![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]() ![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 76 Регистрация: 27.04.2014 Пользователь №: 26375 ![]() |
Подскажите, пожалуйста, кто чем может)). Я делаю логистическую регрессию. Все предикторы биноминальные (0,1). Y-зависимая переменная(бинарная 0 - нет события(это хорошо), 1-есть событие(это плохо)). Дело в том, что нули к нулям, он мало мальски правильно соотносит, но 50% единиц(плохих) у него попадают к нулям(хорошим).Т.е. неверное определение. Как понять, почему так происходит и что сделать, чтобы улучшить классификацию, хотя бы до 85% точности?
Доп. инфо, я гуглила, и нашла метод Feature Selection и его реализацию в R Boruta. Выделила 6 предикторов, думала счастье рядом, сейчас построила модель, но не тут-то было, классификация такая же некачественная:(( Может что-то не то сделала?(( Что делать? (с)(Чернышевский Н.Г.)
Прикрепленные файлы
|
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 76 Регистрация: 27.04.2014 Пользователь №: 26375 ![]() |
nokh, а как это сделать?)) Имеете ввиду регрессию Кокса?
p2004r, в принципе такое может быть, но проблема в том, что проверить это нельзя, данные не я собираю, я бы была более внимательной, их дает манагер. А можно совпадающие кейсы просто удалить, чтобы они не путали мне модель и манагеру честно признаться, что я это удалила. |
|
![]() |
![]() |
![]() ![]() |