Форум врачей-аспирантов

Здравствуйте, гость ( Вход | Регистрация )

> таблицы сопряженности vs логистическая регрессия
monday
сообщение 21.11.2015 - 10:12
Сообщение #1





Группа: Пользователи
Сообщений: 6
Регистрация: 27.11.2014
Пользователь №: 26841



Конечная цель - создание модели для прогнозирования бинарного исхода. В публикациях на подобную тему сначала проводили моновариантную логистическую регрессию и на ее основе отбирали показатели для дальнейшего включения в мультивариантную регрессию. На этом форуме в нескольких темах говорилось, что анализ таблиц сопряженности эквивалентен моновариантной логистической регрессии. Действительно ли они абсолютно взаимозаменяемы? И будет ли разница в описании результатов?
1) Для логистической регрессии привести значение регрессионного коэффициента, уровень значимости, ОШ с ДИ и сделать вывод, что данный показатель является/не является значимым предиктором исхода.
2) Для таблиц сопряженности привести значение критерия и количество степеней свободы, уровень значимости и сделать вывод, что группы с изучаемым исходом/без него (не) различаются по данному признаку. Или будет правильнее оценить ассоциацию исхода с признаком? Если я правильно понимаю, если группы значимо различаются, то и признак с исходом всегда будут ассоциированы? Так ли это, и если да, то какой вариант описания предпочтительнее исходя из цели работы?
3) Если изучаемый признак категориальный с количеством категорий более двух, в логистической регрессии создаются dummy переменные и затем рассчитывается ОШ по отношению к опорной категории. Нужно ли их приводить? И правомерно ли посчитать такие же ОШ, используя таблицы сопряженности?

На всякий случай уточню, что мне хочется понять именно явлюятся ли эти два подхода взаимозаменяемыми (или может я в корне ошибаюсь), а не какой из них проще и менее громоздкий. Спасибо!
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
 
Открыть тему
Ответов
monday
сообщение 21.11.2015 - 23:36
Сообщение #2





Группа: Пользователи
Сообщений: 6
Регистрация: 27.11.2014
Пользователь №: 26841



Большое спасибо за развернутое объяснение и за советы. Буду читать и разбираться. Но дело в том, что эту работу я не начинаю с нуля, а по этим данным уже работал старший колега. И мне нужно либо согласиться с тем, что делал он, либо обоснованно объяснить, в чем не прав. Т.е. не только, что есть метод лучше, а что так вообще делать неверно потому-то и потому-то..Так вот, переменные отбирались именно с помощью ЛР, причем независимо от типа данных: количественные, порядковые, дихотомические и номинальные с большим числом категорий (для каждой категории приведено ОШ вида "2 vs 1, 3 vs 1 и т.д.", но выше Игорь сказал что это неверно). Некоторые количественные переменные разбиты на несколько категорий и включались в ЛР уже в таком виде. Самым сложным для меня является вопрос насчет категориальных переменных в ЛР - ссылка в моем посте выше говорит, что их использовать можно. Так ли это? И какова интерпретация?
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
DoctorStat
сообщение 22.11.2015 - 21:57
Сообщение #3





Группа: Пользователи
Сообщений: 381
Регистрация: 18.08.2008
Из: Москва Златоглавая
Пользователь №: 5224



Цитата(monday @ 21.11.2015 - 23:36) *
Так вот, переменные отбирались именно с помощью ЛР, причем независимо от типа данных: количественные, порядковые, дихотомические и номинальные с большим числом категорий (для каждой категории приведено ОШ вида "2 vs 1, 3 vs 1 и т.д.", но выше Игорь сказал что это неверно).
У меня вопрос (ранее поднятый здесь nokh-ом): что если каждая из нескольких переменных в отдельности не дает значимых различий, а набор из этих (взаимодействующих) переменных дает ? Логистическая регрессия может автоматически определить этот набор переменных или она перебирает переменные так сказать по-одиночке, включая или исключая их из списка наиболее сильных предикторов ?

Сообщение отредактировал DoctorStat - 22.11.2015 - 22:01


Signature
Просто включи мозги => http://doctorstat.narod.ru
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 

Сообщений в этой теме


Добавить ответ в эту темуОткрыть тему