![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 10 Регистрация: 18.10.2007 Пользователь №: 4453 ![]() |
Объясните, пожалуйста, как вычислить все показатели необходимые для рассчета.
|
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
![]() Группа: Пользователи Сообщений: 1141 Регистрация: 10.04.2007 Пользователь №: 4040 ![]() |
Обнаружен интересный эффект при построении ROC. В литературе объяснений не нашел. Вероятно, плохо искал, но тем не менее...
Иногда при построении ROC по всем правилам алгоритма кривая оказывается ниже диагонали Se + (1 - Sp) = 0,5. Следовательно, AUC получается менее 0,5. В источниках утверждается, что AUC = 0,5 - это "бесполезный классификатор". Как тогда объяснить AUC менее 0,5? Нами предложено такое решение. Классически считается алгоритм ROC. Если AUC оказывается менее 0,5, то в исходных данных меняется кодировка с 0 на 1 (или, что то же самое, меняются местами опытная и стандартная выборки). Затем расчет производится заново. При этом ROC как бы "переворачивается" относительно диагонали. ![]() Ebsignasnan prei wissant Deiws ainat! As gijwans! Sta ast stas arwis!
|
|
![]() |
![]() |
![]()
Сообщение
#3
|
|
Группа: Пользователи Сообщений: 1013 Регистрация: 4.10.2006 Пользователь №: 1933 ![]() |
Обнаружен интересный эффект при построении ROC. В литературе объяснений не нашел. Вероятно, плохо искал, но тем не менее... Иногда при построении ROC по всем правилам алгоритма кривая оказывается ниже диагонали Se + (1 - Sp) = 0,5. Следовательно, AUC получается менее 0,5. В источниках утверждается, что AUC = 0,5 - это "бесполезный классификатор". Как тогда объяснить AUC менее 0,5? Нами предложено такое решение. Классически считается алгоритм ROC. Если AUC оказывается менее 0,5, то в исходных данных меняется кодировка с 0 на 1 (или, что то же самое, меняются местами опытная и стандартная выборки). Затем расчет производится заново. При этом ROC как бы "переворачивается" относительно диагонали. На самом деле очень просто. Если AUC меньше 0.5, то это фактор, который чаще встречается у здоровых, чем у больных (т.е. обратная классификация - например, если в моем примере использовать как диагностическое правило "ХС меньше границы", то получится AUC меньше 0.5). Соответственно, надо тогда просто изменить классифицирующее правило. Я не совсем понял насчет важности "здоровые" и "больные" для теста МУ. Фактически ведь там две группы - и как их обозначить - дело второе. Расчет же AUC исходя из теста МУ автоматически предполагает, что 0.5<=AUC<=1.0 (по крайней мере в версии, которая обсуждалась выше, можно рассчитывать U-статистику не по правилам критерия и тогда будет и AUC меньше 0.5, но не уверен, что все нормальной пойдет с оценкой дисперсии AUC). Отсюда вывод - надо вначале нарисовать график ROC, посмотреть не перевернут ли он и затем только интерпретировать результаты. |
|
![]() |
![]() |
![]() ![]() |