![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 8 Регистрация: 21.02.2013 Пользователь №: 24650 ![]() |
Доброго времени суток!
Помогите пожалуйста разобраться со следующим моментом. Есть две выборки, неравномощные и нормально распределенные. Необходимо сравнить дисперсии этих выборок. Как мне известно, для такого сравнения подходит критерий Фишера. Но вот есть еще критерий Снедекора-Фишера. Какой лучше критерий использовать и в какой программе это можно реализовать или надо считать в ручную? А если выборки не являются нормально распределенными, тогда как поступить в этом случае? |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 1219 Регистрация: 13.01.2008 Из: Челябинск Пользователь №: 4704 ![]() |
Доброго времени суток! Помогите пожалуйста разобраться со следующим моментом. Есть две выборки, неравномощные и нормально распределенные. Необходимо сравнить дисперсии этих выборок. Как мне известно, для такого сравнения подходит критерий Фишера. Но вот есть еще критерий Снедекора-Фишера. Какой лучше критерий использовать и в какой программе это можно реализовать или надо считать в ручную? А если выборки не являются нормально распределенными, тогда как поступить в этом случае? Обычно критерий Фишера и Снедекора-Фишера это одно и то же, хотя первое название неправильное и вносит путаницу, т.к. может путаться с точным методом Фишера для анализа таблиц сопряжённости. Хотя идею сравнения дисперсий предложил Фишер, но собственно F-распределение и F-критерий разработал его ученик - Джордж Снедекор и назвал их "F" в честь Фишера. Поэтому F-распредление Снедекора-Фишера иногда называют рааспределением только Снедекора, но никак не только Фишера ( http://en.wikipedia.org/wiki/Snedecor%27s_F_distribution , http://en.wikipedia.org/wiki/F-test) Если нормальность распредления в генеральной совокупности не соблюдается, то изменчивость признака можно сравнить с помощью других мер сравнения размаха: робастным F-критерием, ранговыми критериями, ресэмплинг-техниками. Посмотрите критерии с примерами расчёта в Кобзарь А. И. Прикладная математическая статистика. Для инженеров и научных работников (со стр. 412) и далее. Программ много, можно во всех, но не всё. Руками по примерам будет даже проще (скорее всего) и очень полезно первые раза 2-3 (безусловно). Сообщение отредактировал nokh - 10.10.2013 - 21:07 |
|
![]() |
![]() |
![]()
Сообщение
#3
|
|
Группа: Пользователи Сообщений: 8 Регистрация: 21.02.2013 Пользователь №: 24650 ![]() |
Обычно критерий Фишера и Снедекора-Фишера это одно и то же, хотя первое название неправильное и вносит путаницу, т.к. может путаться с точным методом Фишера для анализа таблиц сопряжённости. Хотя идею сравнения дисперсий предложил Фишер, но собственно F-распределение и F-критерий разработал его ученик - Джордж Снедекор и назвал их "F" в честь Фишера. Поэтому F-распредление Снедекора-Фишера иногда называют рааспределением только Снедекора, но никак не только Фишера ( http://en.wikipedia.org/wiki/Snedecor%27s_F_distribution , http://en.wikipedia.org/wiki/F-test) Если нормальность распредления в генеральной совокупности не соблюдается, то изменчивость признака можно сравнить с помощью других мер сравнения размаха: робастным F-критерием, ранговыми критериями, ресэмплинг-техниками. Посмотрите критерии с примерами расчёта в Кобзарь А. И. Прикладная математическая статистика. Для инженеров и научных работников (со стр. 412) и далее. Программ много, можно во всех, но не всё. Руками по примерам будет даже проще (скорее всего) и очень полезно первые раза 2-3 (безусловно). Спасибо за ответ! Книга "Прикладная математическая статистика" Кобзаря очень ценная, она мне очень помогла. Еще так много критериев в одной книге не встречала. Одноко во всем этом многообразии можно запутаться, но если читать внимательно, то все будет хорошо)) Brown-Forsythe & Levene Tests for Homogeneity of Variances Оба теста реализованы в программе Statistica Спасибо за ответ! |
|
![]() |
![]() |
![]() ![]() |