Форум врачей-аспирантов

Здравствуйте, гость ( Вход | Регистрация )

> Как реализовать точную перестановку в R?
ИНО
сообщение 29.05.2025 - 02:34
Сообщение #1





Группа: Пользователи
Сообщений: 262
Регистрация: 1.06.2022
Из: Донецк
Пользователь №: 39632



Как посредством R случайным образом разделить ряд чисел на две группы заданных объемов с перебором всех возможных вариантов? Просто перемешивать исходный ряд и разделять в произвольной точке оказалось плохой идеей, так как порождаются в том числе и лишние варианты, когда состав обеих групп одинаков, но последовательность внутри них разная, например в итерации i в группе А оказываются 1, 2, 3, в группе Б - 4, 5, 6, а в итерации i+1 - соответственно 2, 1, 3 и 4, 5, 6. Если мы считаем статистику, инвариантную к порядку чисел, то эти паразитические псевдовыборки никак не сказываются на выводе, но сильно жрут вычислительные ресурсы. В общем, надо чтобы в каждой итерации группа А менялась с группой Б парой чисел.

Беглый поиск готовых решений ничего не дал. Например, в широко известном пакете permute, кажется, реализованы все мыслимые планы перестановок, кроме нужного мне. Или же я просто не допер, как его на это запрограммировать.
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 
 
Открыть тему
Ответов
ИНО
сообщение 1.06.2025 - 17:30
Сообщение #2





Группа: Пользователи
Сообщений: 262
Регистрация: 1.06.2022
Из: Донецк
Пользователь №: 39632



При неравных объемах выборок обнаружился баг - чувствительность к тому, что назначать х, а что у. Для правильного результата (соответствующего результатом oneway_test() из coin, требуется чтобы икс был длиннее игрека. Так и не понял в чем загвоздка но поваксил, тупо поменяв х и у местами в случае если второй длиннее. Принимайте обновленную версию функции:

Код
recombmeandifftest2<-function(x, y)
{
  if(length(y)>length(x))
     {
      x_<-y
      y_<-x}
     else
     {
      x_<-x
      y_<-y
     }
  k<-length(x_)
  xy<-c(x_, y_)
  n<-length(xy)
  id<-1:n
  combmat<-combn(id, k)
  recmeandiff<-function(X, xy)
  {
    x<-xy[X]
    y<-xy[-X]
    meandiff<-abs(mean(x)-mean(y))
    return(meandiff)
  }
  diffobs<-abs(mean(x_)-mean(y_))
  diffsim<-apply(combmat[,2:ncol(combmat)], 2, recmeandiff, xy=xy)
  res<-as.numeric(round(diffsim, digits=6)>=round(diffobs, digits=6))
  p<-(1+sum(res))/(ncol(combmat))
  return(list(diffobs, p))
}


Недостаток лишь один - думает медленно и жрет много памяти. Понятно, что пакет coin гораздо вычислительно эффективнее, чем моя самоделка, тем не менее не верю, что он генерирует все (n1+n2)! перестановок, скорее ограничивается все теми же уникальными сочетаниями, что и мой код. Потому как в случае с n1=15 и n2=10 на все про все у oneway_test() уходит лишь пара секунд. Для сравнения при вышеуказанных объемах выборок это 3268760 при сочетаниях и 15511210043330986055080688 при полной рандомизации. Очевидно, что второе вычислительно недостижимо, по крайней мере за те пару секунд smile.gif Так что бесполезные варианты таки действительно бесполезны и, более того, ощутимо вредны!

Игорь, а в Вашем ПО количество перестановок получается какое?

Сообщение отредактировал ИНО - 1.06.2025 - 17:38
Вернуться в начало страницы
 
+Ответить с цитированием данного сообщения
 

Сообщений в этой теме


Добавить ответ в эту темуОткрыть тему