Пробую разобраться в элементах анализа социальных сетей (Social Network Analysis - SNA). Материал: в группах больных и здоровых измерена концентрация 30 биохимических показателей. Хочу сделать следующее:
1) На основании предварительно расчитанных ранговых корреляций построить для обеих групп корреляционные графы, в которых бы рёбра положительных и отрицательных корреляций изображались линиями разного типа, например: сплошной и пунктирной.
2) Используя в качестве порогового значения заданный мной показатель коэффициента корреляции (например +/- 0,3 или +/- 0,5) создать бинарную матрицу смежности. Т.е например, все корреляции менее 0,3 по абсолютной величине станут 0, а |0,3| и более - |1|.
3) Покрутить полученное решение разными алгоритмами и выбрать наиболее наглядное решение. Линии тоже - сплошные и пунктирные.
4) Желательно встроенными в пакет средствами определить кластеры показателей в полученном решении.
5) Сравнить 2 сети и построить некий обобщённый граф, в котором бы различия между ними были хорошо видны.
Много чего скачал и урывками просмотрел хелпы (Pajek, yEd Graph Editor, KrackPlot, Cytoscape, Meerkat, ORA и ещё несколько, включая 2 пакета для R). Основная проблема: разные пакеты не хотят работать с корреляциями или с отрицательными корреляциями. Если работают, то нет возможности автоматически генерировать из них матрицы смежности с разными пороговыми значениями r. Сложилось впечатление, что эволюция пакетов идёт исключительно в сторону возможностей обработки всё больших массивов данных и преимущественно из интернета, а у меня микросеть и несколько другая задача.
Хотелось бы сделать работу в таком ключе: http://www.barabasilab.com/pubs/CCNR-ALB_P...NetMedicine.pdf
Кто работал с сетевым анализом? Подскажите, пожалуйста, какой пакет подойдёт для моих целей? Может посоветуете разные программы для отдельных этапов? Не понятно пока как сравнить сети и визуализировать различия.
PS Всех женщин-участников и читателей форума - с Праздником! Успехов в научных и житейских делах!