![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 97 Регистрация: 14.03.2006 Из: Москва Пользователь №: 870 ![]() |
Уважаемые знатоки, пожалуйста ответьте на вопрос.
Я провел корр. исследование между двумя выборками (АД-ИМТ, индекс массы тела). По коэффициенту корреляции определил, что сила связи слабая (это меня не устраивает). Тогда я разбил выборки по категориям (на 5 групп по индексу массы тела) и повторил исследование в отдельных группах. Обнаружил в группе с ожирением сильную связь. Можно ли так представить результаты и как их интерпретировать ситуацию, что связь между целыми выборками слабая, а в категориях по-разному? Вот так можно (?): "Последнее может интерпретироваться как ложное снижение корреляции вследствие неоднородности данных, вызванной принадлежностью опрошенных к разным категориям индивидуумов или как нелинейная корреляционная связь". Спасибо! Сообщение отредактировал Choledochus - 1.02.2019 - 13:09 |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 62 Регистрация: 6.12.2021 Пользователь №: 39615 ![]() |
Добрый день. Меня интересует оценка связи между двумя непрерывным переменными, с распределением отличным от нормального. Могу ли я довольствоваться коэффициентов Спирмена, или же ненужно попытаться эти данные нормализовать и пользовать параметрическим методом?.. Пока меня интересует только сила связи, и по Спирмену у одного из параметров связь с референтной переменной она 0,6 а другого - 0,7 (ну примерно).. может ли быть такое, что при "нормализации" один из параметров будет сильнее кореллировать с рефератным, чем другой? Или же хватит вполне непараметрического критерия?
Мы предполагали что связь сильнее будет у того из параметров, что показал слабее связь. Спасибо Сообщение отредактировал salm - 9.07.2022 - 14:57 |
|
![]() |
![]() |
![]()
Сообщение
#3
|
|
Группа: Пользователи Сообщений: 231 Регистрация: 27.04.2016 Пользователь №: 28223 ![]() |
Добрый день. Меня интересует оценка связи между двумя непрерывным переменными, с распределением отличным от нормального. Могу ли я довольствоваться коэффициентов Спирмена, или же ненужно попытаться эти данные нормализовать и пользовать параметрическим методом?. Для чего?? Все же должно быть оправдано чем-то. Чем вам Спирмен не угодил? Мы предполагали что связь сильнее будет у того из параметров, что показал слабее связь. Чего??? Коэффициент корреляции показывает силу связи. Чем больше значение (по абсолютной величине),тем сильнее связь. Но вот сама связь может быть положительной и отрицательной, и вот именно это показывает знак коэффициента. Сообщение отредактировал passant - 9.07.2022 - 16:43 |
|
![]() |
![]() |
![]()
Сообщение
#4
|
|
Группа: Пользователи Сообщений: 62 Регистрация: 6.12.2021 Пользователь №: 39615 ![]() |
Для чего?? Все же должно быть оправдано чем-то. Чем вам Спирмен не угодил? Всем угодил, спасибо. Просто удостовериться Чего??? Коэффициент корреляции показывает силу связи. Чем больше значение (по абсолютной величине),тем сильнее связь. Но вот сама связь может быть положительной и отрицательной, и вот именно это показывает знак коэффициента. Ясно. Спасибо. Я понимаю, что означает коэффициент короеляции и знак при нем. Я слышала как то, на конгрессе, докладчик сказал следующее: мы для оценки силы связи, пересчитали коэф корреляции, для этого мы связались со статистиками, и убедились в еще более тесной связи двух показателей, при этом про сам стат анализ он не уточнял А моей коллеге порекомендовал статистик коэффициент корряции Пирсона ( в ее работе три коэффициента указаны, не помню какой том еще, Кэндал что ли.)., он ей преобразовал данные, логарифмируя их, и зачем то это вошло в ее работу. Ни о какой регрессии просто речь там не шла, поэтому я и спрашиваю,, это просто мои догадки были Сообщение отредактировал salm - 9.07.2022 - 18:15 |
|
![]() |
![]() |
![]() ![]() |