так как тут помочь? связи никакой в данных нет кроме годов общих

две вот эти таблицы по сути
каноническую корреляцию по трем строкам (года) с пропущенными значениями в довесок посчитать разве что?

)))
Код
> acast(expert, type ~ year, value.var="rate", median)
2015 2017 2019
a 0.7500000 0.1578947 0.7894737
d 0.6930000 0.7500000 0.7720000
n 0.8750000 0.9583333 0.9583333
r 0.9761905 0.9761905 0.9761905
> acast(expert, expert ~ year ~ type, value.var="neg")
, , a
2015 2017 2019
exp_1 -1.5177168 -1.2039728 -0.5773154
exp_10 NA -1.4663371 -0.5653138
exp_11 NA -2.0149030 -2.0794415
exp_12 -1.3862944 1.3862944 -2.4423470
exp_13 0.2744368 -0.4054651 -0.6931472
exp_14 -2.0149030 -1.6094379 -2.3025851
exp_15 -1.3247816 -2.0946317 -1.4136933
exp_16 -2.5649494 -2.5649494 -2.3025851
exp_17 NA -1.0986123 -1.3862944
exp_18 -0.9162907 -2.1400662 -2.5520460
exp_19 0.0000000 -1.6094379 -0.6931472
exp_2 -0.9162907 -2.3025851 -2.5649494
exp_20 -0.9985288 -0.1541507 0.4054651
exp_21 -0.6190392 0.0000000 0.5596158
exp_22 -1.7047481 -2.5649494 -1.3862944
exp_23 -1.9459101 -2.9444390 -3.4339872
exp_3 NA NA -4.5432948
exp_4 -1.5968591 -3.2958369 -1.5892352
exp_5 -2.2553322 -2.2512918 1.2237754
exp_6 -2.3025851 -2.6390573 -1.6094379
exp_7 NA -1.9459101 -3.6109179
exp_8 -0.9162907 -1.6094379 0.0000000
exp_9 NA -0.5108256 -1.9459101
, , d
2015 2017 2019
exp_1 -1.5177168 -1.2039728 -0.5773154
exp_10 NA -1.4663371 -0.5653138
exp_11 NA -2.0149030 -2.0794415
exp_12 -1.3862944 1.3862944 -2.4423470
exp_13 0.2744368 -0.4054651 -0.6931472
exp_14 -2.0149030 -1.6094379 -2.3025851
exp_15 -1.3247816 -2.0946317 -1.4136933
exp_16 -2.5649494 -2.5649494 -2.3025851
exp_17 NA -1.0986123 -1.3862944
exp_18 -0.9162907 -2.1400662 -2.5520460
exp_19 0.0000000 -1.6094379 -0.6931472
exp_2 -0.9162907 -2.3025851 -2.5649494
exp_20 -0.9985288 -0.1541507 0.4054651
exp_21 -0.6190392 0.0000000 0.5596158
exp_22 -1.7047481 -2.5649494 -1.3862944
exp_23 -1.9459101 -2.9444390 -3.4339872
exp_3 NA NA -4.5432948
exp_4 -1.5968591 -3.2958369 -1.5892352
exp_5 -2.2553322 -2.2512918 1.2237754
exp_6 -2.3025851 -2.6390573 -1.6094379
exp_7 NA -1.9459101 -3.6109179
exp_8 -0.9162907 -1.6094379 0.0000000
exp_9 NA -0.5108256 -1.9459101
, , n
2015 2017 2019
exp_1 -1.5177168 -1.2039728 -0.5773154
exp_10 NA -1.4663371 -0.5653138
exp_11 NA -2.0149030 -2.0794415
exp_12 -1.3862944 1.3862944 -2.4423470
exp_13 0.2744368 -0.4054651 -0.6931472
exp_14 -2.0149030 -1.6094379 -2.3025851
exp_15 -1.3247816 -2.0946317 -1.4136933
exp_16 -2.5649494 -2.5649494 -2.3025851
exp_17 NA -1.0986123 -1.3862944
exp_18 -0.9162907 -2.1400662 -2.5520460
exp_19 0.0000000 -1.6094379 -0.6931472
exp_2 -0.9162907 -2.3025851 -2.5649494
exp_20 -0.9985288 -0.1541507 0.4054651
exp_21 -0.6190392 0.0000000 0.5596158
exp_22 -1.7047481 -2.5649494 -1.3862944
exp_23 -1.9459101 -2.9444390 -3.4339872
exp_3 NA NA -4.5432948
exp_4 -1.5968591 -3.2958369 -1.5892352
exp_5 -2.2553322 -2.2512918 1.2237754
exp_6 -2.3025851 -2.6390573 -1.6094379
exp_7 NA -1.9459101 -3.6109179
exp_8 -0.9162907 -1.6094379 0.0000000
exp_9 NA -0.5108256 -1.9459101
, , r
2015 2017 2019
exp_1 -1.5177168 -1.2039728 -0.5773154
exp_10 NA -1.4663371 -0.5653138
exp_11 NA -2.0149030 -2.0794415
exp_12 -1.3862944 1.3862944 -2.4423470
exp_13 0.2744368 -0.4054651 -0.6931472
exp_14 -2.0149030 -1.6094379 -2.3025851
exp_15 -1.3247816 -2.0946317 -1.4136933
exp_16 -2.5649494 -2.5649494 -2.3025851
exp_17 NA -1.0986123 -1.3862944
exp_18 -0.9162907 -2.1400662 -2.5520460
exp_19 0.0000000 -1.6094379 -0.6931472
exp_2 -0.9162907 -2.3025851 -2.5649494
exp_20 -0.9985288 -0.1541507 0.4054651
exp_21 -0.6190392 0.0000000 0.5596158
exp_22 -1.7047481 -2.5649494 -1.3862944
exp_23 -1.9459101 -2.9444390 -3.4339872
exp_3 NA NA -4.5432948
exp_4 -1.5968591 -3.2958369 -1.5892352
exp_5 -2.2553322 -2.2512918 1.2237754
exp_6 -2.3025851 -2.6390573 -1.6094379
exp_7 NA -1.9459101 -3.6109179
exp_8 -0.9162907 -1.6094379 0.0000000
exp_9 NA -0.5108256 -1.9459101