![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 35 Регистрация: 3.10.2008 Из: Москва Пользователь №: 5369 ![]() |
Всем здравствуйте. Прошу опять помощи.
Стоит такая задача. Как создать формулу, с помощью которой можно вычислить вероятность положительного исхода лечения у конкретного больного. Т.е. формулу, в которую можно подставлять данные (признаки, разные показатели и пр.) конкретного обратившегося за помощью больного, далее получать с помощью этой формулы какую то цифру - % (70%, или 60, или 95 ... и т.д.). Эта цифра и будет отражать вероятность положительного исхода лечения этого больного. Имеются результаты лечения около 100 больных, известны все их показатели, влияющие на результат лечения. Этих показателей - около 5-6. Все они должны входить в формулу. Я слышала, что этой формулой является дискриминантное уравнение. Но как его построить? В Экселе или в Статистике? |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 1013 Регистрация: 4.10.2006 Пользователь №: 1933 ![]() |
Ну, во-первых создать на 100 больных формулу, которая бы реально работала вряд ли возможно. Про Data Mining можно спокойно забыть, поскольку и регрессионные деревья и нейронные сети (т.е. многофакторная нелинейная регрессия) требуют обучающей и модельной выборок, а у Вас будет по 50 человек в каждой, уже и простейшую модель не построить. Data Mining должен использоваться там, где он и зародился - в анализе бизнес-процессов на основании тысяч наблюдений.
Если Вы хотите строить предиктивную формулу все равно надо делить группы на подвыборки (т.е. по 50), поскольку иначе не проверить качества предсказания. Все модели Вам смогут дать только формулу для данной популяции, при небольшом изменении априорной вероятности она начнет безбожно "врать". Соответственно, прежде, чем делать "формулу" прочитайте, про те методы, которые Вам выше советовали (логистическую регрессию в особенности), затем познакомьтесь с теоремой Байеса (возьмите книги Власова и Флетчера), затем почитайте здесь на форуме ветки, где это уже разбиралось. |
|
![]() |
![]() |
![]() ![]()
Сообщение
#3
|
|
Группа: Пользователи Сообщений: 18 Регистрация: 23.10.2008 Пользователь №: 5430 ![]() |
Ну, во-первых создать на 100 больных формулу, которая бы реально работала вряд ли возможно. Про Data Mining можно спокойно забыть, поскольку и регрессионные деревья и нейронные сети (т.е. многофакторная нелинейная регрессия) требуют обучающей и модельной выборок, а у Вас будет по 50 человек в каждой, уже и простейшую модель не построить. Data Mining должен использоваться там, где он и зародился - в анализе бизнес-процессов на основании тысяч наблюдений. Data Mining с успехом используется более 20 лет в медико-биологических исследованиях именно на малых выборках. С его помощью создаются алгоритмы диагностики и прогнозирования. Известные Вам, и вошедшие в модные пакеты регрессионные деревья и нейронные сети - это вчерашний день Data MIning'a. Существует большое количество других методов, например: Голосование по тупиковым тестам ? Линейный дискриминант Фишера ? Q ближайших соседей ? Метод опорных векторов ? Статистически взвешенные синдромы ? Алгоритмы вычисления оценок ? Линейная машина ? Логические закономерности ? Двумерные линейные разделители ? Genesis- Если Вы хотите строить предиктивную формулу все равно надо делить группы на подвыборки (т.е. по 50), поскольку иначе не проверить качества предсказания. Проверка эффективности формулы (на самом деле - это называется решающее правило) осуществляется с помощью скользящего контроля, когда каждый объект удаляется из выборки и позже распознается по созданному решающему правилу. Число правильно распознанных объектов выборки и характеризует эффективность решающего правила. Все модели Вам смогут дать только формулу для данной популяции, при небольшом изменении априорной вероятности она начнет безбожно "врать". Это совершенно верно для нейронных сетей, генетических алгоритмов, включенных в настоящее время в стандартные статистические пакеты. В описываемых мною методах верификация делается путем метода Монте-Карло (генерации большого числа таблиц и применения к ним решающего правила, при выявлении закономерностей не более, чем на 5 таких таблицах из 2000 считаем, что выявленная закономерность на реальных данных - не случайна). Соответственно, прежде, чем делать "формулу" прочитайте, про те методы, которые Вам выше советовали (логистическую регрессию в особенности), затем познакомьтесь с теоремой Байеса (возьмите книги Власова и Флетчера), затем почитайте здесь на форуме ветки, где это уже разбиралось. Все это полезно для самообразования. А нам пришлите данные и мы на их примере покажем, как работают методы. ![]() |
|
![]() |
![]() |
![]() ![]() |