![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 49 Регистрация: 7.04.2010 Пользователь №: 15366 ![]() |
Добрый день! Прошу помощи в анализе данных. Мы имеем 100 человека больных с метастазами в печени, лечили их хирургическим путем и наблюдали их в течение 6 лет и диагностировали у них новые метастазы и рецидивы. Суть работы заключается в том, чтобы доказать, что реже всего на 1 и 2 годах наблюдения новые МТС возникают у пациентов с количеством МТС 2-3 (у нас были варианты количества от 2-6), и размер их должен быть 2-3 см. То есть кривая частоты прогресии имеет форму колокола обращенного вершиной вниз - 1 см - часто возникает прогрессия, больше 3 - тоже. Наиболее оптимальным является размер очага для хирургического лечения 2-3 см. Вопрос как представить эти данные и их анализировать: средний и суммарный размер не учитывают разницы: то ли у больного было 3 очага по 2 см то ли 1 и 6 см что совсем не благоприятно. Если брать каждый метастаз как отдельную переменную то у разных людей будет разное количество переменных (от 2 до 6штук), но этот вариант наиболее приемлем в соответствии с поставленной задачей. Теперь вопрос каким методом воспользоваться, чтобы доказать что идеальным для лечения является количество МТС 2-3 при размере 2-3см. Еще момент : размер МТС имеет мини манимальное округление до 0, 5 разброс от 1 до 6 см (т.е. всего 12 значений). Может быть их можно как-то объединить и логически видоизменить? Я уже просто голову сломала. Очень нужен свежий взгляд. Спасибо
|
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 1325 Регистрация: 27.11.2007 Пользователь №: 4573 ![]() |
Что то, все же, настораживает в этом подходе. Как трактовать отрицательное значение коэффициента при второй категории размера. И отношение шансов и стандартизированное отношение шансов для второй категории меньше единицы. Т.е. чем больше таких размеров, тем меньше вероятность рецидива, т.е лучше для прогноза? Должна же быть клиническая логика любого моделирования.
|
|
![]() |
![]() |
![]()
Сообщение
#3
|
|
![]() Группа: Пользователи Сообщений: 1091 Регистрация: 26.08.2010 Пользователь №: 22699 ![]() |
Что то, все же, настораживает в этом подходе. Как трактовать отрицательное значение коэффициента при второй категории размера. И отношение шансов и стандартизированное отношение шансов для второй категории меньше единицы. Т.е. чем больше таких размеров, тем меньше вероятность рецидива, т.е лучше для прогноза? Должна же быть клиническая логика любого моделирования. собственно вот это неплохо иллюстрирует "отрицательность" Код > mosaicplot(table(result[,2],data$срок)) > mosaicplot(table(result[,1],data$срок)) ![]() |
|
![]() |
![]() |
![]() ![]() |