Огромное спасибо за ваши ответы.
Цитата(p2004r @ 24.08.2016 - 12:37)

В регрессию (и логистическую тоже) нельзя помещать коррелированные предикторы. Коэффициенты уравнения становятся численно неустойчивыми и не интерпретируемыми. (Для того что бы представить себе это --- просто поместите какой либо параметр в модель еще раз под другим именем).
Для построения сети зависимостей есть например Bayesian networks (http://www.bnlearn.com/).
Коррелированные между собой нельзя, это я понимаю, а коррелированные с зависимой переменной?
Цитата(100$ @ 24.08.2016 - 12:42)

Здесь есть одна небольшая, но существенная деталь: единственно возможным статистическим результатом применения любой ординальной (читай: балльной) шкалы является упорядочивание объектов по степени выраженности интересующего исследователя признака, т.е. ранжировка. Она позволяет поставить отличника впереди хорошиста, того- впереди троечника etc., но не позволяет ответить на вопрос, на сколько у одного объекта наблюдения признак выражен сильнее, чем у другого: это связано стем, что порядковая шкала не эквидистантна, и в ней не определена операция суммирования. Соответственно, никакая разница каких-то там баллов просто не имеет право на существование. Поэтому, пользуясь случаем и в надежде, что еще не все потеряно, прошу вас отказаться от использования разницы баллов как зависимой переменной (отклика в линейной регрессии) и не наворачивать одну глупость на другую. Ваши пациенты будут вам очень благодарны.
Конечно, не все потеряно, для этого и спрашиваю совета у знающих людей. Для меня смысл не в разнице баллов, а в разделении пациентов на тех, у кого случилось клиническое ухудшение и на тех, кто остался стабильным. Могу ли я отразить это качественной переменной, где 1- это пациенты без ухудшения, а 2 - с прогрессированием заболевания, и поставить это зависимой переменной в логистическую регрессионную модель?