![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 231 Регистрация: 27.04.2016 Пользователь №: 28223 ![]() |
Уважаемые коллеги-медики.
Поскольку в последнее время наметился некоторый застой на этом интереснейшем форуме ![]() Итак, формальная постановка задачи. Необходимо подтвердить H0 гипотезу отсутствия различий между двумя наборами данных. Таких тестов проводится множество. Результаты каждого теста представлены в виде соответствующего p-value. Необходимо поставить "окончательный диагноз", т.е. основываясь на указанном наборе p-value's дать окончательную оценку относительно принятия-отклонения гипотезы. В виде некоторого "обобщенного" p-value, разумеется. Получается такая себе "многомерная проверка гипотез". Задача - как мне видется, возможно я и ошибаюсь - имеет несколько подвариантов. Первый и самый, наверное, простой - все тесты проводятся одним и тем-же методом. Т.е. в области медицины - множество групп пациентов, например - в различных клиниках, каждая считает и предоставляет свои данные, например, по эффективности определенного лекарственного средства. Результаты должны быть формально обобщены. Как? Второй - оценивается два объекта (в медицинских терминах, наверное - групп пациентов) каждая по множеству разных параметров (давление, рост, вес.....). Необходимо проанализировав p-value отличия по каждому из параметров, формально определить, различаются-ли эти группы пациентов. Третий - у нас один параметр, но тестов мы проводим много (ну, самое простое - t-Стюдента, F-Фишера, тесты на различие моментов более высокого порядка, тест на постоянство автокорреляции, тест на постоянство коэффициента Херста - не важно). И решение надо принять по совокупности p-value, полученных на разных тестах.. (Ну, например, отслеживаем изменение этого параметра у пациента во времени). Возможно, есть и другие варианты постановки задачи, но я их пока не вижу. Итак, вопрос. Занимается-ли медстатистика такими задачами и если да (полагаю, что так и есть), то посоветуйте пожалуйста, натолкните на работы, где такие подходы разбираются. Ну и хочу все-таки отметить, что меня интересует не медицинская сторона этих работ, а именно формально-математико-статистическая. Заранее благодарю за любую информацию, и извиняюсь, если непрофессиональностью медицинских примеров задел чьи-то тонкие струны души : ![]() Всем не хворать, а тем кто на карантине - стойко его выдержать. ![]() Сообщение отредактировал passant - 4.04.2020 - 00:14 |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 902 Регистрация: 23.08.2010 Пользователь №: 22694 ![]() |
Цитата Итак... необходимо подтвердить H0 гипотезу отсутствия различий между двумя наборами данных. Таких тестов проводится множество. Результаты каждого теста представлены в виде соответствующего p-value. Необходимо поставить "окончательный диагноз", т.е. основываясь на указанном наборе p-value's дать окончательную оценку относительно принятия-отклонения гипотезы. В виде некоторого "обобщенного" p-value, разумеется. Получается такая себе "многомерная проверка гипотез". По этому пункту навскидку сюда Цитата Второй - оценивается два объекта (в медицинских терминах, наверное - групп пациентов) каждая по множеству разных параметров (давление, рост, вес.....). Необходимо проанализировав p-value отличия по каждому из параметров, формально определить, различаются-ли эти группы пациентов. Это- Цитата Третий - у нас один параметр, но тестов мы проводим много (ну, самое простое - t-Стюдента, F-Фишера, тесты на различие моментов более высокого порядка, тест на постоянство автокорреляции, тест на постоянство коэффициента Херста - не важно). И решение надо принять по совокупности p-value, полученных на разных тестах.. (Ну, например, отслеживаем изменение этого параметра у пациента во времени). Если разными тестами проверяется одна и та же гипотеза, то эта процедура по существу представляет собой такой же статистический ("композитный"- термин мой) тест с неизвестными статистическими свойствами. Здесь можно применять два подхода: а) модель "объединения отвержений нулевой гипотезы" б) модель "пересечения отвержений нулевой гипотезы". В обоих случаях надо изучать их статистические свойства: состоятельность, несмещенность, способность удерживать заданный (номинальный) уровень ошибки I и мощность. У меня все. Сообщение отредактировал 100$ - 5.04.2020 - 00:10 |
|
![]() |
![]() |
![]()
Сообщение
#3
|
|
Группа: Пользователи Сообщений: 231 Регистрация: 27.04.2016 Пользователь №: 28223 ![]() |
По этому пункту навскидку сюда Да, спасибо. Я уже понял, что проблема потихоньку перетекает в проблему множественной проверки гипотез, причем особенность моих задач - гипотезы разные, выполняются разными тестами но относятся к поведению (состоянию) одного объекта. Цитата(100$) совместное распределение координат признакового описания объекта изучается методами многомерной статистики. Нельзя с каждой координатой возиться, как котенок с клубком. Да, в моем плане тут попробовать применить методы из области классификации и кластерного анализа. Разумеется - многомерных.Цитата(100$) В обоих случаях надо изучать их статистические свойства: состоятельность, несмещенность, способность удерживать заданный (номинальный) уровень ошибки I и мощность. Спасибо, как раз накопал несколько несколько забугорных источников. Но там расматриваются в основном случаи однотипных гипотез. Буду копать дальше.
Сообщение отредактировал passant - 5.04.2020 - 00:28 |
|
![]() |
![]() |
![]()
Сообщение
#4
|
|
Группа: Пользователи Сообщений: 902 Регистрация: 23.08.2010 Пользователь №: 22694 ![]() |
|
|
![]() |
![]() |
![]() ![]() |