![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 97 Регистрация: 14.03.2006 Из: Москва Пользователь №: 870 ![]() |
Уважаемые знатоки, пожалуйста ответьте на вопрос.
Я провел корр. исследование между двумя выборками (АД-ИМТ, индекс массы тела). По коэффициенту корреляции определил, что сила связи слабая (это меня не устраивает). Тогда я разбил выборки по категориям (на 5 групп по индексу массы тела) и повторил исследование в отдельных группах. Обнаружил в группе с ожирением сильную связь. Можно ли так представить результаты и как их интерпретировать ситуацию, что связь между целыми выборками слабая, а в категориях по-разному? Вот так можно (?): "Последнее может интерпретироваться как ложное снижение корреляции вследствие неоднородности данных, вызванной принадлежностью опрошенных к разным категориям индивидуумов или как нелинейная корреляционная связь". Спасибо! Сообщение отредактировал Choledochus - 1.02.2019 - 13:09 |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 9 Регистрация: 13.02.2019 Пользователь №: 32925 ![]() |
Уважаемые знатоки, пожалуйста ответьте на вопрос. Я провел корр. исследование между двумя выборками (АД-ИМТ, индекс массы тела). По коэффициенту корреляции определил, что сила связи слабая (это меня не устраивает). Тогда я разбил выборки по категориям (на 5 групп по индексу массы тела) и повторил исследование в отдельных группах. Обнаружил в группе с ожирением сильную связь. Можно ли так представить результаты и как их интерпретировать ситуацию, что связь между целыми выборками слабая, а в категориях по-разному? Вот так можно (?): "Последнее может интерпретироваться как ложное снижение корреляции вследствие неоднородности данных, вызванной принадлежностью опрошенных к разным категориям индивидуумов или как нелинейная корреляционная связь". Спасибо! Не рекомендую приводить подобные описания. Поскольку в них нет никакой конкретики. В частности не приводится корректное описание типа корреляционного анализа. А этот анализ бывает разный, и не все их применения всегда корректны. Ну а если в базе данных есть группы наблюдений, то в этом случае продуктивно сравнивать эти группы разными многомерными методами. Например, разными алгоритмами дискриминантного анализа, или разными алгоритмами логистической регрессии. И тогда станет ясно, какие именно признаки доминируют в различии как между собой в этих группах, так и по интенсивности связи между собой. Естественно что сделать такие анализы могут не все медики, поскольку это методы очень сложные, но зато очень продуктивные. |
|
![]() |
![]() |
![]() ![]() |