![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 49 Регистрация: 7.04.2010 Пользователь №: 15366 ![]() |
Добрый день! Помогите разобраться. Имеются данные для анализа выживаемости:
время (месяцы), событие (рецидив или нет), независимые ковариаты 3 переменных - 1. дифференцировка - бинарная (низкодифференированныя и умеренно+высокодифференцированная) 2. уровень РЭА до операции 3. количество метастазов Они остались в результате применения регрессионного анализа Кокса в СПСС. Т.е. я понимаю что можно сделать выводы, что такие то факторы значимо влияют на продолжительность безрецидивной жизни, какой из них более значим. Могу ли я применить это как-то в плане прогнозирования продолжительности безрецидивной жизни? (как например в логистической регрессии). Это пожалуй основной вопрос. Цель исследования не только выявить исходные факторы, влияющие на продолжительность безрецидивного течения, но и иметь возможность прогнозировать это время для любого конкретного больного. Привожу формулу h(t)=h0(t) *exp(b1z1+...+bmzm) В СПСС есть функция сохранить: функция риска - это h(t)? Для 2 больных проживших 1 мес у одного 2,1 а другого 0,6. О чем это говорит? Максимум 4,3 минимум 0,2 - это много или мало. Как мне найти h0(t) - базовая функция риска при нулевых ковариатах (нулевые это равные 0?) и нужно ли это? С экспоненциальной регрессией более понятно, но у меня время жизни распределено не экспоненциально. В Attestat сделала подгонку распределения: получилось логлогистическое. Что мне с ним делать?! |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
![]() Группа: Пользователи Сообщений: 1091 Регистрация: 26.08.2010 Пользователь №: 22699 ![]() |
У Кокса
plot(survfit(model)) - shows the survivorship curve for the average individual with the covariates held at their average values Что касается прогноза --- Кокс только в пределах данных эксперимента позволяет проводить оценки. Если много пациентов ушли за пределы эксперимента, то на вопрос ?What proportion of patients will die in 2 years based on data from an experiment that ran for just 4 months?? может ответить только параметрическая модель. А что как прогноз подходит? Можно среднее время дожития считать, у экспоненциальной модели оно обратно пропорционально риску. В predict() считать время как predict(model,type="response") на выходе время жизни (только данные нового случая подставить) для survreg. exp(coef) у Кокс относительно средних группы показывает "во сколько раз дольше-меньше". ![]() |
|
![]() |
![]() |
![]() ![]() |