Цитата(Адам @ 27.10.2011 - 08:19)

Уважаемые коллеги! Спасибо за ответы, но я честно говоря ничего не понял

возьму на себя смелость подытожить:
(1) прямого непараметрического аналога дискриминантного анализа нет (по крайней мере более-менее распространённого). Однако задачу разделения групп по совокупности признаков можно решать другими подходами, не требующими от данных нормальности. Например - построением дерева решений (Classification Tree) или их леса (Random Forest). Если нужно разделить только 2 группы, а задействованные в классификации переменные не слишком коррелируют - можно использовать аппарат множественной логистической регрессии. Также задача решается каноническим анализом соответствий (Canonical correspondence analysis) - многомерной ординационной техникой с ограничением (constrained ordination), которая редка в медицине, но крайне популярна в экологии. Именно данный анализ ближе всего подходит на роль непараметрического аналога дискриминантного анализа - однако только с точки зрения философии метода, но не возможностей практического использования его результатов в виде выработки решающего правила, всё-таки это больше разведочная ординационная техника.
(2) ненормально распределённые данные можно предварительно преобразовать и использовать обычный дискриминантный анализ. Как и что преобразовывать - неоднозначно, т.к. реальные данные почти никогда не удовлетворяют даже требованиям двумерного нормального распределения, не то что многомерного. Поэтому возможны варианты, которые я бы разбил по цели, которую преследуют анализом:
2-А) Задача скорее исследовательская: определить принципиальную возможность разделения групп и разобраться в структуре показателей. Можно предварительно преобразовывать данные сколь угодно сложными методами, вплоть до многомерного преобразования Бокса-Кокса (есть в пакете Игоря - AtteStat), которое максимально подгонит данные к многомерному нормальному распределению. Чтобы разобраться в структуре связей переменных-предикторов лучше перейти к каноническим осям - т.н. канонический дискриминантный анализ (уже описывал этот подход для Statistica: см. сообщение #2 и ссылки в нём
http://forum.disser.ru/index.php?showtopic=2443 )
2-Б) Задача скорее практическая: выработать дискриминантные ключи для разделения групп по совокупности признаков. Жертвуем немного математической строгостью в угоду практической простоты, т.е. используем самые простые преобразования (типа логарифмирования) для признаков с откровенно асимметричными распределениями, далее используем обычный линейный ДА и по его результатам строим ключи.