![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
![]()
Сообщение
#1
|
|
Группа: Пользователи Сообщений: 244 Регистрация: 28.08.2009 Пользователь №: 6286 ![]() |
Стандартная ошибка оценки регрессии (Std. Error of estimate) ? является показателем качества аппроксимации результатов наблюдений. Ее квадрат интерпретируется как дисперсия остатков, представляющая ошибку измерения, с которой любое измеренное значение Y предсказывается для данного значения X по известному уравнению (если уравнение регрессии оценивается из неопределенно большого числа наблюдений). При поиске лучшей модели стоит минимизировать Std. Error of estimate.
Вопрос: существуют ли какие-либо придержки удовлетворительных значений или критические точки для стандартной ошибки оценки регрессии? Как оценить полученное значение, много или мало? |
|
![]() |
![]() |
![]() |
![]()
Сообщение
#2
|
|
![]() Группа: Пользователи Сообщений: 1141 Регистрация: 10.04.2007 Пользователь №: 4040 ![]() |
Для выбора лучшей модели из нескольких [параметрических] моделей можно применять критерий Акаике (AIC).
![]() Ebsignasnan prei wissant Deiws ainat! As gijwans! Sta ast stas arwis!
|
|
![]() |
![]() |
![]() ![]() |