Форум врачей-аспирантов

Здравствуйте, гость ( Вход | Регистрация )

> Помогите, плиzzz!
Rrostis
сообщение 5.01.2011 - 18:46
Сообщение #1





Группа: Пользователи
Сообщений: 3
Регистрация: 5.01.2011
Пользователь №: 23192



Уважаемые коллеги, помогите, пожалуйста, разобраться какой критерий использовать. У меня есть несколько групп данных. Есть контроль (n=10), и еще несколько групп, в 5 из них n=10, в четырех n=6. Все группы независимые, и все группы необходимо сравнить с контролем. просмотрев большой массив литературы, прихожу к выводу что нужно использовать U критерий Манна-Уитни. Встречаются достоверные различия. Пробовал Краскела_Уоллиса, с поправкой на Данна (пользуюсь Graphpad prizm) уже различий не наблюдаю. Не могли бы вы подсказать, что все-таки мне правильней использовать в данном случае. И еще смотрел, что нужно проводить доп. Исследования по определению нормальности расрпеделения, но если верить книгам то при малых выборках все равно используется непараметрика и тогда есть ли смысл в каких-то предварительных анализах? Заранее благодарю за помощь. Новичок в деле статистики.

Сообщение отредактировал Rrostis - 6.01.2011 - 17:29
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
 
Открыть тему
Ответов
плав
сообщение 7.01.2011 - 10:25
Сообщение #2





Группа: Пользователи
Сообщений: 1013
Регистрация: 4.10.2006
Пользователь №: 1933



Цитата(Rrostis @ 5.01.2011 - 18:46) *
Уважаемые коллеги, помогите, пожалуйста, разобраться какой критерий использовать. У меня есть несколько групп данных. Есть контроль (n=10), и еще несколько групп, в 5 из них n=10, в четырех n=6. Все группы независимые, и все группы необходимо сравнить с контролем. просмотрев большой массив литературы, прихожу к выводу что нужно использовать U критерий Манна-Уитни. Встречаются достоверные различия. Пробовал Краскела_Уоллиса, с поправкой на Данна (пользуюсь Graphpad prizm) уже различий не наблюдаю. Не могли бы вы подсказать, что все-таки мне правильней использовать в данном случае. И еще смотрел, что нужно проводить доп. Исследования по определению нормальности расрпеделения, но если верить книгам то при малых выборках все равно используется непараметрика и тогда есть ли смысл в каких-то предварительных анализах? Заранее благодарю за помощь. Новичок в деле статистики.

А тест Мэнна-Уитни тут не пойдет, несколько групп, значит надо использовать Краскела-Уоллеса. Нет различий, значит нет различий. Это, возможно, плата за желание использовать непараметрику и незнание собственных данных (как в реальности они распределены). Если бы Вы почитали форум, то знали бы, что именно на малых выборках потеря мощности из-за выбора непараметрики становится важным фактором, т.е. утверждение, что при малых выборках надо использовать непараметрику просто ошибочно.
А вообще-то то, что Вы описываете очень напоминает простой дисперсионный анализ, который нужно смотреть вкупе со спланированными контрастами (тест Dunnett)
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
Игорь
сообщение 7.01.2011 - 11:56
Сообщение #3





Группа: Пользователи
Сообщений: 1141
Регистрация: 10.04.2007
Пользователь №: 4040



Цитата(плав @ 7.01.2011 - 10:25) *
А вообще-то то, что Вы описываете очень напоминает простой дисперсионный анализ, который нужно смотреть вкупе со спланированными контрастами (тест Dunnett)

Вот такие соображения (прошу прощения - немного провокационные).

Автор имеет одну контрольную группу, а также несколько групп (выборок), соответствующих различным методам воздействия. Пусть автор применяет для обработки всего массива данных дисперсионный анализ или аналогичный метод. Статистика критерия при этом и p-значения или p-значения зависят от данных всех выборок.

Теперь предположим, что были сделаны не все эксперименты, а часть из них. При обработке будет получена другая статистика критерия и другие p-значения.

Возникает вопрос, каким образом отсутствующие эксперименты могут повлиять на результат и не нужно ли здесь ограничиться попарным сравнением экспериментальных выборок с контролем?


Сообщение отредактировал Игорь - 7.01.2011 - 12:02


Signature
Ebsignasnan prei wissant Deiws ainat! As gijwans! Sta ast stas arwis!
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
плав
сообщение 7.01.2011 - 20:18
Сообщение #4





Группа: Пользователи
Сообщений: 1013
Регистрация: 4.10.2006
Пользователь №: 1933



Цитата(Игорь @ 7.01.2011 - 11:56) *
Вот такие соображения (прошу прощения - немного провокационные).

Автор имеет одну контрольную группу, а также несколько групп (выборок), соответствующих различным методам воздействия. Пусть автор применяет для обработки всего массива данных дисперсионный анализ или аналогичный метод. Статистика критерия при этом и p-значения или p-значения зависят от данных всех выборок.

Теперь предположим, что были сделаны не все эксперименты, а часть из них. При обработке будет получена другая статистика критерия и другие p-значения.

Возникает вопрос, каким образом отсутствующие эксперименты могут повлиять на результат и не нужно ли здесь ограничиться попарным сравнением экспериментальных выборок с контролем?

Так вся статистика посвящена спланированным экспериментам! Если сделаны "не все эксперименты" это означает серьезные отклонения от протокола, их надо объяснять, вносить изменения в протокол и т.д. (по крайней мере так делается в нормальной науке). Соответственно, так легко "не сделать" все эксперименты не получится.
Какова альтернатива? Если неизвестно, какие эксперименты "получатся", а какие нет, то можно отказаться от оценки суммарной дисперсии и пойти на оценку дисперсии по группам и, соответственно, попарным сравнениям. Поскольку теперь омнибусный тест "а есть ли хоть одна группа отличная от остальных" не используется, то аналитик влетает в проблему множественных сравнений или завышения вероятности ошибки I типа. Единственным методом, который при коррекции уровня ошибки I типа не использует полную экспериментальную дисперсию (experiment-wise error rate) является, насколько мне известно, метод Бонферрони. Иными словами, аналитик просто делит предельный экспериментальный уровень ошибки I типа на возможное количество сравнений. Таким образом он резко повышает вероятность ошибки II типа, но тут уж ничего не поделаешь.
Теперь вернемся к исходной задаче. Группы и так маленькие. Отказ от определения полной экспериментальной дисперсии приведет к потере мощности исследования, а использование попарного сравнения еще больше "вздует" ошибку II типа. Соответственно в данном случае попарные сравнения окажутся наихудшим вариантом с точки зрения получения достоверных результатов.
Если же группы очень большие, то тогда некоторая потеря мощности от использования попарного сравнения (внутри/попарная дисперсия + поправка Бонферрони) не приведет к значительному увеличению ошибки II типа и такой подход вполне возможен. Собственно, всякие методы data mining'а и базируются на том, что при очень больших выборках можно отказаться от некоторых теоретических сложностей спланированных экспериментов... но при очень больших...
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 

Сообщений в этой теме


Добавить ответ в эту темуОткрыть тему