![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 5 Регистрация: 26.03.2014 Пользователь №: 26244 ![]() |
Здравствуйте!
Буду благодарен за рекомендации по использованию R и SAS в анализе данных клинических исследований (хотя бы минимальные, общего характера, с учётом того, что пользователю, привыкшему к Graphical user interface, нужно въехать в специфику рассматриваемо ПО ![]() |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 5 Регистрация: 26.03.2014 Пользователь №: 26244 ![]() |
Вы забыли описать что за медицинские задачи предполагается решать. Спасибо за ссылки! В том-то и дело, что не хотелось акцентировать внимание на каких-то частных задачах, меня интересует универсальность указанного выше ПО. Навскидку - стандартный набор инструментов (описательная статистика, таблицы сопряжённости, дисперсионный анализ, непараметрика и т.п.), многомерные методы, биоэквивалентность и фармакокинетическое моделирование (+графические возможности в плане построения кинетических кривых). И всё-таки: что лучше - R или SAS? (по совокупности критериев - универсальность, удобство работы и т.д.) |
|
![]() |
![]() |
![]()
Сообщение
#3
|
|
Группа: Пользователи Сообщений: 381 Регистрация: 18.08.2008 Из: Москва Златоглавая Пользователь №: 5224 ![]() |
И всё-таки: что лучше - R или SAS? (по совокупности критериев - универсальность, удобство работы и т.д.) SAS - всеми признанный пакет для статистических расчетов, а R - пакет программ, написанный студентами в перерыве между лекциями.![]() Просто включи мозги => http://doctorstat.narod.ru
|
|
![]() |
![]() |
![]()
Сообщение
#4
|
|
Группа: Пользователи Сообщений: 116 Регистрация: 20.02.2011 Пользователь №: 23251 ![]() |
1) Первая и, наверное, самая главная причина, почему люди предпочитают SAS - это история, традиция и привычка. SAS работает начиная с 1970 года, R - значительно моложе. За эти годы в фармацевтических компаниях и банках было написано столько кода, что придется потратить десятилетия, чтобы переписать это на R. Никто этого делать не будет, поэтому все "серьезные" организации и конторы с историей работали и будут работать в SAS. 2) Качество литературы все таки на голову выше в SAS - про R в последние годы вышло довольно много хороших книг, однако в целом, еще не дотягивает до SAS - если в R отдельные книги хороши, то в SAS каждая книга - шедевр. 3) Функционал R поразительно возрастает с помощью пакетов, однако есть обалденные пакеты, а есть - откровенная лажа, поэтому Вам необходимо искать и хорошо искать, чтобы быть уверенным в корректном анализе. За качество функционала SAS отвечает SAS Institute - монстр с многолетней историей. 4) Для анализа данных за последние 15 лет, которые могут занимать несколько десятков гигабайт, в SAS можно обработать на машине с 4 Гб памяти, R - все данные хранит в ОЗУ, поэтому здесь могут возникнуть проблемы. И хотя есть обходные пути, которые позволяют обработать данные в R, которые занимают больше памяти, чем имеется на машине, над этим приходится шаманить, а в SAS все работает out-of-the-box. 5) Если в R что-то полетит или однажды он сойдет с ума у Вас на компе, разруливать эту ситуацию и форматировать жесткий диск будете Вы сами, а в SAS Вам всегда окажут техническую помощь в любое время суток SAS Institute. 6) SAS имеет несколько корявый синтаксис, но это дело привычки - за 30 лет пользования Вы этого не заметите. 7) Вы в курсе про стоимость SAS? Не сочтите за рекламу SAS - сам пользуюсь и буду сидеть на R ![]() Сообщение отредактировал TheThing - 27.03.2014 - 10:44 |
|
![]() |
![]() |
![]()
Сообщение
#5
|
|
![]() Группа: Пользователи Сообщений: 1091 Регистрация: 26.08.2010 Пользователь №: 22699 ![]() |
1) Первая и, наверное, самая главная причина, почему люди предпочитают SAS - это история, традиция и привычка. SAS работает начиная с 1970 года, R - значительно моложе. За эти годы в фармацевтических компаниях и банках было написано столько кода, что придется потратить десятилетия, чтобы переписать это на R. Никто этого делать не будет, поэтому все "серьезные" организации и конторы с историей работали и будут работать в SAS. 2) Качество литературы все таки на голову выше в SAS - про R в последние годы вышло довольно много хороших книг, однако в целом, еще не дотягивает до SAS - если в R отдельные книги хороши, то в SAS каждая книга - шедевр. 3) Функционал R поразительно возрастает с помощью пакетов, однако есть обалденные пакеты, а есть - откровенная лажа, поэтому Вам необходимо искать и хорошо искать, чтобы быть уверенным в корректном анализе. За качество функционала SAS отвечает SAS Institute - монстр с многолетней историей. 4) Для анализа данных за последние 15 лет, которые могут занимать несколько десятков гигабайт, в SAS можно обработать на машине с 4 Гб памяти, R - все данные хранит в ОЗУ, поэтому здесь могут возникнуть проблемы. И хотя есть обходные пути, которые позволяют обработать данные в R, которые занимают больше памяти, чем имеется на машине, над этим приходится шаманить, а в SAS все работает out-of-the-box. 5) Если в R что-то полетит или однажды он сойдет с ума у Вас на компе, разруливать эту ситуацию и форматировать жесткий диск будете Вы сами, а в SAS Вам всегда окажут техническую помощь в любое время суток SAS Institute. 6) SAS имеет несколько корявый синтаксис, но это дело привычки - за 30 лет пользования Вы этого не заметите. 7) Вы в курсе про стоимость SAS? Не сочтите за рекламу SAS - сам пользуюсь и буду сидеть на R ![]() "Дед Мороз существует!" ТМ ![]() |
|
![]() |
![]() |
![]()
Сообщение
#6
|
|
Группа: Пользователи Сообщений: 116 Регистрация: 20.02.2011 Пользователь №: 23251 ![]() |
"Дед Мороз существует!" ТМ Вы не согласны с моими аргументами? Если нет, объясните, пжста, почему ![]() А вообще, в русскоязычном комьюнити подобные темы размножаются на многие страницы - это такие же холивары, как какой язык лучше С++ или C#? И пока наши умельцы будут спорить, что лучше R или SAS, профи на западе выучат R+SAS+mysql+немного Perl'a + разбавят Python - это стандартная солянка data scientist за бугром. А если человеку этого всего не нужно в ежедневной работе, то достаточно будет и Экселя. |
|
![]() |
![]() |
![]()
Сообщение
#7
|
|
![]() Группа: Пользователи Сообщений: 1091 Регистрация: 26.08.2010 Пользователь №: 22699 ![]() |
Вы не согласны с моими аргументами? Если нет, объясните, пжста, почему ![]() А вообще, в русскоязычном комьюнити подобные темы размножаются на многие страницы - это такие же холивары, как какой язык лучше С++ или C#? И пока наши умельцы будут спорить, что лучше R или SAS, профи на западе выучат R+SAS+mysql+немного Perl'a + разбавят Python - это стандартная солянка data scientist за бугром. А если человеку этого всего не нужно в ежедневной работе, то достаточно будет и Экселя. 0. Имея в руках фактически Схему вспоминать о Питоне и прочих перлах просто неприлично (а регексы и так доступны в самом R) ![]() 1. "S is one of several statistical computing languages that were designed at Bell Laboratories, and first took form between 1975?1976." © ![]() 2. Что касается размера обрабатываемых данных. а) В R есть возможность не только отправить на обработку данные _любого_ размера, но и дождаться результата данной обработки --- это реализация SPMD. б) вариант "просто запустить на обработку" тоже доступен -- ff: memory-efficient storage of large data on disk and fast access functions и куча аналогов (в этом случае даже синтаксис несколько усложниться, хотя SAS догнать не удастся ![]() 3. Что касается вообще идеи проприетарного неизвестного полностью в подробностях своей реализации алгоритма анализа в научной работе... Ну у меня нет слов ![]() ![]() 4. Я _очень_ быстро читаю, но дочитать всю литературу о использовании R я просто физически не в состоянии ![]() ![]() |
|
![]() |
![]() |
![]() ![]() |