![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 3 Регистрация: 13.05.2008 Пользователь №: 5029 ![]() |
Добрый день, уважаемые.
У меня ситуация следующая: есть показатель, измеренный в порядковой шкале. Это морфологическая харакетристика нейроцитов при окраске по Нисслю (гипохромные, нормохромные, гиперхромные). Необходимо расчитать для него дисперсию. Как это сделать для порядковой шкалы? |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
![]() Группа: Пользователи Сообщений: 1141 Регистрация: 10.04.2007 Пользователь №: 4040 ![]() |
Формально можно, конечно, сделать, например, так: Присвоить гипохромия = 0, нормохромия=1, гиперхромия =2. И считать среднее и дисперсию. Ошибочный совет. Категорически не согласен. Автору поста перед тем, как давать подобные советы, предлагается изучить шкалы измерения - это самые основы прикладного анализа данных. Но возникает вопрос, а зачем это все надо? Если вы хотите сравнить 2 группы по соотношению этих видов клеток, то может проще сравнивать по хи-критерию частоты этих типов? К сожалению, не проще. У критериев типа хи-квадрат есть определенные ограничения. В частности, авторы дают рекомендации по пределу малости частот в ячейках таблицы. Это значения 4 или 5. Существуют и объективные критерии применимости [аппроксимации] хи-квадрат - так называемые диагностики. Некоторые компьютерные программы данные параметры считают. Поэтому исследователям следует знать, что существуют методы, позволяющие обойти указанные ограничения. Это - так называемые точные критерии. Для таблицы 2 х 2 - это широко известный точный метод Фишера (ТМФ). Для бОльших таблиц - это расширение ТМФ, известное под названием критерия Фримана-Холтона. ![]() Ebsignasnan prei wissant Deiws ainat! As gijwans! Sta ast stas arwis!
|
|
![]() |
![]() |
![]() ![]() |