![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]() ![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 7 Регистрация: 2.07.2010 Пользователь №: 22590 ![]() |
Уважаемые участники форума, добрый день!
-- Краткая версия вопроса. Работа in vitro на клеточной линии, результаты теста снимаются спектрофотометрически в лунках планшета, каждое измерение тройное (3 лунки на одну концентрацию вещества). Можно ли применять параметрическую статистику для описания результатов, и проверки гипотез? Противоречие в том, что теоретически распределение должно быть нормальным и можно пользоваться параметрической статистикой (я склонен к ней); но практически в каждой группе всего три измерения и мне рекомендуют использовать непараметрику. -- Развернутая версия вопроса. Я зарегистрировался здесь, потому что очень важные детали для себя нашел в обсуждении темы: http://forum.disser.ru/index.php?showtopic...%EE%F7%ED%FB%E5 Несмотря на то, что я в аспирантуре по биологической тематике, моя "математическая" проблема очень близка. В теме обсуждается то, когда стоит применять параметрическую, а когда непараметрическую статистику. У меня с моими коллегами и руководителями нет единого мнения по данному вопросу, поэтому надеюсь на помощь профессионалов. Сразу предупреждаю, я создаю длинный пост не для того, чтобы всех утомить, а так как, чтобы дать квалифицированный ответ могут понадобиться детали. Вот их я и привожу. Если детали не интересуют, то кратко вопрос я уже изложил. Итак, задача. Я работаю с клеточной линией фибробластов легкого эмбриона человека, культура гомогенна, сохраняет свойства и фенотип при пересеве порядка 40-50 пассажей. Для экспериментов высеваю по 10 000 клеток в лунку 96-луночного планшета. Исследуется влияние 2 веществ в разных концентрациях на жизнеспособность клеток при помощи МТТ теста. Суть его в том, что живые клетки способны восстанавливать соединение МТТ, что приводит к образованию в клетках окрашенных кристаллов. После растворения кристаллов оптическая плотность раствора позволяет судить об уровне жизнеспособности клеток в культуре. (Жизнеспособность здесь - интегральный параметр, позволяющий оценить скорость роста культуры, гибель клеток в ней, если таковая присутствует, а также уровень метаболической активности). Каждая концентрация тестируется в трех лунках 96-луночного планшета, и между этими лунками сходимость высокая. В результате получаются значения ОП, к примеру 0,837 0,859 0,793 в контроле и 0,435 0,482 0,455 в опыте, которые нужно сравнить. Отступление по поводу статистического анализа МТТ теста в статьях. В литературе я встречал анализ результатов этого теста как с помощью параметрической статистики, так и непараметрической. Статистическую обработку результатов проводят как при помощи t-критерия Стьюдента, так и с использованием U-критерия Уилкоксона-Манна-Уитни. Если необходимо сравнивать все группы между собой, в случае методов параметрической статистики используют дисперсионный анализ или вместе с t-тестом применяют поправку Бонферрони; в случае методов непараметрической статистики применяют критерий Краскела-Уоллиса. Расхождение в подходах, видимо, связано с тем, что в соответствии с теоретическими предпосылками распределения значений оптического поглощения в исследуемых группах должны быть нормальными, однако в силу малых выборок (обычно 3 лунки в одном планшете) это не доказуемо . Для получения более надежных данных исследования повторяют, но в повторяемость результатов для МТТ теста признается низкой. Мало того, некоторые работы указывают, что у них распределение не было нормальным, что они проверяли по критерию Колмогорова-Смирнова. Но, конечно, как они это делали - не указано. Если они брали 3 измерения, то очевидно, никакой нормальности там быть не могло. В экспериментах на разных планшетах повторяемость не идеальна. Внутри одного планшета - хорошая. (как указано в литературе, различия больше всего обусловлены неравномерным посевом клеток). Доверительные интервалы для измерений чаще всего в пределах 5% от абсолютной величины оптической плотности, соответственно я считаю выборку репрезентативной (высокая гомогенность), и считаю, что повтора достаточно одного. Результаты по повтору должны давать близкие значения, но их, на мой взгляд, не следует сливать в одну группу с первичными. (у них отличаются и среднее значение, и дисперсия, что не удивительно). В результатах собираюсь приводить только расчет статистических параметров только для одного из экспериментов. Сейчас я рассчитываю среднее значение, стандартное отклонение и доверительный интервал в MS Excel функциями "СРЗНАЧ", "СТАНДОТКЛОН", и "ДОВЕРИТ" для отображения на графиках. Для проверки гипотез о достоверности различий между группами я собираюсь делать так. Подключив пакет "статистика" в Excel воспользоваться анализом данных "Двухвыборочный t-тест с одинаковыми дисперсиями", затем при значении t-статистики больше t критического двустороннего, считать, что есть достоверные различия (при уровне статистической значимости 0,05). В противном случае, так не считать; различия, если они просматриваются, считать не достоверными. Поправку Бонферрони я применять не собираюсь, у меня всего 2 вещества в 6 концентрациях, сравнивать буду результаты контроля и концентраций, при которых заметны различия. По большому счету интересно лишь парное сравнение с минимальной действующей концентрацией. Мне же говорят, что нужно пользоваться непараметрической статистикой, так как образцов меньше 30. Плюс к этому с меня просят минимум 2 повтора (итого 9 измерений), и если я все верно понял, то слить группы измерений в разных планшетах. Возможно мне следует сделать 30 одинаковых контролей и проверить распределение на нормальность? Или нужно 30 опытных образцов? Позволит ли это применять параметрическую статистику? Главный вопрос - кто прав в этом споре? Каким критерием правильнее всего пользоваться? Есть ли ссылки на соответствующую литературу, где содержался бы разбор такого случая? Я разбираюсь с этим уже 3 дня и самое релевантное, что я нашел - давнее обсуждение здесь на форуме. Очень прошу помочь! Хочется понять, как же делать правильно и почему. С уважением, Сергей |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 1325 Регистрация: 27.11.2007 Пользователь №: 4573 ![]() |
Поскольку есть конкретные вопросы, то и анализ может быть построен таким образом, чтобы последовательно на них ответить.
Есть одна количественная величина, и нужно узнать какие факторы на нее влияют. Но чтобы, например, ответить на вопрос а), нужно определиться с повторами (номер теста). Если данные повтора участвуют в анализе, то нужно сравнить 6 значений контроля с 6 значениями каждой конкретной концентрацией (6 различных концентраций). Но в этом вопросе ничего не сказано о наличии или отсутствии фактора. Если это не важно, данных будет 12, а не 6. Т.к. исследуемых веществ два, то можно использовать GLM с двумя факторами. Концентрации предварительно обозначить как уровни фактора ( 0 -6). После чего, поскольку сравнения интересуют только с контролем, использовать критерий Даннетта. comp conc {1} - 1,0000 1 1 0 2 1 1 0,815248 3 1 2 0,018716 4 1 3 0,323120 5 1 4 0,018057 6 1 5 0,000286 7 1 6 0,000008 8 2 0 1,000000 9 2 1 0,933008 10 2 2 0,628357 11 2 3 0,193773 12 2 4 0,000009 13 2 5 0,000008 14 2 6 0,000008 А чтобы ответить на вопрос б) посмотрите на график или используйте другой критерий post-hoc, чтобы доказать, что вещества 1 и 2 различаются по своему воздействию в концентрациях 5 и 6 (0,04 и 0,08). На последний вопрос можно ответить, добавив еще один фактор. На рисунке посмотрите, какие сравнения вас интересуют и найдите в таблице соответствующие значения желанного ?р?. Из своего опыта работы со спектрофотометрическими методиками могу добавить, что повторы (номер опыта у Sergey.Pustylnikov) или параллели (3 лунки) для одного и того же объекта (ткани одного экспериментального животного) служат лишь для получения более точного значения экстинции. В этом эксперименте 6 измерений одного и того же объекта сравнивают с 6-ю измерениями другого объекта. А объектов по одному в каждой группе? В любом случае лунки, как фактор с уровнями 1, 2 и 3 статистически не значимы по данным дисперсионного анализа и можно ограничиться вышеприведенными сравнениями |
|
![]() |
![]() |
![]() ![]() |