Строю логистическую регрессиию для бинарной классификации в SPSS. Если выбираю пошаговое включение параметров в модель, то получаю уравнение с не очень хорошими параметрами верной классификации (верная классификация первого класса - 80%, верная классификация второго класса - 85%). При этом само уравнение статистически значимо и все коэффициенты статистически значимы.
Пробую по другому. Включаю все параметры в модель и получаю 100% классификацию, но все коэффициенты статистически НЕ значимы (значимость 0,995-1,000). Начинаю по одному удалять параметры из модели. После ручного удаления нескольких параметров получаю 99,8% классификацию и все НЕ значимые коэффициенты уравнения. После удаления любого одного из параметров доля верной классификации существенно снижается до 80-85%. Если все-таки удалять вручную самые НЕ значимые коэффициенты, то в итоге получается практически то же уравнение, что и было получено при пошаговом построении с не очень хорошими параметрами верной классификации, но со значимыми коэффициентами.
Подскажите, пожалуйста, все-таки какое уравнение логистической регрессии выбрать? С 99,8% классификацией, но НЕ значимыми коэффициентами уравнения, или со значимыми коэффициентами регрессии, но 80% долей верной классификации? И как в принципе можно интерпретировать результат, когда доля верной классификации практически 100%, коэффициент детерминации практически единица, само уравнение регрессии статистически значимо, но все коэффициенты уравнения статистически НЕ значимы?