![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]() ![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 76 Регистрация: 27.04.2014 Пользователь №: 26375 ![]() |
Подскажите, пожалуйста, кто чем может)). Я делаю логистическую регрессию. Все предикторы биноминальные (0,1). Y-зависимая переменная(бинарная 0 - нет события(это хорошо), 1-есть событие(это плохо)). Дело в том, что нули к нулям, он мало мальски правильно соотносит, но 50% единиц(плохих) у него попадают к нулям(хорошим).Т.е. неверное определение. Как понять, почему так происходит и что сделать, чтобы улучшить классификацию, хотя бы до 85% точности?
Доп. инфо, я гуглила, и нашла метод Feature Selection и его реализацию в R Boruta. Выделила 6 предикторов, думала счастье рядом, сейчас построила модель, но не тут-то было, классификация такая же некачественная:(( Может что-то не то сделала?(( Что делать? (с)(Чернышевский Н.Г.)
Прикрепленные файлы
|
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 76 Регистрация: 27.04.2014 Пользователь №: 26375 ![]() |
p2004r, у меня все получилось:)
Но возник такой вопрос. Как можно по каждой КАТЕГОРИАЛЬНОЙ переменной сосчитать процент определенных значений для нуля и единицы? На выходе это выглядит так: df$X1 (посчитать нули для категорий "0 " и "1") 0 1 68% 89% т.е. по переменной Х1 у нас 68% значений 0 и 32% соответственно единиц для выходной категории "0" и по переменной Х1 у нас 89% значений 0 и 11% соответственно единиц для выходной категории "1" |
|
![]() |
![]() |
![]() ![]() |