysis

A critical assumption in the fixed effects or random effects model may be the assumption
that the estimator of the treatment difference is normally distributed, especially for small
sample sizes. When the number of successes in the treatment groups are known, that is,
the observed 2× 2 is given, one can make direct use of the binomially distributed number
of successes. In the random effects approach this can be done in a binomial–normal
hierarchical model that can be analysed within the Bayesian framework using Markov
Chain Monte Carlo (MCMC) methods. Here we will only present the basic ideas of the
model formulations.

Smith et al. (1995) first present the formulation for the log–odds ratio that is straight
forward. Then Warn et al. (2002) also consider the binomial–normal hierarchical model
for the risk difference.

All the three models have in common that the number of successes mTi and mCi are
both binomially distributed with parameters nTi and pTi, and nCi and pCi, respectively, in
each study i, i = 1, . . . , k. Then let µi = logit(pCi) be the logarithmic odds in the control
group and the logarithmic odds in the treatment group is µi + θi. Consequently, θi is the
study–specific treatment difference on the log–odds ratio scale. Finally, θi comes from a
normal distribution with mean θ, the overall effect of treatment difference, and variance
τ 2, the heterogeneity parameter.

Summarized we may write the binomial–normal hierarchical model for the log–odds
ratio as

mCi ∼ Bin (nCi, pCi)

mTi ∼ Bin (nTi, pTi)

µi = logit(pCi) (10.9)

logit(pTi) = µi + θi

θi ∼ N (θ, τ 2)

Note that each value of θi from the normal distribution yields admissible values of the
success probabilities pT and pC .
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For the log relative risk, we set µi = log(pCi), that is, the logarithm of success proba-
bility in the control group. Then the logarithm of the success probability in the treatment
group is parameterized as log(pTi) = µi+θi and θi is the log–relative risk. Again, θi comes
from a normal distribution with mean θ, the overall effect of treatment difference, and
variance τ 2, the heterogeneity parameter. But now, the value θi needs to be constrained
so that pTi ∈ [0, 1]. Following Warn et al. (2002) this is equivalent to constraining log(pTi)
to the interval (−∞, 0], achieved by confining θi to be less than − log(pCi). Let θU

i be the
minimum of θi and − log(pCi), then θU

i can take any value in the range (−∞,− log(pCi)).
The full model can be then summarized as

mCi ∼ Bin (nCi, pCi)

mTi ∼ Bin (nTi, pTi)

µi = log(pCi) (10.10)

log(pTi) = µi + min (θi,− log(pCi))

θi ∼ N (θ, τ 2)

Finally, we consider the probability difference. Let µi = pCi be the success probability
in the control group. Then the success probability in the treatment group is parameterized
as pTi = µi + θi. Again, θi comes from a normal distribution with mean θ, the overall
effect of treatment difference, and variance τ 2, the heterogeneity parameter. The value
θi needs to be constrained so that pTi ∈ [0, 1], that is, θi ∈ [−pCi, 1 − pCi]. Define two
new parameters θU

i and θL
i , corresponding to upper and lower bounds for θi. Let θL

i

be the maximum of θi and −pCi, then θL
i can take any value in the range [−pCi,∞).

Similarly, let θU
i be the minimum of θL

i and 1 − pCi, then θi is confined to the required
range [−pCi, 1− pCi].

The full model is then

mCi ∼ Bin (nCi, pCi)

mTi ∼ Bin (nTi, pTi)

µi = pCi (10.11)

pTi = µi + min (max (θi,−pCi) , 1− pCi)

θi ∼ N (θ, τ 2)

For a full Bayesian analysis in the models (10.9), (10.10), and (10.11) appropriate
a–priori distributions have to be determined for the hyperparameters θ and τ 2 as well as
for the success probabilities pCi in the control groups, that may be also called baseline
risk. A Bayesian meta analysis can be conducted using the software WinBUGS.
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10.1.4 An Example

In this example, we only consider the classical meta analysis approach based on the
results from Lecture 4 and 7. Hartung and Knapp (2001 b) put together the results of
13 controlled trials of a drug named cisapride compared to placebo for the treatment of
non-ulcer dyspepsia. Table 10.2 contains the data and Table 10.3 the estimates of the
three outcome measures probability difference, log relative risk and log odds ratio with
corresponding variance estimates.

Table 10.2. Results of 13 cisapride studies
(number of successes/number of patients)

Study Cisapride Placebo
1 15 / 16 9 / 16
2 12 / 16 1 / 16
3 29 / 34 18 / 34
4 42 / 56 31 / 56
5 14 / 22 6 / 22
6 44 / 54 17 / 55
7 14 / 17 7 / 15
8 29 / 58 23 / 58
9 10 / 14 3 / 15
10 17 / 26 6 / 27
11 38 / 44 12 / 45
12 19 / 29 22 / 30
13 21 / 38 19 / 38
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Table 10.3. Estimates of probability difference, log relative risk, and log odds ratio with
estimated variances (in parentheses)

Probability Log relative Log odds
Study difference risk ratio

1 0.3750 (0.0192) 0.4895 (0.0486) 2.0990 (0.9698)
2 0.6875 (0.0156) 2.1203 (0.6255) 3.3570 (1.0334)
3 0.3235 (0.0110) 0.4666 (0.0300) 1.5652 (0.3304)
4 0.1964 (0.0078) 0.2995 (0.0199) 0.8640 (0.1635)
5 0.3636 (0.0196) 0.8023 (0.1339) 1.4656 (0.4011)
6 0.5057 (0.0067) 0.9515 (0.0432) 2.2326 (0.2008)
7 0.3569 (0.0252) 0.5379 (0.0806) 1.5465 (0.6057)
8 0.1034 (0.0084) 0.2274 (0.0423) 0.4125 (0.1385)
9 0.5143 (0.0254) 1.1653 (0.2475) 2.1203 (0.6832)
10 0.4316 (0.0151) 1.0274 (0.1369) 1.8072 (0.3628)
11 0.5970 (0.0070) 1.1472 (0.0615) 2.7647 (0.2897)
12 -0.0782 (0.0143) -0.1098 (0.0290) -0.3544 (0.3086)
13 0.0526 (0.0131) 0.0976 (0.0458) 0.2059 (0.2062)

Applying methods of Lecture 4 and 7, we obtain for the probability difference an
estimate of 0.3409 (95% CI: [0.2814; 0.4003]) assuming a fixed effects model and an
estimate of 0.3380 (95% CI: [0.2026;0.4733]) in the random effects model. For the effect
measure log relative risk, the estimates are 0.4422 (95% CI: [0.3197; 0.5646]) in the fixed
effects model and 0.5575 (95% CI: [0.2729;0.8421])in the random effects model. Finally,
the meta-analytical estimates for the log odds ratio are 1.2305 (95% CI: [0.9325; 1.5286])
in the fixed effects model and 1.4209 (95% CI: [0.7971;2.0446]) in the random effects
model. Note that for the calculations of the confidence intervals in the random effects
model, the improved method of Hartung and Knapp (2001 b) has been used, see the end
of Lecture 7.

10.2 Ordinal outcome

The data from a controlled trial with ordinal outcome can be arranged in a (2 × r)–
contingency table like in Table 10.4., where r denotes the number of categories of the
response variable. In Table 10.4., n1j denotes the number of patients in the first group
with response in the jth category and n2j the corresponding number of patients in the
second group. The sample sizes in both groups are n1. =

∑r
j=1 n1j and n2. =

∑r
j=1 n2j,

respectively.
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Table 10.4. Data from a controlled trial with ordinal outcome

Category
1 2 · · · r Total

Group 1 n11 n12 · · · n1r n1.

Group 2 n21 n22 · · · n2r n2.

Let π1j > 0, j = 1, . . . , r, be the probability observing a response in the jth category
in the firs group and π2j > 0 the corresponding probability in the second group. Note
that

∑r
j=1 π1j =

∑r
j=1 π2j = 1. We assume that the categories are ordered in terms of

desirability: category 1 is the best and category r is the worst.
Let Y1 denote the response variable in the first sample and Y2 the one in the second

sample, then, in view of the ordering of the categories, the treatment is superior to the
control when Y2 is stochastically larger than Y1. If Y2 is stochastically larger than Y1

then it holds P (Y2 > Y1) ≥ P (Y2 < Y1). However, if the inequality is true then it
does not necessarily follow that YC is stochastically larger than YT . In the following two
subsections, we consider two effect measures that may be used to describe the difference
of the response variables in a controlled trial with ordinal outcome.

10.2.1 Proportional odds model

The proportional odds model was introduced by McCullagh (1980). Consider the cu-
mulative probabilities q1j =

∑j
i=1 π1i and q2j =

∑j
i=1 π2i, respectively, up to category j,

j = 1, . . . , r − 1, then the odds ratio given cut-off point category j is

θj =
q1j (1− q2j)

(1− q1j) q2j

, j = 1, ...,m− 1. (10.12)

The proportional odds assumption reads

θ1 = θ2 = · · · = θr−1 =: θ. (10.13)

If θ > 1, then the treatment is superior to the control, in view of the above ordering
of the categories. This implies that Y2 is stochastically larger than Y1. But, through the
model assumption of proportional odds, the type how Y2 is stochastically larger than Y1

is restricted.
The proportional odds model can be analyzed using standard statistical software pack-

ages for linear logistic regression. These software packages usually yield the maximum
likelihood estimate of the log odds ratio and the corresponding standard error. Additional
remarks for the analysis in the proportional odds model can be found in Whitehead and
Jones (1994). Note that the proportional odds model can be considered as arising from
a latent continuous variable, where this latent variable has a logistic distribution, see
Whitehead et al. (2001) for further details.
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10.2.2 Agresti’s α

Agresti (1980) proposed a measure of association, named briefly now as Agresti’s α, that,
in case of a (2× r)–contingence table, can be seen as a generalized odds ratio. Agresti’s α
is the ratio of P (YC > YT ) and P (YC < YT ), that is, in the present context, the probability
to observe a worse response in the control group than in the treatment group divided by
the probability to observe a better response in the control group than in the treatment
group. In formula, Agresti’s α can be written as

α =

∑
j>i

pTi pCj∑
j<i

pTi pCj

. (10.14)

Note that, if YC is stochastically larger than Yt than α > 1, however, α > 1 does not
necessarily mean that YC is stochastically larger than YT . In case, YC is stochastically
larger than YT , Agresti’s α is a meaningful measure of the difference of all possible dis-
tributions of YT and YC . If the distributions of YT and YC are identical then α = 1 and
θ = 1. However, α = 1 does not necessarily mean that the two distribution are identical,
it only means, that the two probabilities, P (YC > YT ) and P (YC < YT ), are identical. Of
course, for (2× 2)–tables, Agresti’s α is the odds ratio.

Agresti’s α is easily estimated by plugging in the observed proportions p̂Ti = mTi/nT

and p̂Ci = mCi/nC , i = 1, . . . , r, in (10.14) and we denote this estimator by α̂. Note that
α̂ does not exist when ”zeros occur”.

Agresti (1980) provided a large-sample estimator of the variance of the estimator of
α. This variance estimator reads

σ̂(α̂) =

 1
nT

∑
j

p̂Tj

α̂
∑
i<j

p̂Ci −
∑
i>j

p̂Ci

2

+
1

nC

∑
j

p̂Cj

α̂
∑
i>j

p̂Ti −
∑
i<j

p̂Ti

2
/

∑
i>j

p̂Tip̂Ci

2

(10.15)
For constructing confidence intervals on Agresti’s α, it is convenient to make the

inference first on log(α) since the distribution of log(α̂) tends to be more symmetric and
to converge faster to normality than the distribution of α̂. According to Agresti (1980), the
large-sample (1−κ) confidence interval on α is then given as exp

(
log(α̂)± u1−κ/2 σ̂(α̂) / α̂

)
with uγ the γ-quantile of the standard normal distribution.

10.2.3 An example

For illustration purposes, we take an example from Whitehead and Jones (1994). Thir-
teen controlled trials were undertaken to investigate whether concurrent treatment with
the synthetic prostaglandin, misoprostol, would prevent or at least reduce the degree of
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gastrointestinal damage without reducing the anti–inflammatory effect of non–steroidal
anti–inflammatory drugs (NSAIDs). Patients suffering from arthritis are often prescribed
NSAIDs. In the trials, different scoring systems were used to assess the extent of gastroin-
testinal damage. The number of categories ranges from two up to five. The data with
the different classification schemes are put together in Table 10.5. For a more detailed
description of the trials let us refer to Whitehead and Jones (1994).

The definition of best category is different from trial to trial. However, the classifi-
cation category 1 in Table 10.5 always stands for the best category in each trial. Score
tests on proportional odds assumptions do not reveal any violence of this assumptions in
all the trials, see Whitehead and Jones (1994).

Table 10.5. Thirteen randomized trials of misoprostol by endoscopic classification
Study Treatment Endoscopic classification

1 2 3 4 5
1 Misoprostol 21 2 4 2 0

Placebo 2 2 4 9 13
2 Misoprostol 17 8 3 2 0

Placebo 0 3 4 10 13
3 Misoprostol 20 4 6 0 0

Placebo 8 4 9 4 5
4 Misoprostol 20 4 6 0 0

Placebo 0 2 5 5 17
5 Misoprostol 1 4 5 0 0

Placebo 0 0 0 4 6
6 Misoprostol 93 5 3 1 1

Placebo 85 10 10 4 5
7 Misoprostol 61 12 0

Placebo 49 28 3
8 Misoprostol 45 1 0

Placebo 65 6 3
9 Misoprostol 138 1

Placebo 121 17
10 Misoprostol 126 2

Placebo 110 21
11 Misoprostol 30 1 1

Placebo 20 11 7
12 Misoprostol 56 12 8 0

Placebo 50 15 12 5
13 Misoprostol 12 3 1 0

Placebo 11 5 2 3
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In Table 10.6 the study-specific estimates are summarized along with standard errors
and confidence intervals.

Table 10.6. Study-specific estimates, their standard errors, and 95% confidence intervals
Proportional odds Agresti’s α

Study log(θ̂) SE(log(θ̂)) 95% CI log(α̂) SE(log(α̂)) 95% CI
1 3.55 0.66 [ 2.25 ; 4.84 ] 3.04 0.56 [ 1.95 ; 4.14 ]
2 4.05 0.72 [ 2.64 ; 5.46 ] 3.58 0.62 [ 2.36 ; 4.79 ]
3 1.91 0.53 [ 0.87 ; 2.95 ] 1.69 0.46 [ 0.78 ; 2.60 ]
4 3.75 0.69 [ 2.40 ; 5.10 ] 3.04 0.59 [ 1.88 ; 4.19 ]
5 6.51 2.28 [ 2.04 ; 10.98 ] 4.02 1.96 [ 0.19 ; 7.86 ]
6 1.18 0.40 [ 0.40 ; 1.95 ] 1.12 0.38 [ 0.38 ; 1.86 ]
7 1.19 0.39 [ 0.43 ; 1.96 ] 1.19 0.39 [ 0.43 ; 1.94 ]
8 1.84 1.07 [-0.26 ; 3.94 ] 1.84 1.07 [-0.25 ; 3.92 ]
9 2.96 1.04 [ 0.93 ; 5.00 ] 2.96 1.04 [ 0.93 ; 5.00 ]
10 2.49 0.75 [ 1.01 ; 3.96 ] 2.49 0.75 [ 1.01 ; 3.96 ]
11 2.57 0.80 [ 1.00 ; 4.13 ] 2.37 0.78 [ 0.83 ; 3.91 ]
12 0.65 0.34 [-0.02 ; 1.31 ] 0.60 0.31 [-0.01 ; 1.21 ]
13 1.11 0.71 [-0.28 ; 2.50 ] 1.04 0.65 [-0.24 ; 2.31 ]

For both effect measures, the meta analysis in a random effects model is appropriate.
The values of Cochran’s homogeneity statistic are 49.49 (log odds ratio) and 42.30 (log α)
leading to P values less than 0.0001. The DerSimonian-Laird estimate, see Lecture 7, is
1.1074 on the log odds ratio scale and 0.7672 on the log Agresti’s α scale. The combined
estimate is 2.2614 (95%CI: [1.4665;3.0561]) for the log odds ratio and 2.0160 (95%CI:
[1.3906;2.6413]).
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11 Computational Aspects

In this section, we consider various computational aspects of meta-analytical methods.
First, we describe some methods of extracting summary statistics from publication. Then,
we indicate how to conduct meta analysis using statistical software SAS and R. More
details will be presented during the workshop.

11.1 Extracting summary statistics

Usually, the various publications do not deliver the same precise information on the results
of trials. The ideal situation would be if each publication reported the estimate of the
effect size, say θ̂, and its standard error, say σ̂(θ̂). Whereas one can expect that θ̂ will
in general be reported, the information on the precision of this estimate is often given
indirectly.

Consider the situation in which θ̂ and a 100(1− α)% confidence interval, say [θ̂L; θ̂U ],
are reported. Assuming that the confidence interval is based on (approximate) normality,
that is,

θ̂ ± σ̂(θ̂)zα/2 (11.1)

we can extract the information on the standard error by

σ̂(θ̂) =
θ̂U − θ̂L

2 zα/2

(11.2)

In case only the estimate of the effect size in combination with a one-sided P value is
reported we can proceed as follows. Assuming that the calculation of the P value is based
on the (approximate) normal test statistic θ̂/σ̂(θ̂) and large values of the test statistic are
in favor of the alternative, that is,

P = P

(
N(0, 1) >

θ̂

σ̂(θ̂)

∣∣ H0

)
(11.3)

Then we extract the standard error as

σ̂(θ̂) =
θ̂

z1−P

(11.4)

Given a two-sided P value and the effect size estimate θ̂, the standard error can be
computed as

σ̂(θ̂) =
|θ̂|

z1−P/2

(11.5)
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since

P = 2 P

(
N(0, 1) >

|θ̂|
σ̂(θ̂)

∣∣ H0

)
(11.6)

11.2 Combining tests

The combined test procedures can be easily calculated using standard statistical software
like R or SAS. Both software packages have implemented the required function for normal,
t, χ2 and beta distributed random variables. The following table contains a summary of
the syntax of the necessary functions in both software packages.

Probability and quantile functions in R and SAS

Distribution R function SAS function
beta pbeta(x, a, b) cdf(’beta’, x, a, b)

qbeta(prob, a, b) quantile(’beta’, x, a, b)
χ2 pchisq(x, df) cdf(’chisquare’, x, df)

qchisq(prob, df) quantile(’chisquare’, prob, df)
normal pnorm(x, mean, sd) cdf(’normal’, x, mean, sd)

qnorm(prob, mean, sd) quantile(’normal’, prob, mean, sd)
t pt(x,df) cdf(’t’, x)

qt(prob,df) quantile(’t’, prob)

Consider the six P values from example 3.6: 0.047, 0.028, 0.216, 0.062, 0.129, 0.898.
Tippett’s, Stouffer’s (inverse normal) and Fisher’s method in R:

pvalues < − c(0.047, 0.028, 0.216, 0.062, 0.129, 0.898)
k < − length(pvalues) # number of trials
# test statistics
tippett < − min(pvalues)
stouffer < − sum(qnorm(pvalues)) / sqrt(k)
fisher < − sum(-2 * log(pvalues))
# alternative calculation
fisher.2 < − sum(qchisq(1 - pvalues, 2))
# P values of the three tests
pv.tippett < − pbeta(tippett, 1, k)
pv.stouffer < − pnorm(stouffer)
pv.fisher < − 1 - pchisq(fisher, 2*k)

11.3 Combining effect sizes

Obtaining the statistics via weighted least-squares regression
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The results for combining effect size described in Lecture 4 can be obtained by sta-
tistical software using weighted least-squares regression. Often, the general method in
Lecture 4 is denote as generic inverse variance method.

Whitehead (2002) shows the use of SAS PROC GLM for fitting a weighted least-
squares regression. For k trials, the observed responses are the study estimates, say θ̂i,
i = 1, . . . , k, and there are no explanatory variables, only a constant term. The weights
are the inverse of the estimated variances, say wi = 1/v̂ar(θ̂i). The estimated intercept of
this weighted least-squares regression is the estimate of the common effect size. However,
as Whitehead (2002) noted, the standard error and the test statistics displayed for the
intercept parameter are incorrect for the required model, because the model assumption
is var(θ̂) = σ2/wi, where σ2 is to be estimated from the data, instead of equal to 1. This
will also be the case for other statistical packages.

Van Houwelingen et al. (2002) show the use of SAS PROC MIXED for fitting a
weighted least-squares regression. Moreover, they show how to use SAS PROC MIXED
for the meta-analysis in the random effects model, that is, how to implement the standard
method from Lecture 7, Section 7.4. However, in the random effects model, SAS PROC
MIXED computes (restricted) maximum likelihood estimates of the between-trial vari-
ance. Other estimates of the between-trial variance, like the DerSimonian-Laird estimate,
are not available. Van Houwelingen also discuss advanced method in meta analysis like
multivariate meta analysis and meta-regression and the implementation of these methods
in SAS PROC MIXED.

R packages
There are two R packages in which several meta analysis methods are implemented.

The packages rmeta by Thomas Lumley and meta by Guido Schwarzer provides methods
for simple fixed and random effects meta analysis for two-sample comparisons and cumu-
lative meta-analyses and computes summaries and tests for association and heterogeneity.
In both packages, functions are implemented for conducting a random effects model meta
analysis with the DerSimonian-Laird estimate as between-study estimate. More or less,
the functions of both packages are identical. Additionally, in rmeta, combining binary
data via Mantel-Haenszel method is possible, whereas meta provides a test for funnel plot
asymmetry. Both packages provide standard graphics for meta analysis described below.

11.4 Graphics

A graphical representation of the results of a meta analysis is the confidence interval plot,
sometimes also referred as forest plot. The confidence interval plot displays study-specific
estimate and corresponding 100(1-α)% confidence interval for each study as well as the
meta-analytical estimate of the common effect size and and corresponding 100(1-α)%
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confidence interval. The two above mentioned R packages provide functions for drawing
confidence interval plots.

A funnel plot, described in Lecture 8, for assessing publication bias is implemented in
both R packages.
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Data Sets

Data Set 1: Validity Studies Correlating Student Ratings of the Instructor with Student
Achievement

Study Sample n r

Bolton et al. 1979 General psychology 10 0.68
Bryson 1974 College algebra 20 0.56
Centra 1977[1] General biology 13 0.23
Centra 1977[2] General psychology 22 0.64
Crooks and Smock 1974 General physics 28 0.49
Doyle and Crichton 1978 Introductory communications 12 -0.04
Doyle and Whitely 1974 Beginning French 12 0.49
Elliot 1950 General chemistry 36 0.33
Ellis and Richard 1977 General psychology 19 0.58
Frey, Leonard and Beatty 1975 Introductory calculus 12 0.18
Greenwood et al. 1976 Analytic geometry and calculus 36 -0.11
Hoffman 1978 Introductory math 75 0.27
McKeachie et al. 1971 General psychology 33 0.26
Marsh et al. 1956 Aircraft mechanics 121 0.40
Remmer et al. 1949 General chemistry 37 0.49
Sullivan and Skanes 1974[1] First-year science 14 0.51
Sullivan and Skanes 1974[2] Introductory psychology 40 0.40
Sullivan and Skanes 1974[3] First-year math 16 0.34
Sullivan and Skanes 1974[4] First-year biology 14 0.42
Wherry 1952 Introductory psychology 20 0.16

Source: Cohen, P.A. (1983). Comment on selective review of the validity of student ratings of
teaching. Journal of Higher Education, 54, 449-458.
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Data Set 2: Studies of the Effects of Teacher Expectancy on Pupil IQ

Estimated Weeks of
Teacher-Student Contact Prior Standard

Study to Expectancy Induction d Error
Rosenthal et al. 1974 2 0.03 0.125
Conn et al. 1968 21 0.12 0.147
Jose and Cody 1971 19 -0.14 0.167
Pellegrini and Hicks 1972[1] 0 1.18 0.373
Pellegrini and Hicks 1972[2] 0 0.26 0.369
Evans and Rosenthal 1968 3 -0.06 0.103
Fiedler et al. 1971 17 -0.02 0.103
Claiborn 1969 24 -0.32 0.220
Kester 1969 0 0.27 0.164
Maxwell 1970 1 0.80 0.251
Carter 1970 0 0.54 0.302
Flowers 1966 0 0.18 0.223
Keshock 1970 1 -0.02 0.289
Henrikson 1970 2 0.23 0.290
Fine 1972 17 -0.18 0.159
Greiger 1970 5 -0.06 0.167
Rosenthal and Jacobsen 1968 1 0.30 0.139
Fleming and Anttonen 1971 2 0.07 0.094
Ginsburg 1970 7 -0.07 0.174

Source: Raudenbush, S.W. and Bryk, A.S. (1985). Empirical Bayes meta–analysis. Journal of
Educational Statistics, 10, 75-98.
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Data Set 3: Results of eight randomized controlled trials comparing the effectiveness of am-
lodipine and a placebo on work capacity

Amlodipine 10 mg (E) Placebo (C)
Protocol nEi x̄Ei d2

Ei nCi x̄Ci d2
Ci

154 46 0.2316 0.2254 48 -0.0027 0.0007
156 30 0.2811 0.1441 26 0.0270 0.1139
157 75 0.1894 0.1981 72 0.0443 0.4972

162A 12 0.0930 0.1389 12 0.2277 0.0488
163 32 0.1622 0.0961 34 0.0056 0.0955
166 31 0.1837 0.1246 31 0.0943 0.1734

303A 27 0.6612 0.7060 27 -0.0057 0.9891
306 46 0.1366 0.1211 47 -0.0057 0.1291

Source: Li, Y., Shi, L. and Roth, H.D. (1994). The bias of the commonly–used estimate of
variance in meta–analysis. Communications in Statistics — Theory and Methods, 23, 1063-
1085.
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Data Set 4: Placebo-controlled trials on the effect of cisapride in the treatment of non–ulcer
dyspepsia

Study Cisapride Placebo
1 15 / 16 9 / 16
2 12 / 16 1 / 16
3 29 / 34 18 / 34
4 42 / 56 31 / 56
5 14 / 22 6 / 22
6 44 / 54 17 / 55
7 14 / 17 7 / 15
8 29 / 58 23 / 58
9 10 / 14 3 / 15
10 17 / 26 6 / 27
11 38 / 44 12 / 45
12 19 / 29 22 / 30
13 21 / 38 19 / 38

Source: Hartung, J.and Knapp, G. (2001). A refined method for the meta–analysis of controlled
clinical trials with binary outcome. Statistics in Medicine, 20, 3875-3889.
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Data Set 5: Secondhand Smoking
For 19 case–control studies, number of cases of lung cancer in women who did not actively

smoke cigarettes and estimated relative risk of lung cancer in relation exposure to environmental
tobacco smoke

Number of Estimated Relative Risk
Cases (95% Confidence Interval)

Akiba, Kato, Blot (1986) 94 1.52 (0.88 - 2.63)
Brownson et al. (1987) 19 1.52 (0.39 - 5.99)
Buffler et al. (1984) 41 0.81 (0.34 - 1.90)
Chan et al. (1979) 84 0.75 (0.43 - 1.30)
Correa et al. (1983) 22 2.07 (0.82 - 5.25)
Gao et al. (1978) 246 1.19 (0.82 - 1.73)
Garfinkel, Auerbach, Joubert (1985) 134 1.31 (0.87 - 1.98)
Geng, Liang, Zhang (1988) 54 2.16 (1.08 - 4.29)
Humble, Samet, Pathak (1987) 20 2.34 (0.81 - 6.75)
Inoue, Hirayama (1988) 22 2.55 (0.74 - 8.78)
Kabat, Wynder (1984) 24 0.79 (0.25 - 2.45)
Koo et al. (1987) 86 1.55 (0.90 - 2.67)
Lam et al. (1987) 199 1.65 (1.16 - 2.35)
Lam (1985) 60 2.01 (1.09 - 3.71)
Lee, Chamberlain, Alderson (1986) 32 1.03 (0.41 - 2.55)
Pershagen, Hrubec, Svensson (1987) 67 1.28 (0.76 - 2.15)
Svensson, Pershagen, Klominek (1988) 34 1.26 (0.57 - 2.82)
Trichopoulos, Kalandidi, Sparros (1983) 62 2.13 (1.19 - 3.83)
Wu et al. (1985) 28 1.41 (0.54 - 3.67)

Summary relative risk 1.42 (1.24 - 1.63)
Source: Environmental Protection Agency (1990); tables references cited there.

Based on this information, an Advisory Committee of EPA designated Environmental To-
bacco Smoke as a Carcinogen.
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Data Set 6: Randomized trials of misoprostol by endoscopic classification

Study Treatment Endoscopic classification
1 2 3 4 5

1 Misoprostol 21 2 4 2 0
Placebo 2 2 4 9 13

2 Misoprostol 17 8 3 2 0
Placebo 0 3 4 10 13

3 Misoprostol 20 4 6 0 0
Placebo 8 4 9 4 5

4 Misoprostol 20 4 6 0 0
Placebo 0 2 5 5 17

5 Misoprostol 1 4 5 0 0
Placebo 0 0 0 4 6

6 Misoprostol 93 5 3 1 1
Placebo 85 10 10 4 5

7 Misoprostol 61 12 0
Placebo 49 28 3

8 Misoprostol 45 1 0
Placebo 65 6 3

9 Misoprostol 138 1
Placebo 121 17

10 Misoprostol 126 2
Placebo 110 21

11 Misoprostol 30 1 1
Placebo 20 11 7

12 Misoprostol 56 12 8 0
Placebo 50 15 12 5

13 Misoprostol 12 3 1 0
Placebo 11 5 2 3

Source: Whitehead, A. and Jones, N.M. (1994). A meta–analysis of clinical trials involving
different classifications of response into ordered categories. Statistics in Medicine, 13, 2503-
2515.
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Paris: Courcier.

Liang, K.Y. and Self, S.G. (1985). Test for homogeneity of odds ratio when the data are sparse.
Biometrika, 72, 353-358.

Light, R.J., and Pillemer, D.B. (1984). Summing up: The Science of Reviewing Research.
Cambridge, MA: Harvard University Press.

Lipsitz, S.R., Dear, K.B.G., Laird, N.M., and Molenberghs, G. (1998). Tests for homogeneity
of the risk difference when data are sparse. Biometrics, 54, 148-160.

Marden, J.I. (1991). Sensitive and sturdy p-values. The Annals of Statistics, 19, 918-934.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical
Society, Series B, 42, 109-142.

Mehrotra, D.V. (1997). Improving the Brown-Forsythe solution to the generalized Behrens-
Fisher problem. Communications in Statistics - Simulation and Computation, 26, 1139–
1145.

Mehta, J.S. and Gurland, J. (1969). Combination of unbiased estimates of the mean which
consider inequality of unknown variances. Journal of the American Statistical Association,
64, 1042-1055.

Meier, P. (1953). Variance of a weighted mean. Biometrics, 9, 59-73.

Mitra, P.K. and Sinha, B.K. (2007). On some aspects of estimation of a common mean of
two independent normal populations. Journal of Statistical Planning and Inference 137,
184-193.

Montgomery, D. (1991). Design and Analysis of Experiments (3rd ed.) New York: Wiley

Mosteller, F. and Bush, R. (1954). Selected quantitative techniques. In Handbook of Social
Psychology: Theory and Method, Vol.1, G. Lindsey (Ed.). Cambridge, MA: Addison-
Wesley.

132



Nair, K.A. (1980). Distribution of an estimator of the common mean of two normal populations.
Annals of Statistics, 8, 212-216.

Norwood, T. E. and Hinkelmann, K. (1977). Estimating the common mean of several normal
populations. Annals of Statistics, 5, 1047-1050.

Patil, G.P. and Rao, C.R. (1977). The weighted distributions: A survey of their applications.
In Applications of Statistics, Krishnaiah (Ed.). Amsterdam: North-Holland.

Pauler, D.K. and Wakefield, J. (2000). Modeling and implementation issues in Bayesian meta-
analysis. In Meta-analysis in Medicine and Health Policy, D. Stangl and D.A. Berry
(Eds.). New York: Marcel Dekker.

Pearson, K. (1904). Report on certain enteric fever inoculation statistics. British Medical
Journal, 2, 1243-1246.

Pearson, K. (1933). On a method of determining whether a sample of given size n supposed
to have been drawn from a parent population having a known probability integral has
probably been drawn at random. Biometrika, 25, 379-410.

Pettigrew, H.M., Gart, J.J., and Thomas, D.G. (1986). The bias and higher cumulants of the
logarithm of a binomial variate. Biometrika, 73, 425-435.

Rao C.R. (1972). Estimation of variance and covariance components in linear models. Journal
of the American Statistical Association, 67, 122-115.

Rao, C.R. (1973). Linear Statistical Inference and Its Applications. New York: Wiley.

Rao, P.S.R.S, Kaplan, J., and Cochran, W.G. (1981). Estimators for the one-way random ef-
fects model with unequal error variances. Journal of the American Statistical Association,
76, 89-97.

Rohatgi, V.K. (1976). An Introduction to Probability Theory and Mathematical Statistics. New
York: Wiley.

Rosenthal, R. (1979). The ”file drawer problem” and tolerance for null results. Psychological
Bulletin, 86, 638-641.

Rosenthal, R. (1984). Meta-Analytic Procedures for Social Research. Beverly Hills, CA: Sage.

Rosenthal, R. (1994). Parametric measures of effect size. In The Handbook of Research Syn-
thesis, H. Cooper and L.V. Hedges (Eds.). New York: Russell Sage Foundation.

Rubin, D.B. (1981). Estimation in parallel randomized experiments. Journal of Educational
Statistics, 6, 337-401.

133



Rukhin, A.L., Biggerstaff, B.J., and Vangel, M.G. (2000). Restricted maximum likelihood
estimation of a common mean and the Mandel-Paule algorithm. Journal of Statistical
Planning and Inference, 83, 319-330.

Searle, S.R., Casella, G. and McCulloch, C.E. (1992). Variance components. New York: Wiley.

Shinozaki, N. (1978). A note on estimating the common mean of k normal populations and
the Stein Problem. Communications in Statistics, A 7(15), 1421-1432.

Sidik, K. and Jonkman, J.N. (2002). A simple confidence interval for meta–analysis. Statistics
in Medicine, 21, 3153-3159.

Sinha, B.K. (1979). Is the maximum likelihood estimate of the common mean of several normal
populations admissible? Sankhyā, B, 40, 192-196.
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