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FREDERICK S. ELLETT, JR. AND DAVID P. ERICSON 

CORRELATION, PARTIAL CORRELATION, 
AND CAUSATION* 

ABSTRACT. Philosophers and scientists have maintained that causation, correlation, and 

"partial correlation" are essentially related. These views give rise to various rules of causal 

inference. This essay considers the claims of several philosophers and social scientists for 

causal systems with dichotomous variables. In section 2 important commonalities and 

differences are explicated among four major conceptions of correlation. In section 3 it is 

argued that whether correlation can serve as a measure of A's causal influence on B 

depends upon the conception of causation being used and upon certain background 

assumptions. In section 4 five major kinds of "partial correlation" are explicated, and some 

of the important relations are established among two conceptions of "partial correlation", 
the conception of "screening off", the conception of "partitioning", and the measures of 

causal influence which have been suggested by advocates of path analysis or structural 

equation methods. In section 5 it is argued that whether any of these five conceptions of 

"partial correlation" can serve as a measure of causal influence depends upon the 

conception of causation being used and upon certain background assumptions. 
The important conclusion is that each of the approaches (considered here) to causal 

inference for causal systems with dichotomous variables stands in need of important 

qualifications and revisions if they are to be justified. 

1. INTRODUCTION 

This essay considers a general set of claims of certain philosophers and 

social scientists that causation, correlation, and "partial correlation" 

are essentially related. These claims are considered for causal systems 
with dichotomous variables. Philosophers of science and social scien 

tists, such as H. Blalock (1964), Campbell and Stanley (1963, pp. 64-6), 
Kendall and Lazarsfeld (1950), Reichenbach (1956, pp. 156-9, 190), 
and Suppes (1970, pp, 12, 23-5, 28), hold that if A causes B, then A is 

positively correlated with B. Others, such as H. Asher (1976), P. 

Bentler (1980), and J. Davis (1975), hold that if A causes B, then a 

certain conception of corr?lation can serve as a measure of the degree 
of A's causal influence on B. The views of these researchers give rise to 

rules of causal inference that can be used, for example, to reject certain 

causal hypotheses when A is not positively correlated with B. Further 

conditions must, of course, be added to develop sufficient conditions for 

A to be a cause of B. 

Synthese 67 (1986) 157-173. 
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Section 2 explicates four conceptions of correlation and draws out 

some of the important commonalities and differences among them. 

Section 3 argues that whether a conception of correlation can serve as a 

measure of A's causal influence on B depends upon the conception of 

causation being used and upon certain background assumptions. 
Section 4 explicates the relations among two conceptions of "partial 

correlation", the conception of "screening off", the conception of 

"partitioning", and the measures of causal influence that have been 

suggested by advocates of path analysis or structural equation methods. 

Certain philosophers and social scientists maintain that "partial cor 

relation" tests can be used to determine, for example, whether a certain 

variable B is a causally intervening variable between A and C, or 

whether B is a common cause of A and C. Section 5 argues that 

whether such views on causal inference can be justified depends upon 
the conception of causation being used and upon certain background 

assumptions. 

The general conclusion is reached that the various rules of causal 

inference commonly advocated by these researchers stand in need of 

serious qualification and revision. 

2. CONCEPTIONS OF CORRELATION 

In this section we explicate four important conceptions of correlation. 

Before we begin, however, notice that each of the four conceptions of 

correlation will be defined for the population of events A and B. We are 

not interested here in the measurement and statistical issues which are 

related to using an observed sample to estimate or determine the (true) 

population correlation. We are concerned only with the (alleged) 
relations for the population correlation. Also notice that Nagel, 

Kendall and Lazarsfeld, and Salmon are concerned with correlations 

among events (or attributes), while Asher, Blalock, and Simon are 

primarily concerned with relations among quantities. P. Suppes (1970), 
on the other hand, has developed a view for each kind of variable. We 

have included Asher, Blalock, and Bentler here because these authors 

have argued that the approach developed for quantitative variables can 

also be used for ordinal variables or for attribute (or category) variables. 

Asher argues for extending the approach to ordinal data (pp. 64-6). 
Those following the so-called Simon-Blalock approach have included 

attribute variables (e.g., Davis, 1975). Most notable are Blalock's 
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claims that the method can be applied to attribute variables (pp. 32, 

71-7, 119-24). Often these authors choose to illustrate the general 
method by investigating examples which have attribute variables 

(Blalock, pp. 71-7; Suppes, pp. 117-18). We are concerned with these 

approaches as they apply to dichotomous variables. 

We begin by considering the conception used by the social scientists 

P. Kendall and P.F. Lazarsfeld (1950, pp. 153-8) and by the philoso 

pher of science, Ernest Nagel (1961, pp. 512-3). (Nagel also uses the 

second conception as well.) In the first conception, two variables (or 
states of affairs) A and B are positively correlated if and only if the 

probability of A and JB minus the probability of A times the probability 
of B is greater than zero. In standard notation, A and B are positively 
correlated if and only if P(A.B)- P(A)P(B)>0. A and B are nega 

tively correlated if and only if P(A.B) 
- 

P(A)P(B) < 0; A and B are 

uncorrelated if and only if P(A.B) equals P(A)P(B). One can easily 
show that: 

(a) P(A.B) 
- 

P(A)P(B) = P(A.B)P(?.B) 
- 

P(A.B)P(?.B). 

The second conception of correlation is used by philosophers of science 

Hans Reichenbach (1956) and Patrick Suppes (1970). Two variables 
are positively correlated if and only if the probability of B given A 

minus the probability of B is greater than zero. That is, A and B are 

positively correlated if and only if P(B/A) 
- 

P(B) > 0. A and B are 

negatively correlated if and only if P(B/A) 
? 

P(B) < 0; A and B are 

uncorrelated if and only if P(B/A) equals P(A). Given that P(A) is 

nonzero, it can be shown that: 

(b) P(B/A) 
- 

P(B) = 
[P(A.B)P(?.B) 

- 
P(A.B)P(?.B)]/P(A). 

A third conception of correlation is used by such philosophers of 

science as Wesley Salmon (1980).l Two variables are positively cor 

related if and only if the probability of B given A minus the probability 
of B given not A is greater than zero. That is, A and B are positively 
correlated if and only if P(B/A) 

- 
P(BI?)> 0; A and B are negatively 

correlated if and only if P(B/A) 
- 

P(B/A) < 0; A and B are uncor 

related if and only if P(B/A) = P(B/?). Given that 1 > P(A) > 0, it can 
be shown that: 

(c) P(BIA) 
- 

P(BI?) 
= 

[P(A.B)P(?.B) 
- 

P(A.B)P{A.B)]I[P(A)P(A)] 
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The fourth conception of correlation is used by social scientists H. B. 

Asher (1976), H. M. Blalock, Jr. (1964), and H. A. Simon. Two 

variables are positively correlated if and only if the <I> (phi) coefficient is 

positive; A and B are uncorrelated if and only if <I> is negative; and A 

and B are uncorrelated if and only if <I> is zero. The i> (phi) correlation 

is defined as follows: 

(d) 4>A? = 
[P(A.B)P(?.B) 

- 
P(A.B)P(?.B)] divided by 

[P(A)P(?)P(B)P(B)]1/2. 

We are ready to draw out the commonalities and differences among the 

four conceptions of correlation. Over the domain where all are defined 

(1 > P(A) > 0 and 1 > P(B) > 0), the conceptions have the same sign, 
which is given by the numerator term in the right hand side of equations 
a, b, c, and d: 

(1) P(A.B)P(?.B) 
- 

P(A.B)P(?.B). 

This is the covariance of A and B. It would make no difference which 

of the conceptions of correlation were used in a qualitative theory of 

causal inference. A qualitative theory concludes that A is not a cause of 

B if A is not positively correlated with B; and perhaps it finds some 

weak kind of confirming evidence for A's being a cause of B if A is 

positively correlated with B. But each of the four conceptions gives the 
same information about whether A and B are positively correlated. 

Things are rather different in the case of a quantitative theory of 

causal inference. A quantitative theory tries to determine not only 
whether A causes B, but also it tries to determine the degree or 

magnitude of A's causal influence on B. Many have attempted to 

develop a quantitative theory so that a particular conception of 

correlation (in certain situations at least) would give the magnitude of 

A's causal influence on B. (See Asher2; Bentler; and Davis.)3 There are 

differences among the four conceptions of correlations with respect to 

the magnitude of the correlations. Given that 1 > P(A) > 0 and that 

1 > P(B) > 0, the following relations hold: whenever P(A.B)P(?.B) 
- 

P(A.B)P(A.B) is zero, then the conceptions of correlation are all zero; 
whenever P(A.B)P(?.E)- P(A.B)P(?.B) is nonzero, then the con 

ceptions are all nonzero and have the same sign, say positive, but their 

magnitudes will differ. So understood, it can be shown that: (i) 

P(B/A)-P(B) is greater than P(A.B)-P(A)P(B); (ii) P(B/A) 
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P(B/A) is greater than P(B/A)-P(B); and (iii) 4>AB is greater than 

P(A.B) 
- 

P(A)P(B). When the correlations are positive, (iv) <E>AB can 

be greater than P(B/A) 
- 

P(B/A), (v) *AB can be less than P(B/A) 
- 

P(B/A) but greater than P(B/A) 
- 

P(?), and (vi) <?>AB can be less than 

P(B/A) 
- 

P(A) but greater than P(A.B) 
- 

P(A)P(B). 

3. CORRELATION AS A MEASURE OF CAUSAL INFLUENCE 

Writers such as Campbell and Stanley, Kendall and Lazarsfeld, Rei 

chenbach, and Suppes maintain that if A is a cause of B, then A and B 

will be positively correlated. On the other hand, Asher, Blalock, and 

Davis conclude that if A is a cause of B, then a conception of 

correlation between A and B will determine the magnitude of the A's 

causal strength on its effect B. Here we argue that if some effect B has 
two causes, A and C, then even if A is a sufficient cause of B, or if A is a 

probabilistic cause of B (with probability 1), in general the correlation 

between A and B must be nonnegative but it need not equal 1. If A is a 

probabilistic cause of B (with probability p < 1), then the sign and the 

magnitude of the correlation will depend upon background assumptions 

involving certain features of the other causes of B. 

It will be helpful here to give a brief description of a general kind of 

causal system. Suppose that there are two distinct coins, where H 

represents a tossing of the first coin and / represents a tossing of the 
second coin and where the coin tossings H and / are not causally 
related to one another. Furthermore, suppose that tossing (H) the first 
coin has the probability p of producing an outcome (K) of at least one 

head and that tossing (J) the second coin has the probability r of 

producing an outcome K of at least one head. If both coins are tossed at 

the same time, we assume that the probability of getting an outcome 

(K) of at least one head is p+r-pr. We shall say that H is a 

probabilistic cause of an outcome K of at least one head with probability 
p. A probabilistic cause is taken as an idealized coin toss. In a recent 

paper (Ellett and Ericson, 1985) which considers N. Cartwright's 
(1979 and 1983) views on the relationship between causal laws and laws 

of association, we derive the following: If H is a probabilistic cause of 

K with probability p, then P(K/H.G) 
= 

p and P(K/H.G) 
= 

0, where 

G is the hypothetical state of affairs where none of the other causal 

factors of X, if any exist, are present. The expression P(K/H.G) 
= 0 

roughly says that if no causes of K are present, then the probability of 
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K's occurring is zero. In the situation considered above, G becomes J 

and we get P(K/H.J) 
= 

p. 
We believe that it can be shown the P(K/H. G) gives a quite intuitive 

and plausible measure of the magnitude of H's causal influence on K. 

Notice thatif H is (empirically) sufficient for K, then P(K/H.G) 
= 1 

and P(K/H,G) 
= 0. Nevertheless, if H is sufficient for K, then 

P(K/H.G) 
= 

1, but it also follows that the event (H.K) cannot 

occur. Given certain conceptions of probability, it is logically possible 
for cases of H.K to occur even though P(K/H.G) 

= l.4 We shall argue 
that the defensibility of the causal inference rules depends in part on 

the concept of causation one is employing. 
An important characteristic still requires specification for this general 

causal system (in which the effect K has only the two causes H and /): 
the background assumption about the joint distribution of the cause H 

and the cause / needs to be specified. We assume that 1 > P(H) > 0 and 

consider three possible situations: (i) H and / are uncorrelated, (ii) H 

and J have zero expectation (that is, P(HJ) is zero) and (iii) H and J 
are maximally negatively correlated. 

Given this characterization of a general causal system, is it defensible 

to use correlation as a measure of ff's causal influence on Kl First, 

suppose that H is a sufficient cause of K and that H and / are 

uncorrelated.5 Then P(K/H) 
- 

P(K/H) equals 1-[1 
- 

rP(J)] so that the 

correlation between H and K must be nonnegative. Furthermore, when 
r = 1, P(K/H)-P(K/H) will equal one if and only if P(J) = 0; its 

magnitude will be less than one whenever P(J)>0. It can also be 

shown that none of the other three conceptions of correlation will give 
the magnitude of one in this situation.6 Where the expectation of H and 

/ is zero, P(K/H) 
- 

P(K/H) equals 1 - rP(J/H), and its value must be 

nonnegative with its sign and magnitude depending upon the value of 

rP(J/H). The correlation must be nonnegative, but it need not equal 1. 

Finally, where H and / are maximally negatively correlated, P(K/H) 
? 

P(K/H) equals 1 
? r. Thus, when H is a sufficient cause of K, the 

correlation between H and K must be nonnegative, but in general it 

will not equal 1. When H is a probabilistic cause of K (with probability 
1), it can also be shown that the correlation must be nonnegative, but in 

general it will not equal 1. 

These results show that none of the four correlations can be used to 

determine the magnitude of H's causal influence on K when H is a 

sufficient condition for K. For it is quite intuitive and plausible to hold 
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that if H is sufficient for K, then H should be regarded as having the 

maximal causal influence on K; but none of the four conceptions of 

correlation guarantees this result. Whether the correlation equals one 

depends on the features of the other causal factor and how it is 

distributed in the population. The joint distribution and features of the 

other causes are important (background) characteristics of the causal 

system, but they confound the determination of H's causal influence on 

K. For example, if H is a sufficient cause and / is a sufficient cause, the 

correlation between H and K will always be less than 1 given that 

P(J) > 0; and the correlation can be zero. Nonetheless, given this 

conception of causation, the correlation between H and K must be 

nonnegative, and thus it could be used as a qualitative measure. 

Many social scientists and philosophers, however, would urge that 

one take 'A causes B' to mean that A is a probabilistic cause (with a 

probability of q) of B (where 0 < q < 1). So let us suppose that H is a 

probabilistic cause of K with p< 1. Where the causes H and / are 

uncorrelated, P(K/H)- P(K/H) equals p(l- rP(J)), a nonnegative 
number, but as long as rP(J)>0, it will not yield the magni 
tude p. It can also be shown that the other conceptions of cor 

relation face this difficulty as well. This result, however, partially 
vindicates the claims of such writers as Asher, Blalock, and Bentler, for 

when the causes H and J are uncorrelated, the correlation between H 

and K will be nonnegative, and hence it can provide a qualitative 
measure for A's being a cause 

of_B. 
But where the expectation of H 

and J is zero, P(K/H)-P(K/H) equals p-rP(J/H); and so the 

correlation between H and K can be positive, negative, or zero, 

depending on the value of rP(J/H). Finally, where H and J are 

maximally negatively correlated, then P(K/H) 
? 

P(K/H) 
= 

p? r; and 

so the correlation between H and K can be positive, negative, or zero, 

depending on the value of r. 

Finally, suppose, however, that we understand H to be an insufficient 

but nonredundant condition which is part of a set of conditions which is 

sufficient but not necessary for K. (Here H is an INUS cause of K. See 

J. L. Mackie, 1974.) Also, let J be an INUS cause. Then results similar 

to these for probabilistic causation can be obtained. For example, it can 

be shown that the correlation between H and K can be positive, 

negative, or zero, depending on the background features. To alter that 

case slightly, suppose again that H is not a probabilistic cause of K but 

it is a nonredundant condition which is part of a set of conditions which 
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is a probabilistic cause of K but which is not necessary for K. (Here H 

is an INUP cause of K.) Then it can be shown, for example, that the 

correlation between H and K can be positive, negative, or zero, 

depending on the background features.7 

We have noted that some writers hold the position that if A is a cause 

of B then A and B will be positively correlated, while other writers hold 

the position that if A is a cause of B then the correlation between A and 

B will determine the magnitude of A's causal influence on B. The 

results presented here show that each of these positions needs to be 

qualified, for the conception of causation being used and the back 

ground assumptions about the features of the other causes of B play 

important roles in determining the sign and the magnitude of the 

correlation between A and B. If A is a sufficient cause of B, or if A is a 

probabilistic cause of B (with probability 1), then in each situation 

considered above the correlation between A and B must be non 

negative, but in general it will not equal 1. If A is a probabilistic cause 

of B (with probability p < 1), the sign and magnitude of the correlation 

will vary depending on the kind of situation. If A and the other causal 

factor are uncorrelated, the correlation between A and B will be 

nonnegative, but in general it will not equal p. If the expectation of A 

and other causal factor is zero, or if A and the other factor are 

maximally negatively correlated, the correlation between A and B can 

be negative. We also claimed that the INUS conception of causation and 

the INUP conception of causation produce results which parallel those 

obtained for the probabilistic conception. 

4. PARTIAL CORRELATIONS, SCREENING OFF, 

AND PARTITIONING 

Many scientists and philosophers maintain that there are general criteria 

for distinguishing between those situations in which A is a cause of B and 

B is a cause of C (where B is an intervening causal variable between A 

and C) and those situations where A is a common cause of B and C. 

These criteria supposedly would allow researchers to distinguish be 

tween basically different causal systems involving three variables. We 

refer to these general criteria as kinds of "partial correlation". Here we 

explicate the relations among the conception of partial correlation used 

by P. Kendall and P. F. Lazarsfeld, the conception of partial correlation 

used by H. B. Asher, H. M. Blalock, and H. A. Simon, the conception of 
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screening off used by H. Reichenbach, the conception of partitioning 
used by P. Suppes, and finally the measures of causal influence which 

have been suggested by the advocates of path analysis and structural 

equation methods. In section 5 we offer some criticisms of these 

approaches to causal inference. 

These conceptions of partial correlations are used as tests of certain 

causal hypotheses. For example, Kendall and Lazarsfeld (1950) argue 
that if A causes B and B causes C, or if B is a common cause of A and 

C, then certain partial correlations should be zero. In the latter case, A 

is said to be a spurious cause of C (p. 185). The partial correlations must 

vanish, or otherwise the hypothesis of an intervening cause (or a 

common cause) is discontinued (pp. 153-8). (Our intent here does not 

require that we discuss in detail the other conditions which the various 

authors require for causal hypothesis testing.) 
It is helpful to introduce the following terminology and definitions. 

Let Criterion I (d) be [P(A.C/B)-P(A/B)P(C/B)] and let Criterion 
II (C?) be [P(A.C/B)-P(A/B)P(C/B)l (We assume 1>P(B)>0.) 

As we will show, criteria Q and/or Cn play central roles in each of the 

four conceptions explicated here. 

Kendall and Lazarsfeld (1950) define the partial correlation between 

A and C with B held constant as: 

(2) dAC,B 
= 

P(A.B.C)P(B)- P(A.B)P(B.C). 

Similarly, the partial correlation between A and C with B held constant 

is defined as: 

(3) dAC,B 
= 

P(A.B.C)P(B)- P(A.B)P(B.C). 

Each of these expressions can be rewritten, given that 1 > P(B) > 0, in 

the following form: 

(4) dAC,B 
= [P(A.C/B) 

- 
P(AIB)P{CIB)\P(B)f. 

(5) dAC,B 
= [P(A.CIB) 

- 
P(A/B)P(C/B)lP(B)f. 

Thus, dAC,B 
= 0 if and only if criterion d equals zero; dAC,B 

= 0 if and 

only if criterion Cn equals zero. 

Kendall and Lazarsfeld use the concepts of intervening causal vari 

This content downloaded from 130.194.20.173 on Sun, 30 Jun 2013 19:25:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


166 FREDERICK S. ELLETT, JR. AND DAVID P. ERICSON 

able and common cause. Reichenbach, on the other hand, uses the 

concepts of causal betweeness and conjunctive fork. According to 

Reichenbach (1956), an event B is causally between8 A and C only if: 

(6) P(C/(A.B)) = P(C/B). 

In such a situation, B is said to screen off A from C Given that 

P(A.B)>0, as the definition of (6) requires, (6) can be rewritten as: 

(7) P(A.C/B) = P(A/B)P(C/B). 

Thus, (6) is satisfied if and only if Q equals zero. Given that P(A.B) > 

0, dAC,B equals zero if and only if B screens off A from C It is important 
to note that Reichenbach does not require for B's being causally 
between A and C that B screen off A from C, while Kendall and 

Lazarsfeld do require that an intervening variable B must be such that 
B screens off A from C and that B screens off A from C. 

Reichenbach also uses the concept of conjunctive fork to charac 
terize the situation in which an otherwise improbable coincidence is 

explained by appeal to a common cause (Reichenbach, pp. 157-63.) In 

such a situation Reichenbach requires that the common cause B satisfy 
both of the following (and that all the correlations be positive): 

(8) P(A.CIB) = P(A/B)P(C/B). 

(9) P(A.CIB) = P(A/B)P(CIB). 

Thus, (8) is satisfied if and only if CT and dAC,B equal zero, while (9) is 

satisfied if and only if Cn and dAC,B equal zero. 

Suppes has developed the concepts of prima facie cause, spurious 
cause, direct cause, and indirect cause (1970, pp. 23-8). A is said to be 

a prima facie cause of C if A occurs before C and A is positively 
correlated to C An event B is a direct cause of C if it is a prima facie 
cause of C and there is no partition D temporally between B and C 

which screens off B from C. A prima facie cause which is not direct is 

indirect. For example, suppose A prima facie causes B and B prima 
facie causes C. Then A is an indirect cause of C only if the partition (B, 

B) screens off A from C: A is an indirect cause of C only if there exists 

(B, B) such that (8) and (9) are satisfied. Suppes' nontemporal 
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requirements for an indirect cause A of C by way of B are thus satisfied 

if and only if Kendall and Lazarsfeld's requirements for B's being an 

intervening variable between A and C are satisfied. On the other hand, 
Reichenbach's requirements (6) for causal betweeness is the same as 

(8), but he does not require (9). 

Suppes also uses the concept of a spurious cause: an event A is a 

spurious cause of C if it is a prima facie cause of C and it is screened off 

from C by a partition of events (B, B) which occur earlier than A. A 

genuine cause is a prima facie cause which is not spurious. Thus, A is a 

spurious cause of C only if there is a partition (B, B) earlier than A 

such that (8) and (9) are satisfied. Suppes' nontemporal requirements 
for A's being a spurious cause of C with respect to the partition (B, B) 
are satisfied if and only if Kendall and Lazarsfeld's requirements for B's 

being a common cause of A and C (and hence A's being a "spurious" 
cause of C) are satisfied, which in turn are satisfied if and only if 

Reichenbach's requirements for B's being a conjunctive fork (or 
common cause) of A and C are satisfied. 

Let us now consider the conception of partial correlation that is used 

by Simon and Blalock. Simon and Blalock hold that if B is an 

intervening variable between A and C, or a common cause of A and C, 
then the partial correlation between A and C, with B "held constant" 

should be zero. The partial correlation is defined as: 

(10) PAC,B 
= 

[<?>AC 
- 

*AB-*AC]/[(1 
- 

(<*>Ab)2)(1 
- 

(<*>BC)2)]1/2. 

Given that 4>AB and <?>BC are less than one. 

(11) Pac,b 
= 0 if and only if <?>AC 

= 
^>ab^bc 

We have recently derived the following results (the details of the proof 
of the relations among Q, Cn, and pAC,B 

= 0 appear in Appendix C, 
which is available upon request): 

If Ci and Cn both equal zero, then 

(12) Pac,b 
= 0. 

If Ci and Cn have different signs, then there are cases where pAc,B ^ 0 

but also cases where 

(13) Pac,b = 0. 
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We can see from (12) that when Kendall and Lazarsfeld's requirements, 
Reichenbach's conjunctive fork requirements, and Suppes' require 
ments are satisfied, then the Simon-Blalock partial correlation is also 

zero. Equation (13), however, shows that Pac,b 
= 0 does not entail that 

Ci and Cn both equal zero. 

For variables which are interval-quantitative, defenders of path 

analysis and structural equation approaches argue that there are cases 

where B is a common cause (or B is an intervening variable), but where 

Pac,b does not go to zero. They suppose that B is a common cause of A 

and C, but that A is also a direct cause of C Since B is an indirect 

cause of C by way of A, B is both a direct and an indirect cause of C. 

(See, for example, Asher, pp. 35-44; Bentler (1980); Duncan, 29-30; 
and our Appendix C.) Furthermore, they argue that the appropriate 

quantitative measure of A's causal influence on C is 

(14) (o-c/o-A)'(pAC 
- 

Pab'Pbc)I(^ 
- 

Pab). 

Here pAC is the Pearson product-moment correlation, and crA is the 

variance of A. In section 5 we consider the adequacy of this measure 

for dichotomous variables where phi correlations replace the Pearson 

product-correlations. In such a situation, the measure (14) would have 

the same sign as pAC,B> 

5. "PARTIAL CORRELATION" AS A MEASURE OF 

CAUSAL INFLUENCE 

Some writers hold the position that if B is an intervening causal variable 

between A and C, or if B is a common cause of A and of C, then a 

certain "partial correlation" will go to zero; other writers maintain that 
a certain measure will give, say, the magnitude of the degree of B's 

causal influence on C. Our major conclusion here is that whether one of 

these "partial correlations" can even provide an adequate (qualitative) 
measure of one variable's causal influence primarily depends upon 
certain background assumptions concerning the other, outside causal 

factors and upon the relations among the causal variables in the system 
itself. 

Suppose that A is a probabilistic cause of B (with probability ?) and 

that B is a probabilistic cause of C (with probability ?), where the 

outside cause V of B, outside cause W of C, and A are not causally 
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related but where the pairwise mathematical expectations among A, V 

and W are zero. Then the partial correlation Pac,b can be negative, 
and hence the structural equation measure given in equation (14) can 

be negative, even though A has indirect but no direct causal influence 
on C9 With this background assumption if A is only a common 

probabilistic cause of B and C, the partial correlation pBC,A can be 

negative, and hence the structural equation measure can be negative, 
too. Since the partial correlation is not equal to zero, it follows by 

equation (12) that d and Cn are not both zero. 

Let us change the background assumption so that A, V and W are 

causally unrelated and pairwise uncorrelated. It will be helpful to 

develop a characterization of the general causal system that will be 

considered in the remainder of this section. First, we use the non 

negative numbers a, b, c, and d, whose sum equals one, to represent 

A's direct probabilistic causal influence on B and C in the situation 

S where the causes V and W are not present and where B has 
no direct causal influence on C Using conditional probabilities, 
we let P(B.CIA.S) 

= 
b, P(B.C/A.S) 

= d. P(B.C/A.S) 
= 

a, and 

P(B.C/A.S) 
= c. If we now suppose that B does have a direct prob 

abilistic causal influence on C, where / represents this magnitude and 

equals P(CIB.?.W), then it can be shownthat P(B.C/A.V.W) 
= 

b + 
dfL P(BJCIA. V. W) 

= 
d-(l 

- 
f), P(B.C/A.V.W) 

= 
a, and 

P(B.C/A.V.W) 
= c. (We also suppose that P(B/A.V) 

= 1 and that 

P(C/A.B.W) 
= 

1). 
Given this causal system and this background assumption, the 

relevant equations for the various measures can be derived. (These 

equations appear in Appendix A, which is available upon request.) 
First, it can be shown that Blalock is correct to hold that if B is an 

intervening probabilistic causal variable between A and C, where A is 
not a direct cause of C, the partial correlation pAC,B equals zero, and 

hence the structural equation measure equals zero as well. On the other 

hand, Blalock is mistaken to claim that if A is a common probabilistic 
cause of B and C, where B is not a probabilistic cause of C, then 

Pbc,a 
= 0. For pbc,a can be positive, zero, or negative, and hence it 

cannot serve as a qualitative or a quantitative measure of B's causal 

influence on C Using equation (12), it follows that Ci and Cn need not 

both equal zero.10 

Additional difficulties arise when A is a probabilistic cause of B, B is 
a probabilistic cause of C, and A is a probabilistic cause of C - that is, 
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when A is both a direct and an indirect probabilistic cause of C Several 

writers hold the position that pBc,A can serve as an adequate measure, 
while others hold that the structural equation measure can serve as a 

measure of B's causal influence on C. But both positions are un 

justified. Suppose that A is the sole cause of B and that the effect C has 

only two causes, A and B. Suppose, also, that B is either a sufficient 

cause of C or that B is a probabilistic cause of C with probability 1. 

First, where A is a probabilistic cause of B and C but never causes B 

and C at the same time, neither the partial correlation pBc,A nor the 

structural equation measure can give the answer that B's causal 

influence on C equals 1. Second, where A is a probabilistic cause of B 

and an (independent) probabilistic cause of C, neither of these 
measures can give the result that B's causal influence on C equals l.11 

On the other hand, if. we also suppose that A is a sufficient cause of B 

and C, and that there are other causes of B and C, then the partial 
correlation pAc,B will be zero even though A is sufficient for C, and the 

structural equation measure (partialling on A) will be positive but less 

than 1 even though B is sufficient for C. 

Let us now suppose that B is a probabilistic cause of C with 

probability \ and that A is the only cause of B, while A and B are the 

only causes of C Also, assume that A is a probabilistic cause of B and 

C with probability \ in both cases, but that A never causes B and C on 

the same occasion.12 Then Pbc,a and the structural equation measure 

will be negative. If the assumption about B's causal influence on C is 

held fixed and the other parameters of the system are varied, cases can 

be generated where the measure becomes positive, or negative, or zero. 

Similar findings are obtained when one considers situations where there 

are other outside causes of B and C For example, if B is a probabilistic 
cause of C with probability \, then pBc,A and the path analysis or 

structural equation measure can be negative.1314 Given equation (12), 
it follows that Q and Cn are not both equal to zero. 

These results show that for a causal system which involves prob 
abilistic causation it is an important assumption whether the outside 

causal factors are causally unrelated and pairwise uncorrelated. For 

where the pairwise mathematical expectations of the outside causal 

factors A, V, and W are zero, and where A is only an indirect cause of 

C by way of B or where A is only a common cause of B and of C, the 

relevant partial correlation and the relevant structural equation 
measure can be negative. Furthermore, even when it is assumed that 

the outside causal factors are causally unrelated and pairwise uncor 
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related, difficulties arise. Where A is a probabilistic cause of B and C, 
but B is not a probabilistic cause of C, the relevant partial correlation 

and structural equation measure can be positive, zero, or negative. 
Where A is a probabilistic cause of B and C, and B is a probabilistic 

cause of C, the relevant partial correlation and the path analysis or 

structural equation measure can be negative. In such cases these 

expressions cannot serve as 
adequate 

measures of, say, B's causal 

influence on C Thus, the background assumptions about the outside 

causal factors and about the relations among the variables in the causal 

system itself have important bearings on whether one of the general 

"partial correlation" measures can yield an adequate result. Although 
we have developed our arguments using probabilistic causation, similar 

results can be obtained for INUS causation. 

6. SUMMARY 

Philosophers and scientists maintain that causation, correlation, and 

partial correlation are essentially related. Many argue that the essential 

relation between causation and correlation enables one to use cor 

relation as a measure of one variable's causal influence on another; 

many maintain that the essential relation between causation and partial 
correlation enables one to use partial correlation as a measure of one 

variable's causal influence on another. We have considered the claims of 

several philosophers and social scientists for causal systems with 

dichotomous variables. 

In section 2 we explicated four conceptions of correlation, and in 

section 3 we concluded that none of them provides an adequate 

quantitative measure and that whether correlation can provide an 

adequate qualitative measure depends upon certain background 

assumptions about the outside causes. In section 4 we explicated five 

conceptions of "partial correlation", and in section 5 we concluded that 
none of them provides an adequate quantitative measure and that 

whether one of them can provide an adequate qualitative measure 

primarily depends upon certain background assumptions about the 

outside causal factors and the relations among the variables in the 

system itself. 

The important conclusion is that the commonly used approaches 

(considered here) to causal hypothesis testing are in need of serious 

qualification and revision. 
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NOTES 
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1 

Salmon claims that when A is a probabilistic cause (with probability p) of B, A need not 

be positively correlated with B. In section 3, after distinguishing between a sufficient and 

a probabilistic cause, we elaborate the claim and qualify it for cases where p 
= 1. 

2 The measure of causal influence used by Asher and several others is a function of phi, the 

so-called beta coefficient (1976, pp. 36-7): 4>AB times the standard deviation of B, crB, 

divided by the standard deviation of A, aA." See H. Blalock (1964, pp. 32, 71-7) and J. 

A. Davis (1975). (See also appendices A and B, equations Al and B4. These appendices 
are available upon request.) For the dichotomous case the term is equivalent to the 

correlation of equation (c) above. 
3 Due to the rather forbidding mathematical style and the complexity of the views of I. J. 

Good (1961-2), we consider them in a separate paper. (Authors, 'On Good's Causal 

Calculus' (in preparation.) There we argue, among other things, that Good's general view 

that A is a cause of B only if A is positively correlated with B (see his definition of a 

causal chain, II, p. 45, theorems 1, 2, and axiom 5,1, p. 310) is inadequate because there 

are situations where A is a cause of B even though A is not positively correlated with B. 
4 

This use of 'probabilistic causation' needs to be distinguished from 'INUP causation'. H 

is said to be an INUP cause of K when it is not a probabilistic cause of K but is a 

nonredundant condition which is part of a set of conditions which is a probabilistic cause 

of K but which is not necessary for K. Thus, the distinction between a probabilistic cause 

and an INUP cause parallels the distinction between a sufficient condition cause and an 

INUS cause, where H is said to be an INUS cause of K if H is an insufficient but 

nonredundant condition which is part of a set of conditions which is sufficient but not 

necessary for K. We shall discuss INUS causation later on in this section. 
5 

Of course, the statement "A causes B" may well mean other things as well, things 
associated with, say, causal priority and temporality. See, for example, Mackie (1974). 
6 

When Hand J are uncorrelated, it can be shown that P(H.K)P(H.K) 

P(H.K)P(H.K) equals P(l 
- 

P)(l 
- 

rQ)p, where P(H) = P, P(J)=Q and P(K) = 

pP + rQ 
? 

prPQ. Given these results it is easy to show that none of the conceptions of 

correlation yield a plausible and an intuitive value when H is either a sufficient or a 

probabilistic cause of K. See also note 7. 
7 

For an INUS cause (or an INUP cause) it is relatively difficult to find an intuitive and 

plausible quantitative measure of H's causal influence on K. Suppose that H.X is 

sufficient for K and that the only other (sufficient) cause is J. Then, if we use the ideas set 

out earlier in this section, P(KjH.X.J) 
= 1 and P(K/(H.X).J) 

= 
0, but it also follows that 

P(K/H.X.J) 
= 0. It is rather easy to give intuitive meaning to the causal influence of 

H.X on K, but it is difficult to do so for H by itself. 
8 

Reichenbach, p. 190. Reichenbach adds other conditions to his definition of causal 

betweenness that, for example, restrict the signs of the various correlations to be positive. 
These other conditions are independent of our main concern so we have ignored them. 
9 

When the pairwise expectations among A, V, and W are zero, let P(A) 
= 

\, P( V) 
= 

to, 

P( W) 
? 

J, and let V be a probabilistic cause (f) of B and W be a probabilistic cause (2) of 

C. Then 3>AC-<I>AB-<I>BC is negative. See Ellett and Ericson (1983). 
10 

Using the ideas presented above, the first example takes a + b - 0, from which it follows 

?ac 
= 

3>ab*<I>bo The second example takes /=0, from which follows that 4>BC 

&AB&AC equals the sign of b - (a + b)(b + d). When b = (a + b)(b + d), then Q and C? 
are both zero. 
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1 ? The first example takes P(A) 
= 

i P( V) 
= 

P( W) 
= 

0, / 
= 

1, and b = c = 0. The second 

example takes P(A) = 
?, P( V) = P( W) = 0, / 

= 1, and b = (a + &)(& + d) > 0. 
12 The example takes P(A) 

= 
l P(V) 

= 
P(W) 

= 
0, / 

= 
i, a = d = 

\, and ?> = c = 0. 
13 The example takes P(A) 

= 
?, P(V) 

= 
P(W) 

= 
Jo, f 

= 
\, a = d = 

2%, and b = c = 
A. 

14 In appendix D, available upon request, a brief critical discussion of the relevant 

measure used by log-linear models of analysis is given. 
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