![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 231 Регистрация: 27.04.2016 Пользователь №: 28223 ![]() |
Уважаемые коллеги-медики.
Поскольку в последнее время наметился некоторый застой на этом интереснейшем форуме ![]() Итак, формальная постановка задачи. Необходимо подтвердить H0 гипотезу отсутствия различий между двумя наборами данных. Таких тестов проводится множество. Результаты каждого теста представлены в виде соответствующего p-value. Необходимо поставить "окончательный диагноз", т.е. основываясь на указанном наборе p-value's дать окончательную оценку относительно принятия-отклонения гипотезы. В виде некоторого "обобщенного" p-value, разумеется. Получается такая себе "многомерная проверка гипотез". Задача - как мне видется, возможно я и ошибаюсь - имеет несколько подвариантов. Первый и самый, наверное, простой - все тесты проводятся одним и тем-же методом. Т.е. в области медицины - множество групп пациентов, например - в различных клиниках, каждая считает и предоставляет свои данные, например, по эффективности определенного лекарственного средства. Результаты должны быть формально обобщены. Как? Второй - оценивается два объекта (в медицинских терминах, наверное - групп пациентов) каждая по множеству разных параметров (давление, рост, вес.....). Необходимо проанализировав p-value отличия по каждому из параметров, формально определить, различаются-ли эти группы пациентов. Третий - у нас один параметр, но тестов мы проводим много (ну, самое простое - t-Стюдента, F-Фишера, тесты на различие моментов более высокого порядка, тест на постоянство автокорреляции, тест на постоянство коэффициента Херста - не важно). И решение надо принять по совокупности p-value, полученных на разных тестах.. (Ну, например, отслеживаем изменение этого параметра у пациента во времени). Возможно, есть и другие варианты постановки задачи, но я их пока не вижу. Итак, вопрос. Занимается-ли медстатистика такими задачами и если да (полагаю, что так и есть), то посоветуйте пожалуйста, натолкните на работы, где такие подходы разбираются. Ну и хочу все-таки отметить, что меня интересует не медицинская сторона этих работ, а именно формально-математико-статистическая. Заранее благодарю за любую информацию, и извиняюсь, если непрофессиональностью медицинских примеров задел чьи-то тонкие струны души : ![]() Всем не хворать, а тем кто на карантине - стойко его выдержать. ![]() Сообщение отредактировал passant - 4.04.2020 - 00:14 |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 1219 Регистрация: 13.01.2008 Из: Челябинск Пользователь №: 4704 ![]() |
По объединени р-значений. Я качал когда-то пару-тройку книг по мета-анализу (МА), но их просмотр по диагонали не оставил глубокого впечатления. Помню, что видел там формулу из Сокала и Рольфа на стр. 794 и далее. В этом pdf это стр. 806 и пример на стр. 807: http://yadi.sk/d/CMndWKYvQu6b2
Одного из наших магистрантов пару лет назад работодатель отправлял на учёбу в Москву, где им прочли хороший курс по МА с практикой. Из того, чем он бегло поделился, я понял, что главным был корректный отбор публикаций в исследование, когда из нескольких сотен осталось пара десятков. Я не владею МА, но, вероятно, тема хорошо разработана и спецы в этом есть и в РФ. Но известный косяк всех МА - публикационное смещение (publication bias), которое в принципе неустранимо никакой статистикой. Ясно, что наряду оценкой статистической значимости эффекта нужно ещё сводить воедино и величину эффекта (effect size). При этом одни авторы дают медианы с квартилями, другие средние с ДИ или стандартными отклонениями, ст. ошибкми... Попадалась работа как наиболее статистически обоснованно конверитировать эти показатели друг в друга для сведения. Если интересно - поищу. |
|
![]() |
![]() |
![]() ![]() |