![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 8 Регистрация: 26.02.2009 Пользователь №: 5862 ![]() |
Уважаемые коллеги!
Я новичок в статистике, поэтому заранее извинюсь за, быть может, наивные вопросы. Они касаются логистической регресии. Имеются данные некоторого потенциально значимого диагностического теста (read-out - да/нет, соотв. 0/1) для дифференциальной диагностики доброкачественных и злокачественных узловых образований ЩЖ (соотв-но, зависимая переменная - «зло»(1)/«добро»(0)), независимые переменные (помимо рез-та изучаемого теста) - пол, возраст и наличие/отсутствие (1/0) подозрительных на малигнизацию изменений на цитограмме пунктата. Строю модель (SPSS, binary logistic regession). В результате по переменной, соответствующей рез-там диагностического теста - гипердисперсия, низкая статистика Вальда и отсутствие значимости переменной. Ситуация в том, что тест высокоспецифичный (но низкочувствительный), и на относительно небольшой выборке ни одного тест-позитивного случая в группе пациентов с доброкачественными образованиями не наблюдается. При произвольном введении одного тест-позитива в эту группу (в любой case) ситуация полностью исправляется, ошибка становится вполне приемлемой и переменная становится значимой. При этом % верных предсказаний в «неадеватной» модели даже выше (что логично). Собственно вопросы: 1) Неадекватность модели при отсутствии тест-позитивных случаев в одной из групп - это внутренняя особенность алгоритма или еще что-то? 2) Если это внутренняя особенность алгоритма, то каковы методы борьбы (не считая дальнейшего сбора материала в ожидании хотя бы одного тест-позитивного случая)? Заранее спасибо за советы и рекомендации. Сообщение отредактировал lab_owl - 26.02.2009 - 20:05 |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
Группа: Пользователи Сообщений: 8 Регистрация: 26.02.2009 Пользователь №: 5862 ![]() |
Спасибо большое за ответ!
Если можно, еще один вопрос. Насколько я понял из литературы и обсуждений на этом форуме, в первоначальную модель должны быть в любом случае включены возраст и пол для age-gender adjustment. Вопрос собственно такой - финальная модель в любом случае должна быть скорректирована по этим параметрам (т.е. даже в том случае, когда сами по себе они не являются значимыми предикторами) - или же после получения инф-ии об отсутствии значимости этих переменных их можно выбросить из конечной модели? Еще раз спасибо! |
|
![]() |
![]() |
![]() ![]() |