![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 14 Регистрация: 18.12.2016 Пользователь №: 29074 ![]() |
Уважаемые форумчане, посоветуйте, пожалста, какие виды стат обработки можно провести:
а) в случае сравнения групп больных (с одинаковой нозологией), которым выполнены различные виды вмешательств? И соответственно мы сравниваем исходы, продолжительность п/о койко-дня, п/о осложнения, наличие осложнений и пр. б) в случае, когда имеется одна большая выборка - к примеру, больные с острой задержкой мочи (ОЗМ), и соответственно - разная этиология, разные тактические подходы, разные прогноз у больных (при опухолевой и неопухолевой этиологии - что ИЗНАЧАЛЬНО влияет на выбор оперативного вмешательства), разный вид проводимого вмешательства (иногда одномоментное(радикальное или паллиативное), иногда этапное (радикальное, паллиативное), иногда различные паллиативные в несколько этапов? ДА, еще есть осложнения той самой ОЗМ (к примеру), влияние которых надо оценить и на выбор первичного вмешательства, и на ранний послеоперационный период, и на на исход. С уважением, Александр |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
![]() Группа: Пользователи Сообщений: 105 Регистрация: 23.11.2016 Пользователь №: 28953 ![]() |
Уважаемые форумчане, посоветуйте, пожалста, какие виды стат обработки можно провести: а) в случае сравнения групп больных (с одинаковой нозологией), которым выполнены различные виды вмешательств? И соответственно мы сравниваем исходы, продолжительность п/о койко-дня, п/о осложнения, наличие осложнений и пр. б) в случае, когда имеется одна большая выборка - к примеру, больные с острой задержкой мочи (ОЗМ), и соответственно - разная этиология, разные тактические подходы, разные прогноз у больных (при опухолевой и неопухолевой этиологии - что ИЗНАЧАЛЬНО влияет на выбор оперативного вмешательства), разный вид проводимого вмешательства (иногда одномоментное(радикальное или паллиативное), иногда этапное (радикальное, паллиативное), иногда различные паллиативные в несколько этапов? ДА, еще есть осложнения той самой ОЗМ (к примеру), влияние которых надо оценить и на выбор первичного вмешательства, и на ранний послеоперационный период, и на на исход С уважением, Александр Привет, коллега Александр! Если Вы желаете получить более конкретные пожелания по методам стат. анализа при сравнении этих групп, то следует уточнить вот какие детали: 1) объёмы наблюдений (пациентов) в каждой из групп сравнения; 2) число количественных признаков, и число качественных (группирующих) признаков, типа пол, анамнез, и т.п. Это необходимо потому, что при определённых соотношениях этих параметров, одни методы целесообразно использовать, а другие - нет. Кстати, было бы неплохо и уточнить ЦЕЛЬ исследования. Т.е объяснить, зачем нужны результаты этих сравнений, и для чего планируется их использовать. Это тоже помогает конкретизировать предлагаемые методы. В качестве примера почитайте статью по адресу http://www.biometrica.tomsk.ru/comp_aver.htm Там описывается, какие методы кроме сравнения групповых средних, также рационально использовать. Итак, уточняем информацию по анализируемой базе данных. Сообщение отредактировал leo_biostat - 22.12.2016 - 13:44 |
|
![]() |
![]() |
![]() ![]()
Сообщение
#3
|
|
Группа: Пользователи Сообщений: 14 Регистрация: 18.12.2016 Пользователь №: 29074 ![]() |
Привет, коллега Александр! Если Вы желаете получить более конкретные пожелания по методам стат. анализа при сравнении этих групп, то следует уточнить вот какие детали: 1) объёмы наблюдений (пациентов) в каждой из групп сравнения; 2) число количественных признаков, и число качественных (группирующих) признаков, типа пол, анамнез, и т.п. Это необходимо потому, что при определённых соотношениях этих параметров, одни методы целесообразно использовать, а другие - нет. Кстати, было бы неплохо и уточнить ЦЕЛЬ исследования. Т.е объяснить, зачем нужны результаты этих сравнений, и для чего планируется их использовать. Это тоже помогает конкретизировать предлагаемые методы. В качестве примера почитайте статью по адресу http://www.biometrica.tomsk.ru/comp_aver.htm Там описывается, какие методы кроме сравнения групповых средних, также рационально использовать. Итак, уточняем информацию по анализируемой базе данных. Спасибо, leo_biostat А. 1) 64 и 153; 350 и 1700; 1800 и 800 2) качественные признаки: возраст, пол, сопутствующая патология, вид осложнения, характер осложнения и др. А вот с количественными признаками вопрос: если брать x- мужчин и y - женщин или g- пациенты до 50-ти лет, h - пациенты 50-70 лет, j - пациенты старше 70-ти лет, то в сумме будет и 64, и 153, и 350 и тд. А если брать под количественными признаками вид осложнения (например 2 кровотечения, 2 нагноения и т.д.) - это будет в сумме 64, которые из 1700 - но каким стат методом их соотнести? Или (если количественный метод вид операции) - 20 дренирований, 20 стентирований и т.д., сумма которых будет превышать общее количество больных (например 56 операций у 40 больных) - какие методы к этой выборке лучше приложить? Б. цель: а) оценить риск развития осложнений в зависимости от вида вмешательства; в зависимости от исходной тяжести состояния больных; в зависимости от ... (любые качественные факторы, пол, анамнез, длительность заболевания и пр.) б) описать вероятность развития того или иного вида исхода (кровотечение, нагноение, смерть) в зависимости от ..... (см выше) в) структурировать проведенные вмешательства, полученные исходы - методами статистики, а не голыми процентами ![]() С уважением |
|
![]() |
![]() |
![]()
Сообщение
#4
|
|
Группа: Пользователи Сообщений: 127 Регистрация: 15.12.2015 Пользователь №: 27760 ![]() |
Б. цель: а) оценить риск развития осложнений в зависимости от вида вмешательства; в зависимости от исходной тяжести состояния больных; в зависимости от ... (любые качественные факторы, пол, анамнез, длительность заболевания и пр.) б) описать вероятность развития того или иного вида исхода (кровотечение, нагноение, смерть) в зависимости от ..... (см выше) Так это ж классические задачи машинного обучения: выделяете из всей выборки некоторую часть (например, 20%) для финальной проверки - это будет тестовая выборка. На оставшихся 80% гоняете разные алгоритмы, оценивая их качество с помощью перекрестной проверки, и выбираете модель с наилучшей (с точки зрения определенной метрики) предсказательной способностью. ![]() |
|
![]() |
![]() |
![]() ![]() |