![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 1325 Регистрация: 27.11.2007 Пользователь №: 4573 ![]() |
Вопрос из области теории информации. В сибирском медицинском журнале часто встречается диагностика или прогноз с использованием последовательного алгоритма Вальда, информативность признаков оценивается по Кульбаку.
Мой вопрос возник в связи с тем, что реально не всегда достигаются заданные высокие пороги для диагностики, но оценку набору используемых диагностических признаков все же хочется дать. В задаче дифференциальной диагностики между двумя состояниями (верифицированы гистологически) рассчитывали диагностические коэффициенты клинических признаков, далее, вычисляли показатель накопленной информативности как арифметическая сумма (J) показателей информативности факторов риска, имеющихся у исследуемого (по Кульбаку). Далее, нужно эти суммы сравнить с выбранными порогами - но, можно ли дальше пойти другим путем. В этой новой переменной (J) найти точку перегиба используя анализ ROC-кривой и оценить таким образом диагностический тест, т.е. описать чувствительность и специфичность более привычным образом. |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 1325 Регистрация: 27.11.2007 Пользователь №: 4573 ![]() |
На данном этапе исследования мне нужно только дать оценку информативности конкретному набору клинических признаков, после вывода, что он не достаточно информативен, добавить данные цитологического исследования. А потом уже строить диагностическую модель, используя логистическую регрессию для наиболее значимых признаков. Получить такую площадь ROC только по клиническим признакам я и не рассчитывала. Ее оценка р=0,0001 относится к диагонали. Логистическая регрессия по переменной J дает на этой обучающей выборке 75% верной диагностики, дерево решений (Classification Trees) 82%.
|
|
![]() |
![]() |
![]() ![]() |