![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 1219 Регистрация: 13.01.2008 Из: Челябинск Пользователь №: 4704 ![]() |
Идеальные данные для анализа выживаемости - когда точно известно сколько человек прожил, например, после операции и когда умер. В этом случае цензурированных наблюдений нет. Другой крайний случай - когда все наблюдения цензурированные и дальнейшая судьба пациентов неизвестна. Например один прожил больше года, другой - больше трех. В этом случае может оказаться, что больше года - это 5, а больше трех - это 4. Поэтому, насколько я понимаю, сравнить выживаемость в двух группах где все наблюдения цензурированные невозможно в принципе. А какова допустимая доля цензурированных наблюдений в выборке? Существуют ли какие-то обоснованные или негласные правила? Полазил в и-нете, заглянул в книжки - пока ответа не нашел, хотя везде рассматриваются примеры где полные данные заметно преобладают над цензурированными. Или может считать цензурированными только точно живых на момент анализа, а всех потерявшихся считать умершими в интервале между двумя осмотрами, как прочитал в одной статье?
|
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 1325 Регистрация: 27.11.2007 Пользователь №: 4573 ![]() |
Да, если предиктор бинарный, то экспоненциальный коэффициент показывает во сколько раз возрастает риск при наличии фактора риска (код признака 1), относительно альтернативы (0). А вот если переменная имеет больше градаций, например, локализация опухоли или ее клеточный тип, то можно сначала выяснить, как они упорядочены используя построение кривых выживаемости К-М. Это дает возможность упорядочить градации от менее к более опасным. После этого вы можете получить HR для второй градации относительно первой, третьей относительно второй и т.д. Т.е. риск не будет возрастать одинаково при переходе от одной категории к другой, как для количественной переменной, например для выстояния опухоли или возраста больного. Некоторые программы (Statistica) работают только с количественными переменными, т.е. переменная с упорядоченными категориями будет восприниматься как количественная и риск будет возрастать одинаково при переходе на каждую более высокую категорию по сравнению с предыдущей.
SPSS предоставляет различные возможности для работы с категориальными переменными (сontrast, reference category). В ссылке, которую вы привели это описано. |
|
![]() |
![]() |
![]() ![]() |