Помощь - Поиск - Пользователи - Календарь
Полная версия этой страницы: Сравнение с интервальной нормой
Форум врачей-аспирантов > Разделы форума > Медицинская статистика
Статистик
Добрый день!
Имеются данные о толщине макулы до и после лечения. Есть норма, которая задана в виде интервала. Как проверить соответствие толщины макулы норме после лечения?
Т.е. нужна гипотеза об попадании точечной оценки в заданный интервал? Или нужна гипотеза о соответствии интервальной оценки заданному интервалу?
Помогите, пожалуйста, разобраться.
Liz
Есть ли какая-ниб. инфа о том, что принято за норму (напр, 95%ДИ для средней)?
Статистик
Цитата(Liz @ 20.07.2013 - 01:14) *
Есть ли какая-ниб. инфа о том, что принято за норму (напр, 95%ДИ для средней)?

Мне это не известно.
nokh
Цитата(Статистик @ 20.07.2013 - 00:34) *
Добрый день!
Имеются данные о толщине макулы до и после лечения. Есть норма, которая задана в виде интервала. Как проверить соответствие толщины макулы норме после лечения?
Т.е. нужна гипотеза об попадании точечной оценки в заданный интервал? Или нужна гипотеза о соответствии интервальной оценки заданному интервалу?
Помогите, пожалуйста, разобраться.

Так а что проверять-то собственно? У пациента есть значение показателя после лечения. Если оно попадает в интервал нормы, значит... соответствует норме! Если футболист попадет мячём в интервал ворот, значит это - гол! Это - не статистическая задача, и человеку с громким ником "Статистик" на этом поле не поиграть.
Если гипотезы формулировать иначе, то статистика будет. Например:
1). Если изменения толщины макулы в процессе лечения однонаправлены, то можно оценить статистическую значимость такого изменения парными критериями, а также её среднюю величину и ДИ.
2). Можно оценить результативность лечения, распределив всех пациентов по таблице частот 2х2 (До лечения - После лечения / Соответствует норме - Не соответствует норме) и проанализировать её на симметрию критериями Мак-Немара или Лидделла.
Статистик
Цитата(nokh @ 20.07.2013 - 10:23) *
Так а что проверять-то собственно? У пациента есть значение показателя после лечения. Если оно попадает в интервал нормы, значит... соответствует норме! Если футболист попадет мячём в интервал ворот, значит это - гол! Это - не статистическая задача, и человеку с громким ником "Статистик" на этом поле не поиграть.

Давайте не опускаться до взаимных придирок. Я же тоже могу написать, что нужно сначала грамматику выучить, а потом писать cool.gif
Если бы люди все знали, то не спрашивали бы у друг друга. Будьте добрее.
Просмотрев несколько тем, я обратила внимание на нетерпимость к чужим ошибкам и заблуждениям. Но раз это форум врачей-аспирантов, то буду списывать на юнешеский максимализм rolleyes.gif

Если бы речь шла об одном пациенте, то Вы были бы безусловно правы.
Но у меня есть выборка значений до лечения и после.
Например, норма 230-270. После лечения нередко встречаются значения 271. Если применить Ваш пример с голом, то это не норма.

Цитата(nokh @ 20.07.2013 - 10:23) *
Если гипотезы формулировать иначе, то статистика будет. Например:
1). Если изменения толщины макулы в процессе лечения однонаправлены, то можно оценить статистическую значимость такого изменения парными критериями, а также её среднюю величину и ДИ.

Это уже сделано. Но стоит задача еще и сравнить с нормой. Потому что могут быть положительные изменения, но величина при этом все равно после лечения не достигает нормальных значений.

Цитата(nokh @ 20.07.2013 - 10:23) *
2). Можно оценить результативность лечения, распределив всех пациентов по таблице частот 2х2 (До лечения - После лечения / Соответствует норме - Не соответствует норме) и проанализировать её на симметрию критериями Мак-Немара или Лидделла.

Можно. Но возвращаюсь к примеру выше. А 271 считать не нормой?

P.S. Ник выдрала таким, чтобы подчеркнуть, что я не врач. Пусть он никого не раздражает.
nokh
Цитата(Статистик @ 20.07.2013 - 13:49) *
... Но возвращаюсь к примеру выше. А 271 считать не нормой?
P.S. Ник выдрала таким, чтобы подчеркнуть, что я не врач. Пусть он никого не раздражает.

Плохо! Чтобы ответить на ваш вопрос недостаточно быть Статистиком с безупречной грамматикой, нужно ещё и разбираться в предмете. Я не знаю. Но на форуме есть специалист по макулам; подождите - вам ответят smile.gif

PS Нужно тоже выдрать у кого-нибудь для себя ник покруче...
Статистик
Цитата(nokh @ 20.07.2013 - 11:43) *
Плохо! Чтобы ответить на ваш вопрос недостаточно быть Статистиком с безупречной грамматикой, нужно ещё и разбираться в предмете. Я не знаю. Но на форуме есть специалист по макулам; подождите - вам ответят smile.gif

Да не в макуле же дело. А если бы это был гемоглобин? Мы бы ждали другого специалиста?
Не важно, как называется показатель. Есть выборка из количественных значений. Есть, например, из литературных источников интервал значений, в которые должен попадать этот показатель. Как оценить, приблизился ли этот показатель к норме после лечения или нет?
DrgLena
Обычно, имеют дело с утолщением макулы, при различной патологии, пытаются снять ее отек, и др состояния, при которых она утолщается, поэтому, можно сравнить группу с константой, в качестве которой выбрать верхнюю границу нормы. Эта статистическая задача недавно обсуждалась на форуме ? одновыборочный t критерий, при этом тестируется среднее группы относительно константы - Test of means against reference constant (value). Если исследуете истончение макулы, т.е. дегенеративные процессы, которые сопровождаются ее истончением, возьмите нижнюю границу и анализируйте аналогичным образом.

Но, клинически важно показать не то, что достигнута норма в группе лечения, это редко достигается, а оценить то остаточное утолщение, которое позволяет или не позволяет достичь желаемого результата относительно повышения хотя бы на строку, или сохранения зрения. Должна быть, прежде всего, клиническая гипотеза исследования, а не поиск правильного сочетания слов из области проверки статистических гипотез, которые ?статистик? должен правильно формулировать. Обычная технология создания диссертаций ? собрали данные, отдали статистику и пусть сравнит все со всем и еще и с нормой, и будем радоваться, если получим р<0,05.

Если, вы, как статистик, будете анализировать данные до и после воздействия, не забудьте учесть тот факт, что все показатели ОКТ, не только фовеа, возрастзависимые, а если ДМО изучаете, так и от типа СД, т.е. кроме многофакторного дисперсионного анализа понадобится и ковариационный анализ, чтобы сделать adj. for age.

Удачи, на ниве статистики, увлекательное дело! Не обижайтесь, мы тут все учимся, у всех разные знания и опыт!
Статистик
Цитата(DrgLena @ 20.07.2013 - 14:48) *
Обычно, имеют дело с утолщением макулы, при различной патологии, пытаются снять ее отек, и др состояния, при которых она утолщается, поэтому, можно сравнить группу с константой, в качестве которой выбрать верхнюю границу нормы. Эта статистическая задача недавно обсуждалась на форуме ? одновыборочный t критерий, при этом тестируется среднее группы относительно константы - Test of means against reference constant (value). Если исследуете истончение макулы, т.е. дегенеративные процессы, которые сопровождаются ее истончением, возьмите нижнюю границу и анализируйте аналогичным образом.

Была такая мысль, спасибо. Вы подтвердили мои догадки. Хотела убедиться, что другого способа нет.

Цитата(DrgLena @ 20.07.2013 - 14:48) *
Но, клинически важно показать не то, что достигнута норма в группе лечения, это редко достигается, а оценить то остаточное утолщение, которое позволяет или не позволяет достичь желаемого результата относительно повышения хотя бы на строку, или сохранения зрения. Должна быть, прежде всего, клиническая гипотеза исследования, а не поиск правильного сочетания слов из области проверки статистических гипотез, которые ?статистик? должен правильно формулировать. Обычная технология создания диссертаций ? собрали данные, отдали статистику и пусть сравнит все со всем и еще и с нормой, и будем радоваться, если получим р<0,05.

Спасибо, гипотеза есть. Я не формулирую тут все гипотезы, которые есть. Хотелось бы понять, что не правильно в поставленном мною вопросе с точки зрения статистики?

Цитата(DrgLena @ 20.07.2013 - 14:48) *
Если, вы, как статистик, будете анализировать данные до и после воздействия, не забудьте учесть тот факт, что все показатели ОКТ, не только фовеа, возрастзависимые, а если ДМО изучаете, так и от типа СД, т.е. кроме многофакторного дисперсионного анализа понадобится и ковариационный анализ, чтобы сделать adj. for age.

Пациенты из одной возрастной группы. Про остальное я в курсе.

Цитата(DrgLena @ 20.07.2013 - 14:48) *
Удачи, на ниве статистики, увлекательное дело! Не обижайтесь, мы тут все учимся, у всех разные знания и опыт!

А я должна была обидеться? cool.gif Значит Вы что-то написали, что могло меня обидеть?
Очень хорошо, что вы понимаете, что у каждого разные знания и опыт. Поэтому не воспринимайте априори человека, который что-то спрашивает на форуме, глупее себя.
И Вам удачи!
DrgLena
Цитата(Статистик @ 19.07.2013 - 21:34) *
Т.е. нужна гипотеза об попадании точечной оценки в заданный интервал? Или нужна гипотеза о соответствии интервальной оценки заданному интервалу?

Нужна гипотеза? Вы ожидаете, что на этом форуме СТАТИСТИКАМ раздают гипотезы?
Цитата(Статистик @ 19.07.2013 - 21:34) *
Хотелось бы понять, что не правильно в поставленном мною вопросе с точки зрения статистики?

А ответ nokh вы просто не поняли ? Ведь спасибо не сказали.
Мой ответ, каким образом проверить ВАШУ гипотезу, которая должна быть у ВАС, о равенстве вашей точечной оценки верхней границе нормы, вы тоже не поняли? Тогда обижайтесь и на меня и на nokh.
Статистик
Цитата(DrgLena @ 20.07.2013 - 17:49) *
Нужна гипотеза? Вы ожидаете, что на этом форуме СТАТИСТИКАМ раздают гипотезы?

Мне уже даже интересно, какова Ваша цель? Вы хотите выжить новичка с форума?
Да, наивно полагала, что ту помогают. Вижу, что только чмурят. Ну, да ладно. Я взрослая и самодостаточная женщина, чтобы реагировать. Я уже ознакомилась со стилем Ваших ответов и ответов nokh. Думаю, пора закончить давать оценку моим умственным и профессиональным качествам. не вам судить. Пожалуйста, или не отвечайте, или отвечайте по сути вопроса.

Цитата(DrgLena @ 20.07.2013 - 17:49) *
А ответ nokh вы просто не поняли ? Ведь спасибо не сказали.

Он мне ничем не помог, но попытался нахамить. За что говорить спасибо?

Цитата(DrgLena @ 20.07.2013 - 17:49) *
Мой ответ, каким образом проверить ВАШУ гипотезу, которая должна быть у ВАС, о равенстве вашей точечной оценки верхней границе нормы, вы тоже не поняли? Тогда обижайтесь и на меня и на nokh.

Хм, Вы читаете через строчку? Как раз эту часть Вашего ответа я поняла. И даже написала, что первоначально в голове всплыла именно такая мысль.

Искренне не понимаю, зачем этот форум, на котором нельзя ничего спрашивать? Большинство ответов в стиле "дурак, иди читай книги". И Вижу, что многие после такой встречи ограничиваются 1-2 постами.

Я считаю себя достаточно умным и образованным человеком (имеющим степень и звание), и не хочу слышать подобные ответы в свой адрес. Невозможно знать все. Я пришла за идеей и помощью. Область моих профессиональных интересов лежит несколько в другой плоскости. В этот вопрос окунулась по просьбе коллеги (да и самой стало интересно).
И объясните, почему мой ник стал красной тряпкой?
DrgLena
Цитата(Статистик @ 20.07.2013 - 18:08) *
Мне уже даже интересно, какова Ваша цель? Вы хотите выжить новичка с форума?
Вижу, что только чмурят.

А разве вы не получили ответ?
Цитата(Статистик @ 20.07.2013 - 18:08) *
Искренне не понимаю, зачем этот форум,

Не нужно иметь степень и быть статистиком, чтобы понять для чего этот форум, сколько раз nokh сказали СПАСИБО на этом форуме ? Посчитайте, может и поймете.
Статистик
Цитата(DrgLena @ 20.07.2013 - 19:43) *
А разве вы не получили ответ?

На поставленный вопрос нет. Сорри.
100$
Как статистик статистику.

У вас есть выборка, и есть диапазон нормы. В этой выборке можно определить долю пациентов, обладающих нормальными значениями изучаемого признака. До лечения доля пациентов, чей изучаемый признак находится в пределах нормы (т.е. попадает в диапазон), была, н-р, 0%, после лечения- скажем 50%.

После чего проверить гипотезу о равенстве долей в двух выборках. Как учили классики жанра.

Я это к тому, что проверить "соответствие" конкретной величины диапазону невозможно: величина либо попадает в диапазон, либо нет. И если некая величина не попадает в 95%-ный доверительный интервал, она запросто может попасть в 99%-ный.

P.S. В статистике есть тема "Статистика интервальных данных", да все никак руки до нее не доходят. Даже приблизительно не знаю, как там проверяются гипотезы.
Статистик
Цитата(100$ @ 20.07.2013 - 20:18) *
Как статистик статистику.

У вас есть выборка, и есть диапазон нормы. В этой выборке можно определить долю пациентов, обладающих нормальными значениями изучаемого признака. До лечения доля пациентов, чей изучаемый признак находится в пределах нормы (т.е. попадает в диапазон), была, н-р, 0%, после лечения- скажем 50%.

После чего проверить гипотезу о равенстве долей в двух выборках. Как учили классики жанра.

Спасибо за ответ. Выше уже такое предлагали. Но поправьте меня, если я рассуждаю неправильно.
Норма в свое время была взята не с потолка. Скорее всего она когда-то кем-то была получена на основании статистических данных. Следовательно границы нормы - это оценки. Возможно это границы доверительного интервала, а может это какие-то квантили. К сожалению, мне это не известно (и информацию эту уже восстановить невозможно). А раз это оценки, то они имеют точность. Поэтому, имея норму 230-270, можно ли считать 271 нормой? А 272? Поэтому формально таблицу сопряженности построить несложно. А вот насколько это будет корректно, считая формально 271 не нормой?


Цитата(100$ @ 20.07.2013 - 20:18) *
Я это к тому, что проверить "соответствие" конкретной величины диапазону невозможно: величина либо попадает в диапазон, либо нет. И если некая величина не попадает в 95%-ный доверительный интервал, она запросто может попасть в 99%-ный.

Это понятно. Но вот тут как раз и всплывает понятие доверительной вероятности. А когда мы жестко пытаемся отнести значение к норме или не норме, которая сама является оценкой, на мой взгляд, поступаем не совсем корректно.

в Любом случае в результате обсуждения появились 2 подхода к решению поставленной задачи:
1) выводы делать на основании таблицы сопряженности;
2) сравнивать среднюю отдельно с верхней и нижней границей нормы.
Статистик
Цитата(100$ @ 20.07.2013 - 20:18) *
P.S. В статистике есть тема "Статистика интервальных данных", да все никак руки до нее не доходят. Даже приблизительно не знаю, как там проверяются гипотезы.

Спасибо. Попробую хотя бы бегло ознакомиться, чтобы понять, стоит ли туда копать.
DrgLena
Не статистик статистику smile.gif
В статистике интервальных данных элементы выборки - не числа, а интервалы
А у статистика числа, это если бегло, так что, туда можно не копать
Статистик
Цитата(DrgLena @ 20.07.2013 - 22:10) *
Не статистик статистику smile.gif
В статистике интервальных данных элементы выборки - не числа, а интервалы
А у статистика числа, это если бегло, так что, туда можно не копать

Да, спасибо.
Я уже это поняла. Не мой случай.
100$
Девушки! Вчера был явно не ваш день. Но я терпелив. Попробую сегодня.

Измерьте одну и ту же величину дважды, и у вас тотчас появится интервал (тот пресловутый "плюс-минус лапоть"). Залюбуетесь.
DoctorStat
Цитата(Статистик @ 20.07.2013 - 12:54) *
Да не в макуле же дело. А если бы это был гемоглобин? Мы бы ждали другого специалиста?
Не важно, как называется показатель. Есть выборка из количественных значений. Есть, например, из литературных источников интервал значений, в которые должен попадать этот показатель. Как оценить, приблизился ли этот показатель к норме после лечения или нет?
Предлагаю применить парный критерий Стьюдента, но подставлять в него не простое изменение параметра =x(после) - x(до) для каждого пациента, а изменение модуля отклонения от середины доверительного интервала нормы параметра = |x(после)- хmdi | - |x(до)- хmdi | . Если нулевая гипотеза принимается на желаемом уровне значимости, то лечение бесполезно, т.к. оно не приблизило измеряемый показатель к норме. Если гипотеза отклоняется, то вычисляем разность средних значений =М(после) -М(до). Если эта разность меньше 0, то показатель приблизился к норме, если больше нуля, то отдалился.
Статистик
Цитата(DoctorStat @ 21.07.2013 - 09:45) *
Предлагаю применить парный критерий Стьюдента, но подставлять в него не простое изменение параметра =x(после) - x(до) для каждого пациента, а изменение модуля отклонения от середины доверительного интервала нормы параметра = |x(после)- хmdi | - |x(до)- хmdi | . Если нулевая гипотеза принимается на желаемом уровне значимости, то лечение бесполезно, т.к. оно не приблизило измеряемый показатель к норме. Если гипотеза отклоняется, то вычисляем разность средних значений =М(после) -М(до). Если эта разность меньше 0, то показатель приблизился к норме, если больше нуля, то отдалился.

Спасибо за ответ.
К сожалению, так ничего не получиться. x(после) - x(до)= |x(после)- хmdi | - |x(до)- хmdi | , т.к. хmdi попросту сокращается.
Да и приведение интервала к числу для сравнения не считаю корректным. В противном случае проще сравнить среднюю по выборке с точечным значением по критерию Стьюдента на равенство значений.

Критерий Вилкоксона показал, что отличия между выборками до и после лечения существенные (p=0,0025). Анализ таблицы сопряженности показал, что до и после лечения по норме выборки оказались однородными. Но это было понятно с самого начала, т.к. после лечения значения показателя приблизились к норме, но в большинстве случаев не достигли ее.
DrgLena
Цитата(DoctorStat @ 21.07.2013 - 09:45) *
Если нулевая гипотеза принимается на желаемом уровне значимости, то лечение бесполезно, т.к. оно не приблизило измеряемый показатель к норме.

DoctorStat! Молодые доктора, аспиранты, девушки и даже юноши могут с вами согласиться.

У меня принципиальное возражение против этой мысли. Мы лечим не показатель, а больного. К сожалению та же мысль о лечении показателей присутствует и у многих членов ученого совета и в ВАКе тоже все хотят лечить показатели, при чем очень достоверно и чтобы с нормой не было различий после лечения, везде в выводах требуется р<0,05. Клиническая мысль как то теряется под напором статистиков, которые, не смотря на то, что включили мозг, делают выводы об отсутствии эффективности, если норма не достигнута. Можно получить в результате лечения нормальную температуру, но не вылечить больного.

В случае динамики толщины макулы, как раз можно получить эффект лечения относительно повышения зрения или его стабилизацию в течение длительного периода в результате, например, ПРЛК у больных ДКМО и без достижения нормальной толщины макулы. У пациентов, у которых достигнуто повышение зрения отмечено снижении толщины макулы с 370 до 300 мкм после ПРЛК, стабилизация зрения отмечена у больных при отсутствии прогрессирования отека, т.е, если исходная средняя толщина макулы 495 сохраняется после вмешательства примерно на том же уровне), а ухудшение по остроте зрения происходят у пациентов с исходной толщиной 597 мкм , и после лечения у них происходит повышение толщины макулы до 748. Повышение и стабилизация остроты зрения в течении года после ПРЛК при этой патологии считают положительным результатом лечения. Объединив таких больных в одну группу можно сделать вывод , что если исходная толщина макулы превышает 545 мкм, то ПРЛК не эффективна и не показана таким больным.

Нормы у таких больных вообще уже не может быть, но лечить их нужно, при этом нужно честно говорить больному, на что он может рассчитывать при конкретных вмешательствах. Статистика должна помогать в медицинских исследованиях, а не выключать мозг врачей.
DoctorStat
Цитата(DrgLena @ 21.07.2013 - 18:58) *
Клиническая мысль как то теряется под напором статистиков, которые, не смотря на то, что включили мозг, делают выводы об отсутствии эффективности, если норма не достигнута. Можно получить в результате лечения нормальную температуру, но не вылечить больного.
DrgLena права в том, что человек - это многопараметрическая машина, в которой разные физиологические параметры взаимосвязаны между собой. Следя только за одним параметром и игнорируя остальные, мы искажаем реальную ситуацию. Более правильно, вместо медицинских терминов наподобие: "эффективность лечения не подтверждена" употреблять абстрактные математические термины: "нулевая гипотеза не отвергается". Тут, как говорится, и волки (т.е.медработники) будут сыты и не раздражены, и овцы (статистики) целы и довольны, что их слушают.
Статистику:
1. СОКРАЩЕНИЕ СЛАГАЕМЫХ. Середина интервала нормы xmdi в формуле разности модулей сокращается только в том случае, когда исследуемый параметр до и после опыта находятся с одной стороны от xmdi.
2. ПОКАЗАТЕЛЬ БЛИЗОСТИ К НОРМЕ. Если параметр распределен нормально (а только такое распределение позволяет применять критерий Стьюдента), то это распределение симметрично относительно максимума, который находится в середине доверительного интервала. Отсюда следует, что в качестве близости показателя к норме можно взять его абсолютное расстояние от центра интервала и не учитывать его границы.

Статистик
Цитата(DoctorStat @ 21.07.2013 - 19:10) *
Статистику:
1. СОКРАЩЕНИЕ СЛАГАЕМЫХ. Середина интервала нормы xmdi в формуле разности модулей сокращается только в том случае, когда исследуемый параметр до и после опыта находятся с одной стороны от xmdi.

Именно так и есть.

Цитата(DoctorStat @ 21.07.2013 - 19:10) *
2. ПОКАЗАТЕЛЬ БЛИЗОСТИ К НОРМЕ. Если параметр распределен нормально (а только такое распределение позволяет применять критерий Стьюдента), то это распределение симметрично относительно максимума, который находится в середине доверительного интервала. Отсюда следует, что в качестве близости показателя к норме можно взять его абсолютное расстояние от центра интервала и не учитывать его границы.

Идея понятна.
DrgLena
Наверное, опять не мой день! Я не про многопараметрическую машину, а про то что проверка медицинской гипотезы и проверка статистической гипотезы это разные вещи, а вы просто предлагаете заменить термины.
DoctorStat
Цитата(Статистик @ 21.07.2013 - 20:30) *
Идея понятна.
Дополнение: после лечения может сместиться не только максимум нормальной кривой распределения исследуемого параметра, но и дисперсия (разброс данных). Поэтому вышеизложенный алгоритм "приближения к норме" следует модифицировать с учетом дисперсии:
1. Парным (для связанных данных) критерием Стьюдента определяем изменение абсолютных расстояний до середины доверительного интервала (разность модулей).
2. Каким-нибудь (средние значения групп могут отличаться!) статистическим критерием определяем изменение дисперсии нормальной кривой после лечения.
3. Если изменения дисперсии в п.2 нет, то, как и раньше, вычисляем разность средних и делаем выводы.
4. Если п.2 указал на изменение дисперсии, то вместо разности средних в п.3 нужно вычислять разность площадей под графиком плотности нормальной кривой, ограниченных доверительным интервалом. Анимированные рисунки площадей смотри на сайте: http://www.statsoft.ru/home/textbook/modules/sttable.html
Статистик
Цитата(DoctorStat @ 22.07.2013 - 10:01) *
Дополнение: после лечения может сместиться не только максимум нормальной кривой распределения исследуемого параметра, но и дисперсия (разброс данных). Поэтому вышеизложенный алгоритм "приближения к норме" следует модифицировать с учетом дисперсии:
1. Парным (для связанных данных) критерием Стьюдента определяем изменение абсолютных расстояний до середины доверительного интервала (разность модулей).
2. Каким-нибудь (средние значения групп могут отличаться!) статистическим критерием определяем изменение дисперсии нормальной кривой после лечения.
3. Если изменения дисперсии в п.2 нет, то, как и раньше, вычисляем разность средних и делаем выводы.
4. Если п.2 указал на изменение дисперсии, то вместо разности средних в п.3 нужно вычислять разность площадей под графиком плотности нормальной кривой, ограниченных доверительным интервалом. Анимированные рисунки площадей смотри на сайте: http://www.statsoft.ru/home/textbook/modules/sttable.html

Спасибо за ответ.
Буду думать.
Для просмотра полной версии этой страницы, пожалуйста, пройдите по ссылке.
Форум IP.Board © 2001-2025 IPS, Inc.