
1) Изменчивость между чипами и внутри чипов до препроцессинга. Расчёт компонентов дисперсии по имеющимся данным дал 60% межчиповой изменчивости не связанной с индивидуальными и групповыми различиями, т.е. 60% технической изменчивости! Сколько шума считается допустимым?
2) Результаты анализа сильно, а возможно и целиком, зависят от препроцессинга. Используется несколько распространённых способов нормализации данных для устранения технической изменчивости: от медианной нормализации до квантильной и далее. То что "далее" подвергает сомнению всё что было "до" и этот процесс не заканчивается. Чем пользуетесь вы?
3) Объединение информации с двух каналов (Red, Green). Вызывает вопросы использование отношения интенсивностей R/G (так называемая М-часть данных для MA plot). Деление - самое неточное действие, усиливающее погрешности данных. Почему как-то не принято использовать A-часть, т.е. среднее: (R+G)/2?
4) Разные методы отфильтровывания наиболее перспективных показателей из тысяч имеющихся дают совершенно разные топ-листы. Степень перекрытия сильно зависит в том числе и от длины списка. У меня получилось 50%-ное перекрытие топ-12 и примерно 5%-ное для топ-150 для усреднённых RG-данных с использованием пакетов genefilter() и limma() из проекта Bioconductor. Но мои результаты практически не совпали с результатами обработки тех же данных двумя группами людей и в других пакетах. Нужно сказать, что и у тех двух групп результаты тоже не совпали... Я не согласен с имеющимся мнением, что способы препроцессинга и выявления топа показателей являются определённой системой договорённостей - ищу способы объективизации результатов. Во что верите вы и каким статистическим инструментарием пользуетесь для укрепления своей веры?
В целом сложность в том, что отдельные ветви микрочиповых исследований являются молодыми и пока не накоплено достаточно информации, чтобы с её помощью можно было поверять результаты статистики. Т.о. статистический анализ остаётся "вещью в себе" и нужно как-то эту вещь вывернуть, чтобы использовать для медико-биологических интерпретаций.