Цитата(ЕленаSmets @ 20.08.2014 - 14:22)

Спасибо! Регрессионный анализ уже сделан. Однако уравнение регрессии неудобно применять в практике. Каким образом рассчитать критические значения показателя (гемоглобина), указывающие на риск порока? Или другой пример: всем известно, что холестерин выше 5,2 ммоль/л повышает риск ССЗ на 5 % в течение 10 лет. Как было рассчитано, что именно 5,2, а не 6 или 4,8? Дизайн исследования ясен: была группа людей, часть из них в течение 10 лет заболели ССЗ и у этой части холестерин был выше, чем у остальных... Но как высчитать именно это критическое значение 5,2?
Сделан именно ordered logistic regression?
по моей ссылке написано:
Цитата
Next we see the estimates for the two intercepts, which are sometimes called cutpoints. The intercepts indicate where the latent variable is cut to make the three groups that we observe in our data. Note that this latent variable is continuous. In general, these are not used in the interpretation of the results. The cutpoints are closely related to thresholds, which are reported by other statistical packages.
если интересует интерпретация коэффициентов, то тоже написано:
Цитата
The coefficients from the model can be somewhat difficult to interpret because they are scaled in terms of logs. Another way to interpret logistic regression models is to convert the coefficients into odds ratios. To get the OR and confidence intervals, we just exponentiate the estimates and confidence intervals.
## odds ratios
exp(coef(m))
## pared public gpa
## 2.8511 0.9429 1.8514
## OR and CI
exp(cbind(OR = coef(m), ci))
## OR 2.5 % 97.5 %
## pared 2.8511 1.6958 4.817
## public 0.9429 0.5209 1.681
## gpa 1.8514 1.1136 3.098
These coefficients are called proportional odds ratios and we would interpret these pretty much as we would odds ratios from a binary logistic regression. For pared, we would say that for a one unit increase in parental education, i.e., going from 0 (Low) to 1 (High), the odds of "very likely" applying versus "somewhat likely" or "unlikely" applying combined are 2.85 greater, given that all of the other variables in the model are held constant. Likewise, the odds "very likely" or "somewhat likely" applying versus "unlikely" applying is 2.85 times greater, given that all of the other variables in the model are held constant. For gpa (and other continuous variables), the interpretation is that when a student's gpa moves 1 unit, the odds of moving from "unlikely" applying to "somewhat likely" or "very likley" applying (or from the lower and middle categories to the high category) are multiplied by 1.85.