![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 8 Регистрация: 8.02.2009 Пользователь №: 5786 ![]() |
Задача: среди больных, одни из которых имеют признак Х (в данном случае метаболический синдром), другие не имеют, необходимо провести сравнение по нескольким параметрам (длительность основного заболевания, курение (да-нет), употребление алкоголя (да-нет), прием одного из препаратов в анамнезе (да-нет)). При этом многие из этих параметров не только могут влиять на развитие метаболического синдрома, но и зависят от возраста (например, чем больше возраст, тем больше длительность основного заболевания, при этом и метаболический синдром чаще возникает в более старших возрастных группах) и от пола (например, мужчины курят чаще). Поэтому при сравнении необходимо скорректировать эти факторы на пол и возраст.
Идея в следующем: сперва как есть для групп, сформированных по наличию или отсутствию признака метаболического синдрома, посчитать Т-критерий для количественных признаков и Хи-квадрат (или точный тест Фишера) для бинарных. Полученные значимости будут нескорректированными (Unadjusted). Затем в бинарную логистическую регрессию внести метаболический синдром как зависимую переменную, а в качестве ковариант пол, возраст и один из сравниваемых показателей, затем вместо него второй и т.д. (т.е. для каждого в отдельности). Таким образом получим для каждого из сравниваемых показателей скорректированную (adjusted) по полу и возрасту значимость различий между группой больных с метаболическим синдромом и без него. Это подсмотрено в одной англоязычной статье, но т.к. нигде более не видел (может быть плохо смотрел), возникло сомнение, правильно ли я понял. Вопрос в правомерности использования для этой задачи логистической регрессии. Какие другие методы корректировки могут быть здесь использованы, с учетом того, что признаки как количественные, так и бинарные? |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 1325 Регистрация: 27.11.2007 Пользователь №: 4573 ![]() |
Не могу сказать, что после пояснений, стало больше ясности, что вы хотите проанализировать. Судя по дизайну, вы хотите оценить влияние различных факторов на развитие определенного состояния. Почему непременно, нужно получить достовреность различия средних в двух группах,т.е. р<0,05. Дисперсионный анализ звучит. Количественные переменные могут статистически не различаться, но можно найти такую границу, выше или ниже которой риск развития статистически достоврено выше, поэтому можно использовать ROC, но не обязательно, если вас это не интересует. Возможно, необходима стратификация, для контроля вмешивающихся факторов, для этого есть специальные критерии. Лучше, все же привести статью, чтобы понять логику анализа.
|
|
![]() |
![]() |
![]() ![]() |